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Doubly Stochastic matrices and matrix

tuples , Permanent , Mixed Discriminant

Doubly Stochastic n× n Matrix :

Ωn = {A = A(i, j) : A(i, j) ≥ 0, 1 ≤ i, j ≤ n; Ae = ATe = e, e = (1, 1, .., 1)T}

Ωn = The set of n× n Doubly Stochastic matrices.

Doubly Stochastic n-tuple A = (A1, · · · , An) :

Ai � 0 (PSD n × n complex hermitian) , trAi =

1, 1 ≤ i, j ≤ n;
∑n

i=1 Ai = I .

Dn = The set of Doubly Stochastic n-tuples.

The permanent :per(A) =
∑

σ∈Sn

∏n
i=1 A(i, σ(i))
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The mixed discriminant :

D(A1, A2, · · · , An) =
∂n

∂t1 · · · ∂tn
det(t1A1+· · ·+tnAn)

Determinantal Polynomial :

DETA(t1, ..., tn) = det(
∑

1≤i≤n tiAi).

Multilinear Polynomial :

MulA(t1, ..., tn) =
∏

1≤i≤n

∑
1≤j≤n A(i, j)tj.

per(A) = ∂n

∂t1···∂tn
MulA(t1, ..., tn)

(per(A) = 2−n
∑

bi∈{−1,1},1≤i≤n MulA(b1, ..., bn) : Ryser’s

formula .)

Multilinear is commutative(solvable) case of Deter-

minantal .
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Van der Waerden Conjecture

The famous Van der Waerden Conjecture states that

minA∈ΩnD(A) = n!
nn (VDW-bound)

and the minimum is attained uniquely at the matrix

Jn in which every entry equals 1
n.

Van der Waerden Conjecture was posed in 1926 and

proved only in 1981 :

D.I. Falikman proved the lower bound (VDW-bound)

and the full conjecture , i.e. the uniqueness part , was

proved by G.P. Egorychev . They shared Fulkerson

Prize , 1982 .

Aleksandrov-Fenchel inequalities and many

other ingredients , about 25 years of research.
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Was used by N. Linial, A. Samorodnitsky and A.

Wigderson (1998) to approximate the permanent of

nonnegative matrices :

A = Diag(a1, ..., an)BDiag(b1, ..., bn), B ∈ Ωn

Sinkhorn’s Scaling .

As n!
nn ≤ per(B) ≤ 1 thus

f (A) =:
∏

1≤i≤n

aibi ⇒ 1 ≤ f (A)

per(A)
≤ (

n!

nn
)−1 ≈ en.

Strongly polynomial algorithms .
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Bapat’s Conjecture (Van der Waerden Con-

jecture for mixed discriminants)

One of the problems posed by R.V.Bapat (1989) is

to determine the minimum of mixed discriminants of

doubly stochastic tuples : minA∈DnD(A) =?

Quite naturally, R.V.Bapat conjectured that

minA∈DnD(A) = n!
nn (Bapat-bound)

and that it is attained uniquely at Jn =: (1
nI, ..., 1

nI).
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The original conjecture was formulated for real sym-

metric PSD matrices.

L.G. had proved it (1999 , 2006 in Advances in

Mathematics for the complex case, i.e. for complex

positive semidefinite and, thus, hermitian matrices .

Was motivated by the ellipsoid algorithm to approxi-

mate (deterministically) mixed discriminants/mixed vol-

umes .
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Schrijver-Valiant Conjecture

Let Λ(k, n) denote the set of n × n matrices with

nonnegative integer entries and row and column sums

all equal to k (k-regular bipartite graphs) .

We define the following subset of rational doubly

stochastic matrices : Ωk,n = {k−1A : A ∈ Λ(k, n)}

.

Define

λ(k, n) = min{per(A) : A ∈ Ωk,n} =

k−n min{per(A) : A ∈ Λk,n};

θ(k) = limn→∞(λ(k, n))
1
n .

λ(2, n) = 2−n+1 , Erdos-Renyi (1968) : θ(k) =? ,

even the case k = 3 was open until 1979-1980 .

M. Voorhoeve in (1979) : λ(k, n) ≥ (2
3)

2(n−3)2
9.

