Hyperbolic Polynomials Approach to Van der Waerden/Schrijver-Valiant like Conjectures : Sharper Bounds, Simpler Proofs and Algorithmic Applications

Leonid Gurvits

CCS-3

Los Alamos National Laboratory, Nuevo Mexico e-mail: gurvits@lanl.gov

Contents

- Van der Waerden Conjecture(VDWC) and SchrijverValiant(SVC) (Erdos-Renyi) Conjecture (permanents)
- Bapat Conjecture (BC)(mixed discriminants)
- VDW-FAMILIES of Homogeneous Polynomials - Polynomial View at (VDWC), (SVC) , (BC) Conjectures
- Homogeneous Hyperbolic Polynomials , POS-Hyperbolic Polynomials
- POS-Hyperbolic Polynomials form VDW-FAMILY , mini Van der Waerden Conjecture .
- Generalized Schrijver Lower bounds - Sparse Matrices
- Algorithmic Applications

Doubly Stochastic matrices and matrix tuples, Permanent , Mixed Discriminant

Doubly Stochastic $n \times n$ Matrix :

$$
\Omega_{n}=\left\{A=A(i, j): A(i, j) \geq 0,1 \leq i, j \leq n ; A e=A^{T} e=e,\right.
$$

$\Omega_{n}=$ The set of $n \times n$ Doubly Stochastic matrices.

Doubly Stochastic n-tuple $\mathbf{A}=\left(A_{1}, \cdots, A_{n}\right)$:
$A_{i} \succeq 0\left(\mathrm{PSD} n \times n\right.$ complex hermitian), $\operatorname{tr} A_{i}=$ $1,1 \leq i, j \leq n ; \sum_{i=1}^{n} A_{i}=I$.
$D_{n}=$ The set of Doubly Stochastic n-tuples.

The permanent : $\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A(i, \sigma(i))$

The mixed discriminant:
$D\left(A_{1}, A_{2}, \cdots, A_{n}\right)=\frac{\partial^{n}}{\partial t_{1} \cdots \partial t_{n}} \operatorname{det}\left(t_{1} A_{1}+\cdots+t_{n} A_{n}\right)$
Determinantal Polynomial :
$D E T_{\mathbf{A}}\left(t_{1}, \ldots, t_{n}\right)=\operatorname{det}\left(\sum_{1 \leq i \leq n} t_{i} A_{i}\right)$.

Multilinear Polynomial :
$\operatorname{Mul}_{A}\left(t_{1}, \ldots, t_{n}\right)=\prod_{1 \leq i \leq n} \sum_{1 \leq j \leq n} A(i, j) t_{j}$.
$\operatorname{per}(A)=\frac{\partial^{n}}{\partial t_{1} \cdots \partial t_{n}} M u l_{A}\left(t_{1}, \ldots, t_{n}\right)$
$\left(\operatorname{per}(A)=2^{-n} \sum_{b_{i} \in\{-1,1\}, 1 \leq i \leq n} M u l_{A}\left(b_{1}, \ldots, b_{n}\right):\right.$ Ryser's formula .)

Multilinear is commutative(solvable) case of Determinantal.

Van der Waerden Conjecture

The famous Van der Waerden Conjecture states that
$\min _{A \in \Omega_{n}} D(A)=\frac{n!}{n^{n}}$ (VDW-bound)
and the minimum is attained uniquely at the matrix J_{n} in which every entry equals $\frac{1}{n}$.

Van der Waerden Conjecture was posed in 1926 and proved only in 1981 :
D.I. Falikman proved the lower bound (VDW-bound) and the full conjecture, i.e. the uniqueness part, was proved by G.P. Egorychev . They shared Fulkerson Prize, 1982 .

Aleksandrov-Fenchel inequalities and many other ingredients, about 25 years of research.

Was used by N. Linial, A. Samorodnitsky and A. Wigderson (1998) to approximate the permanent of nonnegative matrices :

$$
A=\operatorname{Diag}\left(a_{1}, \ldots, a_{n}\right) B \operatorname{Diag}\left(b_{1}, \ldots, b_{n}\right), B \in \Omega_{n}
$$

Sinkhorn's Scaling .

$$
\text { As } \frac{n!}{n^{n}} \leq \operatorname{per}(B) \leq 1 \text { thus }
$$

$$
f(A)=: \prod_{1 \leq i \leq n} a_{i} b_{i} \Rightarrow 1 \leq \frac{f(A)}{\operatorname{per}(A)} \leq\left(\frac{n!}{n^{n}}\right)^{-1} \approx e^{n}
$$

Strongly polynomial algorithms .

