Power Market Participation of Flexible Loads and Reactive Power Providers: Real Power, Reactive Power, and Regulation Reserve Capacity Pricing at T&D Networks

> DIMACS, Rutgers U January 21, 2013

Michael Caramanis mcaraman@bu.edu

- How can Flexible Loads Provide Fast Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

- How can Flexible Loads Provide Fast Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

Generation and Demand Share Functional Characteristics that are Key to the Efficient and reliable Operation of the Electricity Grid

Characteristic	Generation	Demand
Dispatchability- Schedulability Low/Med/High	Wind, Run of Riv /Neuclear, L.E.P,/ HydroFossil	Capacity Loads, dependent on env. e.g.,Light/ Ind. Energy Loads Aluminum idle/Schedulable production of electr. energy intensive storable products (gas liquif.)
Flexibility Low/med/high	No Ramp – steady output e.g., nucl, min gen, start up cost and delay/ Inertia and medium storage/high ramp- low inertia large storage	Thermal or work inertia (Allum. Smelter)/Enegy Demand with small storage to capacity ratio (HVAC)/ Large storage to capacity ratio (ice, molten salt, batteries in Evs)
Forecastaility Low/Med/High	Wind, Solar. RoR Hydro/reliable fossil/unreliable fossil	Inflexible loads (lighting cooking)/Weather dependent/scheduled loads
Voltage Control	Synchronous Generators with dynamic Var compensators, DC-AC Converters	Distributed Power Electronics accompanying EVs. HVAC, Roof top PV.

Flexible Loads Require Energy by some deadline =>

Capable of Regulation Reserves

Today Generating Units are Only Reserve Providers

Source: Courtesy of EnThes Inc., March 2007

- How can Flexible Loads Provide Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

- How can Flexible Loads Provide Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

Examples of Flexible Loads: State Dynamics Determine Preferences

 Distributed PHEV Charging $F_{j} x_{n(i)}^{t} = F_{j} x_{n(i)}^{t-1} - F_{j} d_{n(i)}^{t} + F_{j} \hat{\omega}_{n(i)}^{t}$ $\sum_{n(i)}^{F_j} x_{n(i)}^{\text{deptime}} = 0$ Centralized Pumped Storage Hydro Units ${}^{psh}x_{n(p)}^{t} = {}^{psh}x_{n(p)}^{t-1} + \eta_{n(p)}^{p}p_{n(p)}^{t} - \eta_{n(p)}^{g}g_{n(p)}^{t} - \eta_{n(p)}^{r}g_{n(p)}^{t}$ $\sum_{n(p)}^{psh} x_{n(p)}^0 = \sum_{n(p)}^{psh} x_{n(p)}^{24}$ 10

Strategic Flexible PHEV Load Behavior

$$\min_{\substack{F_{j}d_{n(i)}^{t}, \stackrel{F_{j}, R}{\to} d_{n(i)}^{t}, \forall j, t \in j, t \in j, t \in k_{n}^{t}, \stackrel{R}{\to} \lambda_{n}^{t}, m_{n(i)}^{t}} \left[\left(m_{n(i)}^{t} \in \lambda_{n}^{t} \right)^{F_{j}} d_{n(i)}^{t} \right] - \left(m_{n(i)}^{t} \in \lambda_{n}^{t} \right)^{F_{j}, R} d_{n(i)}^{t} \right] + \left[\stackrel{F_{j}}{\to} U_{n(i)}^{t} \left(\stackrel{F_{j}}{\to} x_{n(i)}^{t} \right) \right] \\
s.t. \\
\stackrel{F_{j}}{\to} x_{n(i)}^{t} = \left[\stackrel{F_{j}}{\to} x_{n(i)}^{t-1} - \stackrel{F_{j}}{\to} d_{n(i)}^{t} + \stackrel{F_{j}}{\to} \hat{\omega}_{n(i)}^{t} \right] \\
\stackrel{F_{j}}{\to} d_{n(i)}^{t} \geq \left[\stackrel{F_{j}, R}{\to} d_{n(i)}^{t} \right] \\
up/dn nature of Reg. Res. \\
\sum_{j} \left[\stackrel{F_{j}}{\to} d_{n(i)}^{t} + \stackrel{F_{j}, R}{\to} d_{n(i)}^{t} \right] \leq \hat{C}_{n(i)}^{t} \quad \text{Local Constraint}$$