Schrijver-Valiant (1980) θ(k) ≤ g(k) = (k−1
k )k−1 ,

which gives θ(3) = 4
9 .
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Schrijver-Valiant Conjecture (1980) : θ(k) =

g(k) = (k−1
k )k−1 .

Settled by Lex Schrijver in 1998 : min{per(A) : A ∈

Ωk,n} ≥ (k−1
k )(k−1)n (Schrijever-bound) .

remarkable result — unpassable proof .

I will present a vast and unifying generalization of

those three results .

10



Homogeneous polynomials with

nonnegative coefficients

Let Hom(m, n) be a linear space of homogeneous poly-

nomials p(x), x ∈ Rm of degree n in m varibles ; corre-

spondingly Hom+(m, n)(Hom++(m, n)) be a subset

of homogeneous polynomials p(x), x ∈ Rm of degree n

in m varibles and nonnegative(positive) coefficients .

Let

p ∈ Hom+(n, n), p(x1, ..., xn) =

=
∑

r1+...+rn=n a(r1,...,rn)

∏
1≤i≤n xri

i .

The support :

supp(p) = {(r1, ..., rn) ∈ In,n : a(r1,...,rn) 6= 0} .

The convex hull CO(supp(p)) of supp(p) is called

the Newton polytope of p .
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For a subset A ⊂ {1, ..., n} we define

Sp(A) = max(r1,...,rn)∈supp(p)

∑
i∈A ri.

Given a vector (a1, ..., an) with positive real coordi-

nates , consider univariate polynomials

DA(t) = p(t(
∑

i∈A ei) +
∑

1≤j≤n ajej),

VA(t) = p(t(
∑

i∈A ei) +
∑

j∈A′ ajej) .

Sp(A) can be expressed as an univariate degree :

Sp(A) = deg(DA) = deg(VA)
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Homogeneous polynomials with

nonnegative coefficients

The following linear differential operator maps Hom(n, n)

onto Hom(n− 1, n− 1) :

px1(x2, ..., xn) =
∂

∂x1
p(0, x2, ..., xn).

We define pxi
, 2 ≤ i ≤ n in the same way for all poly-

nomials p ∈ Hom(n, n). Notice that

p(x1, ..., xn) = xipxi
(x2, ..., xn) + q(x1, ..., xn); qxi

= 0.

The following inequality follows straight from the defi-

nition :

Spx1
(A) ≤ min(n− 1, Sp(A)) :

A ⊂ {2, ..., n}, p ∈ Hom+(n, n).
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Consider p ∈ Hom+(n, n) We define the Capacity

as

Cap(p) = inf
xi>0,

∏
1≤i≤n xi=1

p(x1, ..., xn).

It follows that if p ∈ Hom+(n, n) then

Cap(p) ≥ ∂n

∂x1 · · · ∂xn
p(0, 0, ..., 0)

(p(x1, ..., xn) = ∂n

∂x1···∂xn
p(0, 0, ..., 0)x1...xn+ nonneg-

ative stuff .)

Notice that

log(Cap(p)) = inf∑
1≤i≤n yi=0 log(p(ey1, ..., eyn)),

and if p ∈ Hom+(n, n)

then the functional log(p(ey1, ..., eyn)) is convex .
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EXAMPLE

Let A = {A(i, j) : 1 ≤ i ≤ n} be n × n matrix with

nonnegative entries . Assume that
∑

1≤j≤n A(i, j) > 0

for all 1 ≤ i ≤ n. Define the following homogeneous

polynomial :

MulA(t1, ..., tn) =
∏

1≤i≤n

∑
1≤j≤n A(i, j)tj .

MulA ∈ Hom+(n, n) and MulA 6= 0 .

It is easy to check that

SMulA({j}) = |{i : A(i, j) 6= 0}|

(SMulA({j}) is equal to the number of non-zero en-

tries in the jth column of A) .

Notice that if A ∈ Λ(k, n) (or A ∈ Ω(k, n))

then SMulA({j}) ≤ k, 1 ≤ j ≤ n .
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More generally , consider a n-tuple A = (A1, A2, ...An)

, where the complex hermitian n×n matrices are pos-

itive semidefinite and
∑

1≤i≤n Ai � 0 (their sum is

positive definite).