Bapat's Conjecture (Van der Waerden Conjecture for mixed discriminants)

One of the problems posed by R.V.Bapat (1989) is to determine the minimum of mixed discriminants of doubly stochastic tuples : $\min _{A \in D_{n}} D(A)=$?

> Quite naturally, R.V.Bapat conjectured that $\min _{A \in D_{n}} D(A)=\frac{n!}{n^{n}}$ (Bapat-bound)

and that it is attained uniquely at $\mathbf{J}_{n}=:\left(\frac{1}{n} I, \ldots, \frac{1}{n} I\right)$.

The original conjecture was formulated for real symmetric PSD matrices.
L.G. had proved it (1999, 2006 in Advances in Mathematics for the complex case, i.e. for complex positive semidefinite and, thus, hermitian matrices .

Was motivated by the ellipsoid algorithm to approximate (deterministically) mixed discriminants/mixed volumes.

Schrijver-Valiant Conjecture

Let $\Lambda(k, n)$ denote the set of $n \times n$ matrices with nonnegative integer entries and row and column sums all equal to k (k-regular bipartite graphs) .

We define the following subset of rational doubly stochastic matrices : $\Omega_{k, n}=\left\{k^{-1} A: A \in \Lambda(k, n)\right\}$

Define
$\lambda(k, n)=\min \left\{\operatorname{per}(A): A \in \Omega_{k, n}\right\}=$ $k^{-n} \min \left\{\operatorname{per}(A): A \in \Lambda_{k, n}\right\} ;$ $\theta(k)=\lim _{n \rightarrow \infty}(\lambda(k, n))^{\frac{1}{n}}$.

$$
\lambda(2, n)=2^{-n+1}, \text { Erdos-Renyi }(1968): \theta(k)=?,
$$

even the case $k=3$ was open until 1979-1980 .
M. Voorhoeve in (1979) : $\lambda(k, n) \geq\left(\frac{2}{3}\right)^{2(n-3)} \frac{2}{9}$.

Schrijver-Valiant (1980) $\theta(k) \leq g(k)=\left(\frac{k-1}{k}\right)^{k-1}$, which gives $\theta(3)=\frac{4}{9}$.

Schrijver-Valiant Conjecture (1980) : $\theta(k)=$ $g(k)=\left(\frac{k-1}{k}\right)^{k-1}$.

Settled by Lex Schrijver in $1998: \min \{\operatorname{per}(A): A \in$ $\left.\Omega_{k, n}\right\} \geq\left(\frac{k-1}{k}\right)^{(k-1) n}$ (Schrijever-bound).
remarkable result - unpassable proof .

I will present a vast and unifying generalization of those three results .

Homogeneous polynomials with nonnegative coefficients

Let $\operatorname{Hom}(m, n)$ be a linear space of homogeneous polynomials $p(x), x \in R^{m}$ of degree n in m varibles ; correspondingly $\operatorname{Hom}_{+}(m, n)\left(\operatorname{Hom}_{++}(m, n)\right)$ be a subset of homogeneous polynomials $p(x), x \in R^{m}$ of degree n in m varibles and nonnegative(positive) coefficients . Let

$$
\begin{aligned}
& p \in \operatorname{Hom}_{+}(n, n), p\left(x_{1}, \ldots, x_{n}\right)= \\
& =\sum_{r_{1}+\ldots+r_{n}=n} a_{\left(r_{1}, \ldots, r_{n}\right)} \prod_{1 \leq i \leq n} x_{i}^{r_{i}} .
\end{aligned}
$$

The support:
$\operatorname{supp}(p)=\left\{\left(r_{1}, \ldots, r_{n}\right) \in I_{n, n}: a_{\left(r_{1}, \ldots, r_{n}\right)} \neq 0\right\}$.

The convex hull $C O(\operatorname{supp}(p))$ of $\operatorname{supp}(p)$ is called the Newton polytope of p.

For a subset $A \subset\{1, \ldots, n\}$ we define $S_{p}(A)=\max _{\left(r_{1}, \ldots, r_{n}\right) \in \operatorname{supp}(p)} \sum_{i \in A} r_{i}$.