Use of Current Bidding Rules to Self Schedule

Bid Energy ${}^{F_j}d_{n(i)}^{t^*} - {}^{F_j,R}d_{n(i)}^{t^*}$ at a very high price Bid Energy $2^{F_j,R}d_{n(i)}^{t^*}$ at energy price $\sim \left(m_{n(i)}^t {}^E \lambda_n^t\right)$ and Regulation Service Rate at 0. Using the Current Bidding Rules. Bids described on the previous slide, induce the ISO/DSO to almost surely Schedule Energy and Reserves to the * values, and thus effectively self dispatch.

$$\max_{\substack{c d_{n(i)}^{t}, g_{n(\gamma)}^{t}, \overset{R}{g}_{n(\gamma)}^{t}, \forall t \\ t, i, \gamma}} \sum_{t, i, \gamma} \left({}^{c} u_{n(i)}^{t} {}^{c} d_{n(i)}^{t} - \overline{c}_{n(\gamma)}^{t} g_{n(\gamma)}^{t} - \overline{r}_{n(\gamma)}^{t} {}^{R} g_{n(\gamma)}^{t} \right)$$

& other capacity and ramp constr. for conv. gen. and dem.

- How can Flexible Loads Provide Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

Hierarchical Game Dynamics

- Undamped Oscillations when Flex Load Updates Clearing Price Estimates Myopically to Most Recent ex-post ISO/DMO value
- Convergence to stable equilibrium when Flex Load Updates Clearing Price Estimates Factoring in History, for example sets them Equal to their Time Average

- How can Flexible Loads Provide Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

Under New Bidding Rule allowing Flex Load to Express True Utility, ISO/DNO will Solve

$$\max_{\substack{c d_{n(i)}, g_{n(\gamma)}^{t}, {}^{R}g_{n(\gamma)}^{t}, {}^{F_{j}}d_{n(i)}^{t}, {}^{F_{j},R}d_{n(i)}^{t}, {}^{W}g_{n(\gamma)}^{t} \forall t, \gamma, i, \tau} \sum_{t, \gamma, t} [{}^{c}u_{n(i)}^{t} {}^{c}d_{n(i)}^{t} \\ -\bar{c}_{n(\gamma)}^{t}g_{n(\gamma)}^{t} - \bar{r}_{n(\gamma)}^{t} {}^{R}g_{n(\gamma)}^{t} - \bar{r}_{n(\gamma)}^{t} {}^{R}g_{n(\gamma)}^{t} - {}^{F_{j}}U_{n(i)}^{t} ({}^{F_{j}}x_{n(i)}^{t})] \quad s.t.$$

$$\sum_{n(\gamma)} g_{n(\gamma)}^{t} - \sum_{n(i), j} {}^{F_{j}}d_{n(i)}^{t} - \sum_{n(i)} {}^{c}d_{n(i)}^{t} - \sum_{n(i)} {}^{c}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(\gamma)} g_{n(\gamma)}^{t} - \sum_{n(i), j} {}^{F_{j}}d_{n(i)}^{t} - \sum_{n(i)} {}^{c}d_{n(i)}^{t} - \sum_{n(i), j} {}^{c}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(\gamma)} g_{n(\gamma)}^{t} - \sum_{n(i), j} {}^{F_{j}}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(i)} \frac{\beta_{n(i)}}{2} (\sum_{j} {}^{F_{j}}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(i)} \frac{\beta_{n(i)}}{2} (\sum_{j} {}^{F_{j}}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(i)} \frac{\beta_{n(i)}}{2} (\sum_{j} {}^{F_{j}}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(i)} \frac{\beta_{n(i)}}{2} (\sum_{j} {}^{F_{j}}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

$$\sum_{n(i)} \frac{\beta_{n(i)}}{2} (\sum_{j} {}^{F_{j}}d_{n(i)}^{t} + {}^{c}d_{n(i)}^{t})^{2} = 0, \quad \forall t \implies E, x \lambda_{n}^{t}$$

21

Complex Bid ISO/DNO Market Clearing Achieves Hierarchical Game Equilibrium

- Theorem:
 - First order Optimality Conditions
 - Complementary Slackness, and
 - Feasibility Conditions
 - **Coincide** if we combine Hierarchical game problems and compare to ISO/DSO problem,
 - **Except** when Flex loads dominate in a Distr. Location (competitive assumption fails?)