Then the homogeneous polynomial

DETA(t1, ..., tn) = det(
∑

1≤i≤n tiAi) ∈ Hom+(n, n)

and DETA 6= 0 .

Similarly to polynomials MulA :

SDETA
({j}) = Rank(Aj), 1 ≤ j ≤ n.
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As Van Der Waerden conjecture on permanents as

well Bapat’s conjecture on mixed discriminants can be

eqiuvalently stated in the following way (notice the ab-

sence of doubly stochasticity ):

n!

nn
Cap(q) ≤ ∂n

∂x1...∂xn
q(0, ..., 0) ≤ Cap(q)(∗)

The van der Waerden conjecture on the permanents

corresponds to polynomials MulA ∈ Hom+(n, n) :

A ≥ 0 , the Bapat’s conjecture on mixed discrimi-

nants corresponds to DETA ∈ Hom+(n, n) : A � 0

. The connection between inequality (*) and the stan-

dard forms of the van der Waerden and Bapat’s con-

jectures is established with the help of the scaling .

Notice that the functional log(p(ey1, ..., ey1)) is con-

vex if p ∈ Hom+(n, n). Thus the inequality (*) allows

a convex relaxation of the permanent of nonnegative

matrices and the mixed discriminant of semidefinite tu-
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ples . This observation was implicit in [LSW, 1998] and

crucial in [GS 2000 , 2002] .
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VDW-FAMILIES

Consider a stratified set of homogeneous polynomials :

F =
⋃

1≤n<∞ Fn , where Fn ∈ Hom+(n, n) . We call

such set VDW-FAMILY if it satisfies the following

properties :

1. If a polynomial p ∈ Fn, n > 1 then for all 1 ≤ i ≤ n

the polynomials pxi
∈ Fn−1.

2.

Cap(pxi
) ≥ g(Sp({i}))Cap(p) :

p ∈ Fj, 1 ≤ i ≤ j; g(k) = (k−1
k )k−1, k ≥ 1.
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Meta-Theorem , main idea :

Let F =
⋃

1≤n<∞ Fn be a VDW-FAMILY and the

homogeneous polynomial p ∈ Fn. Then the follow-

ing inequality holds :

∏
1≤i≤n g(min(Sp({i})), i))Cap(p) ≤

≤ ∂n

∂x1...∂xn
p(0, ..., 0) ≤ Cap(p).
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Corollaries :

1. If the homogeneous polynomial p ∈ Fn then

n!

nn
Cap(p) ≤ ∂n

∂x1...∂xn
p(0, ..., 0) ≤ Cap(p).

2. If the homogeneous polynomial p ∈ Fn and Sp({i})) ≤

k ≤ n, 1 ≤ i ≤ n then

(k−1
k )(k−1)(n−k) k!

kkCap(p) ≤ ∂n

∂x1...∂xn
p(0, ..., 0) ≤

≤ Cap(p).

What is left now is to present a VDW-FAMILY

which contains all polynomials DETA , where the n-

tuple A = (A1, ..., An) consists of positive semidefinite

hermitian matrices (and thus contains all polynomials

MulA , where A is n× n matrix with nonnegative en-

tries).

If such VDW-FAMILY set exists than Van der Waer-

den , Bapat , Schrijver-Valiant conjectures would follow

(without any extra work , see Example ) from Meta-

Theorem and its Corollaries .
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One of such VDW-FAMILY , consisiting of POS-

hyperbolic polynomials , is defined below.

.
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Hyperbolic polynomials

The following concept of hyperbolic polynomials was

originated in the theory of partial differential equations

I.G. Petrowsky (1937 , in german) , L. Gard-

ing (1950) , L. Hormander ....

It recently became ”popular” in the optimization liter-

ature.

p ∈ Hom(m, n), X, e ∈ Rm : p(X − te) = 0

The polynomial p is e-hyperbolic

If all the roots λn(X) ≥ ... ≥ λ1(X) are real .

Hyperbolic (convex) Cones :

Ne(p) = {X ∈ Rm : λ1(X) ≥ 0 (closed) ,

Ce(p) = {X ∈ Rm : λ1(X) > 0 (open) .