Given a vector $\left(a_{1}, \ldots, a_{n}\right)$ with positive real coordinates, consider univariate polynomials

$$
\begin{array}{r}
D_{A}(t)=p\left(t\left(\sum_{i \in A} e_{i}\right)+\sum_{1 \leq j \leq n} a_{j} e_{j}\right) \\
V_{A}(t)=p\left(t\left(\sum_{i \in A} e_{i}\right)+\sum_{j \in A^{\prime}} a_{j} e_{j}\right)
\end{array}
$$

$S_{p}(A)$ can be expressed as an univariate degree :

$$
S_{p}(A)=\operatorname{deg}\left(D_{A}\right)=\operatorname{deg}\left(V_{A}\right)
$$

Homogeneous polynomials with nonnegative coefficients

The following linear differential operator maps $\operatorname{Hom}(n, n)$ onto $\operatorname{Hom}(n-1, n-1)$:

$$
p_{x_{1}}\left(x_{2}, \ldots, x_{n}\right)=\frac{\partial}{\partial x_{1}} p\left(0, x_{2}, \ldots, x_{n}\right)
$$

We define $p_{x_{i}}, 2 \leq i \leq n$ in the same way for all polynomials $p \in \operatorname{Hom}(n, n)$. Notice that
$p\left(x_{1}, \ldots, x_{n}\right)=x_{i} p_{x_{i}}\left(x_{2}, \ldots, x_{n}\right)+q\left(x_{1}, \ldots, x_{n}\right) ; q_{x_{i}}=0$.
The following inequality follows straight from the definition :

$$
\begin{gathered}
S_{p_{x_{1}}}(A) \leq \min \left(n-1, S_{p}(A)\right): \\
A \subset\{2, \ldots, n\}, p \in \operatorname{Hom}_{+}(n, n)
\end{gathered}
$$

Consider $p \in \operatorname{Hom}_{+}(n, n)$ We define the Capacity as

$$
\operatorname{Cap}(p)=\inf _{x_{i}>0, \prod_{1 \leq i \leq n} x_{i}=1} p\left(x_{1}, \ldots, x_{n}\right)
$$

It follows that if $p \in \operatorname{Hom}_{+}(n, n)$ then

$$
\begin{aligned}
C a p(p) & \geq \frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} p(0,0, \ldots, 0) \\
\left(p\left(x_{1}, \ldots, x_{n}\right)\right. & =\frac{\partial^{n}}{\partial x_{1} \cdots \partial x_{n}} p(0,0, \ldots, 0) x_{1} \ldots x_{n}+\text { nonneg- }
\end{aligned}
$$ ative stuff .)

Notice that

$$
\log (\operatorname{Cap}(p))=\operatorname{in} f_{\sum_{1 \leq i \leq n} y_{i}=0} \log \left(p\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)\right)
$$

and if $p \in \operatorname{Hom}_{+}(n, n)$
then the functional $\log \left(p\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)\right)$ is convex .

EXAMPLE

Let $A=\{A(i, j): 1 \leq i \leq n\}$ be $n \times n$ matrix with nonnegative entries. Assume that $\sum_{1 \leq j \leq n} A(i, j)>0$ for all $1 \leq i \leq n$. Define the following homogeneous polynomial :

$$
\begin{gathered}
\operatorname{Mul}_{A}\left(t_{1}, \ldots, t_{n}\right)=\prod_{1 \leq i \leq n} \sum_{1 \leq j \leq n} A(i, j) t_{j} . \\
M u l_{A} \in \operatorname{Hom}_{+}(n, n) \text { and } M u l_{A} \neq 0
\end{gathered}
$$

It is easy to check that
$S_{M u l_{A}}(\{j\})=|\{i: A(i, j) \neq 0\}|$
$\left(S_{M u l_{A}}(\{j\})\right.$ is equal to the number of non-zero entries in the j th column of A).

Notice that if $A \in \Lambda(k, n)$ (or $A \in \Omega(k, n)$) then $S_{M u l_{A}}(\{j\}) \leq k, 1 \leq j \leq n$.

More generally, consider a n-tuple $\mathbf{A}=\left(A_{1}, A_{2}, \ldots A_{n}\right)$, where the complex hermitian $n \times n$ matrices are positive semidefinite and $\sum_{1 \leq i \leq n} A_{i} \succ 0$ (their sum is positive definite).

Then the homogeneous polynomial
$D E T_{\mathbf{A}}\left(t_{1}, \ldots, t_{n}\right)=\operatorname{det}\left(\sum_{1 \leq i \leq n} t_{i} A_{i}\right) \in \operatorname{Hom}_{+}(n, n)$ and $D E T_{\mathbf{A}} \neq 0$.

Similarly to polynomials $M u l_{A}$:

$$
S_{D E T_{\mathbf{A}}}(\{j\})=\operatorname{Rank}\left(A_{j}\right), 1 \leq j \leq n .
$$

As Van Der Waerden conjecture on permanents as well Bapat's conjecture on mixed discriminants can be eqiuvalently stated in the following way (notice the absence of doubly stochasticity):

$$
\frac{n!}{n^{n}} C a p(q) \leq \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} q(0, \ldots, 0) \leq \operatorname{Cap}(q)(*)
$$

The van der Waerden conjecture on the permanents corresponds to polynomials $M u l_{A} \in \operatorname{Hom}_{+}(n, n)$: $A \geq 0$, the Bapat's conjecture on mixed discriminants corresponds to $D E T_{\mathbf{A}} \in \operatorname{Hom}_{+}(n, n): \mathbf{A} \succeq 0$. The connection between inequality $\left({ }^{*}\right)$ and the standard forms of the van der Waerden and Bapat's conjectures is established with the help of the scaling .

Notice that the functional $\log \left(p\left(e^{y_{1}}, \ldots, e^{y_{1}}\right)\right)$ is convex if $p \in \operatorname{Hom}_{+}(n, n)$. Thus the inequality $\left(^{*}\right)$ allows a convex relaxation of the permanent of nonnegative matrices and the mixed discriminant of semidefinite tu-
ples. This observation was implicit in [LSW, 1998] and crucial in [GS 2000, 2002].

VDW-FAMILIES

Consider a stratified set of homogeneous polynomials : $F=\bigcup_{1 \leq n<\infty} F_{n}$, where $F_{n} \in \operatorname{Hom}_{+}(n, n)$. We call such set VDW-FAMILY if it satisfies the following properties :

1. If a polynomial $p \in F_{n}, n>1$ then for all $1 \leq i \leq n$ the polynomials $p_{x_{i}} \in F_{n-1}$.
2.

$$
\begin{array}{r}
\operatorname{Cap}\left(p_{x_{i}}\right) \geq g\left(S_{p}(\{i\})\right) \operatorname{Cap}(p): \\
p \in F_{j}, 1 \leq i \leq j ; g(k)=\left(\frac{k-1}{k}\right)^{k-1}, k \geq 1
\end{array}
$$

Meta-Theorem , main idea :
Let $F=\bigcup_{1 \leq n<\infty} F_{n}$ be a VDW-FAMILY and the homogeneous polynomial $p \in F_{n}$. Then the following inequality holds :

$$
\begin{aligned}
& \left.\prod_{1 \leq i \leq n} g\left(\min \left(S_{p}(\{i\})\right), i\right)\right) \operatorname{Cap}(p) \leq \\
& \leq \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0) \leq \operatorname{Cap}(p) .
\end{aligned}
$$

Corollaries :

1. If the homogeneous polynomial $p \in F_{n}$ then

$$
\frac{n!}{n^{n}} C a p(p) \leq \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0) \leq \operatorname{Cap}(p)
$$

2. If the homogeneous polynomial $p \in F_{n}$ and $\left.S_{p}(\{i\})\right) \leq$
$k \leq n, 1 \leq i \leq n$ then
$\left(\frac{k-1}{k}\right)^{(k-1)(n-k)} \frac{k!}{k^{k}} C a p(p) \leq \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0) \leq$
$\leq \operatorname{Cap}(p)$.
What is left now is to present a VDW-FAMILY which contains all polynomials $D E T_{\mathrm{A}}$, where the n tuple $\mathbf{A}=\left(A_{1}, \ldots, A_{n}\right)$ consists of positive semidefinite hermitian matrices (and thus contains all polynomials $M u l_{A}$, where A is $n \times n$ matrix with nonnegative entries).

If such VDW-FAMILY set exists than Van der Waerden, Bapat, Schrijver-Valiant conjectures would follow (without any extra work, see Example) from MetaTheorem and its Corollaries .

One of such VDW-FAMILY, consisiting of POShyperbolic polynomials , is defined below.

Hyperbolic polynomials

The following concept of hyperbolic polynomials was originated in the theory of partial differential equations I.G. Petrowsky (1937, in german), L. Garding (1950) , L. Hormander
It recently became "popular" in the optimization literature.

$$
p \in \operatorname{Hom}(m, n), X, e \in R^{m}: p(X-t e)=0
$$

The polynomial p is e-hyperbolic

If all the roots $\lambda_{n}(X) \geq \ldots \geq \lambda_{1}(X)$ are real .