23



p ∈ Hom(m, n) is POS-hyperbolic if it is (1, 1, ..., 1) =

e-hyperbolic , p(e) > 0

and the nonnegative orthant Rm
+ ⊂ Ne(p) .

Equivalent definitionS :

|p(x1 + iy1, ..., xm + iym)| > 0 if xi > 0, 1 ≤ i ≤ n

So called wide sense stability in CONTROL THE-

ORY .

Or : p(1, ..., 1) > 0 and all the roots of the univariate

equation p(x1 − t, ..., xn − t) = 0

are real positive numbers if xi > 0, 1 ≤ i ≤ n.
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bf p-Mixed Forms

Let p ∈ Hom(m, n) Khovanskii defined the p-mixed

form of an n-vector tuple X = (X1, .., Xn) : Xi ∈ Cm

as

Mp(X) =: Mp(X1, .., Xn) =
∂n

∂α1...∂αn
p(

∑
1≤i≤n

αiXi)

The following polarization identity is well known

Mp(X1, .., Xn) = 2−n
∑

bi∈{−1,1},1≤i≤n

p(
∑

1≤i≤n

biXi)
∏

1≤i≤n

bi

Associate with any vector r = (r1, ..., rn) ∈ In,n an

n-tuple of m-dimensional vectors Xr consisting of ri

copies of xi(1 ≤ i ≤ n). It follows from the Taylor’s

formula that

p(
∑

1≤i≤n

αiXi) =
∑

r∈In,n

∏
1≤i≤n

αri
i Mp(Xr)

1∏
1≤i≤n ri!
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POS-Hyperbolic polynomials , basic facts

FACT 1 . p(X) = p(e)
∏

1≤i≤n λi(X) .

FACT 2 . If p is e-hyperbolic polynomial and p(e)

is a real nonzero number then the coefficients of p are

real.

If p is e-hyperbolic polynomial and p(e) > 0 then

p(X) > 0 for all e-positive vectors X ∈ Ce(p) ⊂ Rm .

FACT 3 . Let p ∈ Hom(m, n) be e-hyperbolic

polynomial and d ∈ Ce(p) ⊂ Rm . Then p is also d-

hyperbolic and Cd(p) = Ce(p), Nd(p) = Ne(p) .

FACT 4 . Let p ∈ Hom(m, n) be e-hyperbolic

polynomial . Then the polynomial pe(X) =: d
dtp(X +

te)|(t=0); pe ∈ Hom(m, n− 1) is also e- hyperbolic and

Ce(p) ⊂ Ce(pe) ( Rolle’s theorem ).
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FACT 5 . Let p ∈ Hom(m, n). Then the p-mixed

form Mp(X1, .., Xn) is linear in each vector argument

Xi ∈ Cm. Let p ∈ Hom(m, n) be e- hyperbolic and

p(e) > 0 . Then Mp(X1, .., Xn) > 0 if the vectors Xi ∈

Rm, 1 ≤ i ≤ n are e-positive (proved by induction

using FACT 4) .
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POS-Hyperbolic polynomials form

VDW-FAMILY

Define Rankq(X) as |{i : λi(X) 6= 0}| .

Then Sq(A) = Rankq(
∑

i∈A ei).

Theorem

1. Let q ∈ Hom+(n, n) be POS-hyperbolic polyno-

mial . If 1 ≤ Rankq(e1) = k ≤ n then

Cap(qx1) ≥ g(k)Cap(q), g(k) = (
k − 1

k
)k−1.

2. Let q(x1, x2, ..., xn) be a POS-hyperbolic (homo-

geneous) polynomial of degree n . Then either the

polynomial qx1 = 0 or qx1 is POS-hyperbolic . If

Cap(q) > 0 then qx1 is (nonzero) POS-hyperbolic

.
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Corollary

Let PHP (n) ⊂ Hom+(n, n) be a set of POS-hyperbolic

polynomial of degree n in n variables ; define PHP+(n) =

{p ∈ PHP (n) : Cap(p) > 0}. Then as∪n≥1(PHP (n)∪

{0}) as well ∪n≥1PHP+(n) is VDW-FAMILY .