Hyperbolic (convex) Cones :

$$
\begin{aligned}
& N_{e}(p)=\left\{X \in R^{m}: \lambda_{1}(X) \geq 0 \text { (closed) },\right. \\
& C_{e}(p)=\left\{X \in R^{m}: \lambda_{1}(X)>0 \text { (open) } .\right.
\end{aligned}
$$

$p \in \operatorname{Hom}(m, n)$ is $P O S$-hyperbolic if it is $(1,1, \ldots, 1)=$ e-hyperbolic, $p(e)>0$
and the nonnegative orthant $R_{+}^{m} \subset N_{e}(p)$.

Equivalent definitionS :
$\left|p\left(x_{1}+i y_{1}, \ldots, x_{m}+i y_{m}\right)\right|>0$ if $x_{i}>0,1 \leq i \leq n$

So called wide sense stability in CONTROL THEORY

Or : $p(1, \ldots, 1)>0$ and all the roots of the univariate equation $p\left(x_{1}-t, \ldots, x_{n}-t\right)=0$
are real positive numbers if $x_{i}>0,1 \leq i \leq n$.

bf p-Mixed Forms

Let $p \in \operatorname{Hom}(m, n)$ Khovanskii defined the p-mixed form of an n-vector tuple $\mathbf{X}=\left(X_{1}, . ., X_{n}\right): X_{i} \in C^{m}$ as

$$
M_{p}(\mathbf{X})=: M_{p}\left(X_{1}, . ., X_{n}\right)=\frac{\partial^{n}}{\partial \alpha_{1} \ldots \partial \alpha_{n}} p\left(\sum_{1 \leq i \leq n} \alpha_{i} X_{i}\right)
$$

The following polarization identity is well known

$$
M_{p}\left(X_{1}, . ., X_{n}\right)=2^{-n} \sum_{b_{i} \in\{-1,1\}, 1 \leq i \leq n} p\left(\sum_{1 \leq i \leq n} b_{i} X_{i}\right) \prod_{1 \leq i \leq n} b_{i}
$$

Associate with any vector $r=\left(r_{1}, \ldots, r_{n}\right) \in I_{n, n}$ an n-tuple of m-dimensional vectors \mathbf{X}_{r} consisting of r_{i} copies of $x_{i}(1 \leq i \leq n)$. It follows from the Taylor's formula that

$$
p\left(\sum_{1 \leq i \leq n} \alpha_{i} X_{i}\right)=\sum_{r \in I_{n, n}} \prod_{1 \leq i \leq n} \alpha_{i}^{r_{i}} M_{p}\left(\mathbf{X}_{r}\right) \frac{1}{\prod_{1 \leq i \leq n} r_{i}!}
$$

$P O S$-Hyperbolic polynomials , basic facts

FACT $1 \cdot p(X)=p(e) \prod_{1 \leq i \leq n} \lambda_{i}(X)$.

FACT 2 . If p is e-hyperbolic polynomial and $p(e)$ is a real nonzero number then the coefficients of p are real.

If p is e-hyperbolic polynomial and $p(e)>0$ then $p(X)>0$ for all e-positive vectors $X \in C_{e}(p) \subset R^{m}$.

FACT 3 . Let $p \in \operatorname{Hom}(m, n)$ be e-hyperbolic polynomial and $d \in C_{e}(p) \subset R^{m}$. Then p is also d hyperbolic and $C_{d}(p)=C_{e}(p), N_{d}(p)=N_{e}(p)$.

FACT 4 . Let $p \in \operatorname{Hom}(m, n)$ be e-hyperbolic polynomial. Then the polynomial $p_{e}(X)=: \frac{d}{d t} p(X+$ $t e)\left.\right|_{(t=0)} ; p_{e} \in \operatorname{Hom}(m, n-1)$ is also e - hyperbolic and $C_{e}(p) \subset C_{e}\left(p_{e}\right)$ (Rolle's theorem).

FACT 5 . Let $p \in \operatorname{Hom}(m, n)$. Then the p-mixed form $M_{p}\left(X_{1}, . ., X_{n}\right)$ is linear in each vector argument $X_{i} \in C^{m}$. Let $p \in \operatorname{Hom}(m, n)$ be e - hyperbolic and $p(e)>0$. Then $M_{p}\left(X_{1}, . ., X_{n}\right)>0$ if the vectors $X_{i} \in$ $R^{m}, 1 \leq i \leq n$ are e-positive (proved by induction using FACT 4) .

$P O S$-Hyperbolic polynomials form VDW-FAMILY

Define $\operatorname{Rank}_{q}(X)$ as $\left|\left\{i: \lambda_{i}(X) \neq 0\right\}\right|$.
Then $S_{q}(A)=\operatorname{Rank}_{q}\left(\sum_{i \in A} e_{i}\right)$.

Theorem

1. Let $q \in \operatorname{Hom}_{+}(n, n)$ be $P O S$-hyperbolic polynomial. If $1 \leq \operatorname{Rank}_{q}\left(e_{1}\right)=k \leq n$ then

$$
\operatorname{Cap}\left(q_{x_{1}}\right) \geq g(k) \operatorname{Cap}(q), g(k)=\left(\frac{k-1}{k}\right)^{k-1}
$$

2. Let $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a $P O S$-hyperbolic (homogeneous) polynomial of degree n. Then either the polynomial $q_{x_{1}}=0$ or $q_{x_{1}}$ is $P O S$-hyperbolic. If $\operatorname{Cap}(q)>0$ then $q_{x_{1}}$ is (nonzero) $P O S$-hyperbolic

Corollary

Let $P H P(n) \subset \operatorname{Hom}_{+}(n, n)$ be a set of $P O S$-hyperbolic polynomial of degree n in n variables ; define $P H P_{+}(n)=$ $\{p \in P H P(n): C a p(p)>0\}$. Then as $\cup_{n \geq 1}(P H P(n) \cup$ $\{0\})$ as well $\cup_{n \geq 1} P H P_{+}(n)$ is VDW-FAMILY .

Second Part was almost known : Rolle's theorem + a bit of pertubrations.

First is ... a particularly easy case of the Van der Waerden Conjecture .

$$
\begin{aligned}
& \quad q\left(t, x_{2}, \ldots, x_{n}\right)=q\left(0, x_{2}, \ldots, x_{n}\right)+t q_{x_{1}}\left(x_{2}, \ldots, x_{n}\right)+ \\
& \ldots c_{k} t^{k}=R(t)
\end{aligned}
$$

Fix a positive $n-1$-dim. vector $\left(x_{2}, \ldots, x_{n}\right), x_{2} \ldots x_{n}=$ 1.

We know that $R(t) \geq C a p(q) t, t \geq 0$ and want to prove that $q_{x_{1}}\left(x_{2}, \ldots, x_{n}\right)=R^{\prime}(0) \geq\left(\frac{k-1}{k}\right)^{k-1} C a p(q)$.

Tha fact that q is $P O S$-hyperbolic implies that

$$
R(t)=\prod_{1 \leq i \leq k}\left(a_{i} t+b_{i}\right): a_{i}, b_{i}>0
$$

Consider $k \times k$ matrix

$$
A=[a|d| d|, \ldots,| d], a=\left(a_{1}, \ldots, a_{n}\right)^{T}, d=\frac{1}{n-1}\left(b_{1}, \ldots, b_{n}\right)^{T}
$$

Then $\frac{(k-1)!}{(k-1)^{k-1}} R^{\prime}(0)=\operatorname{per}(A)$ and $\operatorname{Cap}\left(M u l_{A}\right) \geq$ $C a p(q)$.

Sinkhorn's Scaling : $A=\operatorname{Diag}_{1} B$ Diag $_{2}, B \in \Omega_{n}$:
$\operatorname{Cap}(q) \leq \operatorname{Cap}\left(\right.$ Mul $\left._{A}\right)=\operatorname{det}\left(\operatorname{Diag}_{1} \operatorname{Diag}_{2}\right)$,

$$
\operatorname{per}(A)=\operatorname{det}\left(\text { Diag }_{1} \text { Diag }_{2}\right) \operatorname{per}(B) \geq \frac{(k)!}{(k)^{k}}
$$

Which gives that

$$
\begin{aligned}
& R^{\prime}(0)=\left(\frac{(k-1)!}{(k-1)^{k-1}}\right)^{-1} \operatorname{per}(A) \geq \\
& \quad \geq \frac{(k)!}{(k)^{k}}\left(\frac{(k-1)!}{(k-1)^{k-1}}\right)^{-1} \operatorname{Cap}(q)=\left(\frac{k-1}{k}\right)^{k-1} \operatorname{Cap}(q)
\end{aligned}
$$