Second Part was almost known : Rolle’s theorem +

a bit of pertubrations .
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First is ... a particularly easy case of the Van der

Waerden Conjecture .

q(t, x2, ..., xn) = q(0, x2, ..., xn) + tqx1(x2, ..., xn) +

...ckt
k = R(t).

Fix a positive n−1-dim. vector (x2, ..., xn), x2...xn =

1 .

We know that R(t) ≥ Cap(q)t, t ≥ 0 and want to

prove

that qx1(x2, ..., xn) = R′(0) ≥ (k−1
k )k−1Cap(q).

Tha fact that q is POS-hyperbolic implies that

R(t) =
∏

1≤i≤k

(ait + bi) : ai, bi > 0.
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Consider k × k matrix

A = [a|d|d|, ..., |d], a = (a1, ..., an)
T , d = 1

n−1(b1, ..., bn)
T

.

Then (k−1)!

(k−1)k−1R
′(0) = per(A) and Cap(MulA) ≥

Cap(q) .

Sinkhorn’s Scaling : A = Diag1BDiag2, B ∈ Ωn :

Cap(q) ≤ Cap(MulA) = det(Diag1Diag2),

per(A) = det(Diag1Diag2)per(B) ≥ (k)!

(k)k

Which gives that

R′(0) = ( (k−1)!

(k−1)k−1)
−1per(A) ≥

≥ (k)!

(k)k
( (k−1)!

(k−1)k−1)
−1Cap(q) = (k−1

k )k−1Cap(q)
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Another proof based on the Newtons inequalities :

Let R(t) =
∑

0≤i≤n dit
i be an univariate polynomial

with real coefficients. If such polynomial R has all real

roots then its coefficients satisfy the following Newton’s

inequalities :

NIs : d2
i ≥ di−1di+1

(
n
i

)2(
n

i−1

)(
n

i+1

) : 1 ≤ i ≤ n− 1.

The following weak Newton’s inequalities WNIs follow

from NIs if the coefficients are nonnegative:

WNIs : did
i−1
0 ≤ d1

n

i(n

i

)
: 2 ≤ i ≤ n.

Lemma

Let R(t) =
∑

0≤i≤n dit
i be an univariate polynomial

with real nonnegative coefficients satisfying weak New-

ton’s inequalities WNIs .If for some positive real num-

ber C the inequality R(t) ≥ Ct holds for all t ≥ 0 then

d1 ≥ C((
n− 1

n
)n−1).
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Proof:

If d0 = 0 then d1 ≥ C > C((n−1
n )n−1). Thus we can

assume that d0 = 1. It follows from weak Newton’s

inequalities WNIs that

di ≤ (
d1

n
)i
(

n

i

)
: 2 ≤ i ≤ n.

Therefore for nonnegative values of t ≥ 0 we get the

inequality

R(t) ≤ 1+(
d1t

n
)

(
n

1

)
+(

d1t

n
)2

(
n

2

)
+...(

d1t

n
)n

(
n

n

)
= (1+

d1t

n
)n.

Which gives the inequality (1 + d1t
n )n ≥ Ct. The in-

equality d1 ≥ C((n−1
n )n−1) follows now easily. Indeed

consider the following optimization problem mint>0 log((1+

d1t
n )n)− log(t). Its only minimizer is t = n

d1(n−1). Which

gives the next inequality :

d1(
n

n− 1
)n−1 = min

t>0
(1 +

d1t

n
)nt−1 ≥
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≥ inf
t>0

R(t)

t
≥ C.

We finally get that d1 ≥ C((n−1
n )n−1).
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Consider the class of the Minkowski polynomials :

V olC(x1, ..., xn) = V ol(x1C1 + ... + xnCn) , where

Ci are convex compact subsets of Rn.

The Minkowski polynomials are not generally hyper-

bolic if n ≥ 3 . But the previous Lemma allows to

prove that there exists a VDW-FAMILY containing

the Minkowski polynomials .

This leads to a randomized (we need to evaluate

V ol(x1C1 + ... + xnCn)) poly-time algorithm to ap-

proximate the mixed volume

M(C1, ..., Cn) = ∂n

∂x1...∂xn
V olC(0, ..., 0)

within a multiplicative factor en . The best result up

to date .
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Algorithmic Applications

Theorem

1. Let p ∈ Hom+(n, n) be POS-hyperbolic polyno-

mial . Then the function Rankp(
∑

i∈A ei) = Sp(A)

is submodular , i.e. Sp(A∪B) ≤ Sp(A) + Sp(B)−

Sp(A ∩B) : A, B ⊂ {1, 2, ..., n} .

2. Consider a nonnegative integer vector

r = (r1, ..., rn),
∑

1≤i≤n ri = n .

Then

r ∈ supp(p) iff r(S) =
∑

i∈S ri ≤ Sp(S) : S ⊂

{1, 2, ..., n} .

Corollary

Let p ∈ Hom+(n, n) be POS-hyperbolic polynomial.

Associate with this polynomial p the following bounded

convex polytope :

SUBp = {(x1, ..., xn) :
∑

i∈S xi ≤ Sp(S) : S ⊂

{1, 2, ..., n};
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∑
1≤i≤n xi = n; xi ≥ 0, 1 ≤ i ≤ n}

∑
1≤i≤n xi = n; xi ≥ 0, 1 ≤ i ≤ n}.

Then SUBp is equal to the Newton polytope of p , i.e.

SUBp = CO(supp(p).

Corollary

Given POS-hyperbolic polynomial p ∈ Hom+(n, n)

as an oracle , there exists strongly polynomial-time

oracle algorithm for the membership problem as for

supp(p) as well for the Newton polytope CO(supp(p)).

The membership problep forsupp(p) is NP-HARD

for general p ∈ Hom+(n, n) :

Define Bar(x1, ..., xn) = tr((Diag(x1, ..., xn)A)n) ,

then
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1
n

∂n

∂x1...∂xn
Bar(0, ..., 0) =

the number of Hamiltonian circuits in the graph de-

fined by a boolean matrix A .

Or , let F = {S1, ..., Sm} : Si ⊂ {1, 2, ..., n}, |Si| =

k; n
k ∈ Z.

Define COVF (x1, ..., xn) = (
∑

Sj∈F

∏
i∈Sj

xi)
n
k .

Then (k!)−1 ∂n

∂x1...∂xn
COVF (0, ..., 0) =

the number of exact coverings .
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There exists a deterministic polynomial-time oracle

algorithm which computes for given as an oracle inde-

composable POS-hyperbolic polynomial p(x1, ..., xn)

a number F (p) satisfying the inequality

∂n

∂x1...∂xn
p(0, ..., 0) ≤ F (p) ≤

≤ 2(
∏

1≤i≤n g(min(Sp({i})), i)))−1 ∂n

∂x1...∂xn
p(0, ..., 0) ≤

≤ 2nn

n!
∂n

∂x1...∂xn
p(0, ..., 0) .
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The prev. result can be (slightly) improved . I.e. it

can be applied to the polynomial

pk(xk+1, ..., xn) =
∂k

∂x1...∂xk
p(0, .., 0, xk+1, ..., xn).

Notice that the polynomial pk is a homogeneous poly-

nomial of degree n− k in n− k variables .

If p = p0 is POS-hyperbolic and Cap(p) > 0 then

for all 0 ≤ k ≤ n the polynomials pk are also POS-

hyperbolic and Cap(pk) > 0 .

Also , if p = p0 is indecomposable then pk is indecom-

posable as well (Theorem 4.6).

The trick is that if k = m log2(n) then (using the polar-

izational formula ) the polynomial pk can be evaluated

using O(nm+1) oracle calls of the (original) polynomial

p = p0 .

This observations allows to decrease the worst case mul-

tiplicative factor from en to en

nm for any fixed m . If the

polynomial p = p0 can be explicitly evaluated in de-
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terministic polynomial time , this observation results

in deterministic polynomial time algorithms to approx-

imate ∂n

∂x1...∂xn
p(0, ..., 0) within multiplicative factor en

nm

for any fixed m . Which is an improvement of results

in [LSW] (permanents , p is a multilinear polynomial)

and in [GS] (mixed discriminants, p is a determinantal

polynomial) .
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