Another proof based on the Newtons inequalities :
Let $R(t)=\sum_{0 \leq i \leq n} d_{i} t^{i}$ be an univariate polynomial with real coefficients. If such polynomial R has all real roots then its coefficients satisfy the following Newton's inequalities:

$$
N I s: d_{i}^{2} \geq d_{i-1} d_{i+1} \frac{\binom{n}{i}^{2}}{\binom{n}{i-1}\binom{n}{i+1}}: 1 \leq i \leq n-1
$$

The following weak Newton's inequalities W N Is follow from NIs if the coefficients are nonnegative:

$$
W N I s: d_{i} d_{0}^{i-1} \leq \frac{d_{1}^{i}}{n}\binom{n}{i}: 2 \leq i \leq n
$$

Lemma

Let $R(t)=\sum_{0 \leq i \leq n} d_{i} t^{i}$ be an univariate polynomial with real nonnegative coefficients satisfying weak Newton's inequalities $W N I s$.If for some positive real number C the inequality $R(t) \geq C t$ holds for all $t \geq 0$ then

$$
d_{1} \geq C\left(\left(\frac{n-1}{n}\right)^{n-1}\right)
$$

Proof:

$$
\text { If } d_{0}=0 \text { then } d_{1} \geq C>C\left(\left(\frac{n-1}{n}\right)^{n-1}\right) \text {. Thus we can }
$$ assume that $d_{0}=1$. It follows from weak Newton's inequalities WNIs that

$$
d_{i} \leq\left(\frac{d_{1}}{n}\right)^{i}\binom{n}{i}: 2 \leq i \leq n
$$

Therefore for nonnegative values of $t \geq 0$ we get the inequality

$$
R(t) \leq 1+\left(\frac{d_{1} t}{n}\right)\binom{n}{1}+\left(\frac{d_{1} t}{n}\right)^{2}\binom{n}{2}+\ldots\left(\frac{d_{1} t}{n}\right)^{n}\binom{n}{n}=\left(1+\frac{d_{1} t}{n}\right)^{n} .
$$

Which gives the inequality $\left(1+\frac{d_{1} t}{n}\right)^{n} \geq C t$. The inequality $d_{1} \geq C\left(\left(\frac{n-1}{n}\right)^{n-1}\right)$ follows now easily. Indeed consider the following optimization problem $\min _{t>0} \log ((1+$ $\left.\left.\frac{d_{1} t}{n}\right)^{n}\right)-\log (t)$. Its only minimizer is $t=\frac{n}{d_{1}(n-1)}$. Which gives the next inequality :

$$
d_{1}\left(\frac{n}{n-1}\right)^{n-1}=\min _{t>0}\left(1+\frac{d_{1} t}{n}\right)^{n} t^{-1} \geq
$$

$$
\geq \inf _{t>0} \frac{R(t)}{t} \geq C
$$

We finally get that $d_{1} \geq C\left(\left(\frac{n-1}{n}\right)^{n-1}\right)$.

Consider the class of the Minkowski polynomials :
$\operatorname{Vol}_{\mathbf{C}}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{Vol}\left(x_{1} C_{1}+\ldots+x_{n} C_{n}\right)$, where C_{i} are convex compact subsets of R^{n}.

The Minkowski polynomials are not generally hyperbolic if $n \geq 3$. But the previous Lemma allows to prove that there exists a VDW-FAMILY containing the Minkowski polynomials .

This leads to a randomized (we need to evaluate $\left.\operatorname{Vol}\left(x_{1} C_{1}+\ldots+x_{n} C_{n}\right)\right)$ poly-time algorithm to approximate the mixed volume

$$
M\left(C_{1}, \ldots, C_{n}\right)=\frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} \operatorname{Vol}_{\mathbf{C}}(0, \ldots, 0)
$$

within a multiplicative factor e^{n}. The best result up to date .

Algorithmic Applications

Theorem

1. Let $p \in \operatorname{Hom}_{+}(n, n)$ be $P O S$-hyperbolic polynomial. Then the function $\operatorname{Rank}_{p}\left(\sum_{i \in A} e_{i}\right)=S_{p}(A)$ is submodular , i.e. $S_{p}(A \cup B) \leq S_{p}(A)+S_{p}(B)-$ $S_{p}(A \cap B): A, B \subset\{1,2, \ldots, n\}$.
2. Consider a nonnegative integer vector $r=\left(r_{1}, \ldots, r_{n}\right), \sum_{1 \leq i \leq n} r_{i}=n$.
Then $r \in \operatorname{supp}(p)$ iff $r(S)=\sum_{i \in S} r_{i} \leq S_{p}(S): S \subset$ $\{1,2, \ldots, n\}$.

Corollary

Let $p \in \operatorname{Hom}_{+}(n, n)$ be $P O S$-hyperbolic polynomial. Associate with this polynomial p the following bounded convex polytope :
$S U B_{p}=\left\{\left(x_{1}, \ldots, x_{n}\right): \sum_{i \in S} x_{i} \leq S_{p}(S): S \subset\right.$ $\{1,2, \ldots, n\} ;$
$\left.\sum_{1 \leq i \leq n} x_{i}=n ; x_{i} \geq 0,1 \leq i \leq n\right\}$

$$
\left.\sum_{1 \leq i \leq n} x_{i}=n ; x_{i} \geq 0,1 \leq i \leq n\right\} .
$$

Then $S U B_{p}$ is equal to the Newton polytope of p, i.e. $S U B_{p}=C O(\operatorname{supp}(p)$.

Corollary

Given $P O S$-hyperbolic polynomial $p \in \operatorname{Hom}_{+}(n, n)$ as an oracle, there exists strongly polynomial-time oracle algorithm for the membership problem as for $\operatorname{supp}(p)$ as well for the Newton polytope $C O(\operatorname{supp}(p))$.

The membership problep forsupp (p) is NP-HARD for general $p \in \operatorname{Hom}_{+}(n, n)$:

Define $\operatorname{Bar}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{tr}\left(\left(\operatorname{Diag}\left(x_{1}, \ldots, x_{n}\right) A\right)^{n}\right)$, then

$$
\frac{1}{n} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} \operatorname{Bar}(0, \ldots, 0)=
$$

the number of Hamiltonian circuits in the graph defined by a boolean matrix A.

Or, let $F=\left\{S_{1}, \ldots, S_{m}\right\}: S_{i} \subset\{1,2, \ldots, n\},\left|S_{i}\right|=$ $k ; \frac{n}{k} \in Z$.
Define $C O V_{F}\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{S_{j} \in F} \prod_{i \in S_{j}} x_{i}\right)^{\frac{n}{k}}$. Then $(k!)^{-1} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} \operatorname{COV}_{F}(0, \ldots, 0)=$
the number of exact coverings .

There exists a deterministic polynomial-time oracle algorithm which computes for given as an oracle indecomposable $P O S$-hyperbolic polynomial $p\left(x_{1}, \ldots, x_{n}\right)$ a number $F(p)$ satisfying the inequality

$$
\begin{aligned}
& \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0) \leq F(p) \leq \\
& \left.\leq 2\left(\prod_{1 \leq i \leq n} g\left(\min \left(S_{p}(\{i\})\right), i\right)\right)\right)^{-1} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0) \leq \\
& \leq 2 \frac{n^{n}}{n!} \frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0) .
\end{aligned}
$$

The prev. result can be (slightly) improved . I.e. it can be applied to the polynomial

$$
p_{k}\left(x_{k+1}, \ldots, x_{n}\right)=\frac{\partial^{k}}{\partial x_{1} \ldots \partial x_{k}} p\left(0, . ., 0, x_{k+1}, \ldots, x_{n}\right)
$$

Notice that the polynomial p_{k} is a homogeneous polynomial of degree $n-k$ in $n-k$ variables .

If $p=p_{0}$ is $P O S$-hyperbolic and $\operatorname{Cap}(p)>0$ then for all $0 \leq k \leq n$ the polynomials p_{k} are also $P O S$ hyperbolic and $\operatorname{Cap}\left(p_{k}\right)>0$.

Also , if $p=p_{0}$ is indecomposable then p_{k} is indecomposable as well (Theorem 4.6).

The trick is that if $k=m \log _{2}(n)$ then (using the polarizational formula) the polynomial p_{k} can be evaluated using $O\left(n^{m+1}\right)$ oracle calls of the (original) polynomial $p=p_{0}$.

This observations allows to decrease the worst case multiplicative factor from e^{n} to $\frac{e^{n}}{n^{m}}$ for any fixed m. If the polynomial $p=p_{0}$ can be explicitly evaluated in de-
terministic polynomial time, this observation results in deterministic polynomial time algorithms to approximate $\frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} p(0, \ldots, 0)$ within multiplicative factor $\frac{e^{n}}{n^{m}}$ for any fixed m. Which is an improvement of results in [LSW] (permanents , p is a multilinear polynomial) and in [GS] (mixed discriminants, p is a determinantal polynomial).