$$\nabla_{F_{j}} d_{n(i)}^{t} \pounds_{ISO} = \left(1 + \beta_{n(i)} \left({}^{c} d_{n(i)}^{t} + \sum_{j} {}^{F_{j}} d_{n(i)}^{t}\right)\right)^{E} \lambda_{n}^{t}$$
$$- \left(R \lambda_{n}^{t} \beta_{n(i)}^{t} {}^{F_{j},R} d_{n(i)}^{t} + \alpha_{n(i)}^{t,j} + \mu_{n(i)}^{t,j} + \zeta_{n(i)}^{t,\tau} = 0$$

22

Additional term in ISO/DNO problem

$$\nabla_{F_{j}} d_{n(i)}^{t} \pounds_{ISO} = \left(1 + \beta_{n(i)} \left({}^{c} d_{n(i)}^{t} + \sum_{j} {}^{F_{j}} d_{n(i)}^{t}\right)\right)^{E} \lambda_{n}^{t} - \left({}^{R} \lambda_{n}^{t} \beta_{n(i)}^{t} + {}^{F_{j},R} d_{n(i)}^{t}\right) + \alpha_{n(i)}^{t,j} + \mu_{n(i)}^{t,j} + \zeta_{n(i)}^{t,\tau} = 0$$

Becomes negligible, i.e. $\rightarrow 0$ as

$$\frac{{}^{F_j,R}d_{n(i)}^t}{{}^{F_j}d_{n(i)}^t + {}^cd_{n(i)}^t} \to 0$$

or as the relative size of flex load Reg. Res. Transactions $\rightarrow 0$

Impact of Competitiveness Assumption

Conclusion

- Flexible Loads at Distribution Level may participate in Expanded ISO/DNO Centrally Cleared Power Market bringing significant benefits, particularly w.r.t. Sustainable Renewable Generation Integration to the Grid
- Expanded ISO/DNO-Operated Power Market Clearing is Practical from Information and Computational Tractability Point of view.
- Inclusion of Other Important Distribution Network Costs, such as Reactive Power Compensation and Voltage Control is also Practical.

- How can Flexible Loads Provide Reserves
- How do Distribution Network Injections Differ From Transmission System Bus Injections?
- Current Market Bidding Rules Motivate Flexible Distributed Loads to Exercise Strategic Behavior Resulting in a Hierarchical Game
- Conditions for Hierarchical Game to Converge
- Revised Bidding Rules Remove Strategic Behavior Incentives and Allow ISO/"DNO" to Clear Market in a Socially Optimal Manner
- Detailed Distribution Market Pricing Real and Reactive Power

Ex. of Var. Speed HVAC - PV Collaboration: Action in the small by Distr. Flex. Loads

Load and Other Resources May Participate fully in Future Distribution Markets:

Future Market: Many more non-dispatchable cedtralized generators, distributed generators and prosumers. On the distributed side, "feedback" renders Non-Dispatchable generation and distributed consumersproducers (prosumers) full market participants Example of a Radial Distribution Network: One Medium Voltage Branch is Shown with three feeders, each with three building loads. Substation is the Slack Bus

Distribution Market Problem formulation:

<u>Minimize</u> Utility Loss, Real and React. Power Cost (incl Losses), Asset Life Loss, and Volt. Control Cost <u>s.t.</u> Load Flow, Capac., Volt. Magnitude Const

$$\begin{split} \underline{Minimize} \\ \sum_{m} \left[\sum_{i} c_{g_{i,m}}^{p} P_{m}^{g_{i}} - \sum_{i} u_{m}^{d_{i}} P_{m}^{d_{i}} \right] + \pi_{\infty}^{p} P_{\infty,b_{M}(1)} + \pi_{\infty}^{p} \left(C_{\infty} - \sqrt{C_{\infty}^{2} - Q_{\infty,b_{M}(1)}^{2}} \right) + \sum_{f_{m,n}} \frac{\Gamma_{f_{m,n}} t M_{f_{m,n}}}{\tau_{f_{m,n}}} + c_{\infty}^{v} (V_{\infty} - 1)^{2} \\ \underline{Subject to} \\ P_{m,n} = V_{m}^{2} G_{m,n} - V_{m} V_{n} G_{m,n} \cos(A_{m} - A_{n}) - V_{m} V_{n} B_{m,n} \sin(A_{m} - A_{n}), \forall (m, n) \\ Q_{m,n} = -V_{m}^{2} B_{m,n} + V_{m} V_{n} B_{m,n} \cos(A_{m} - A_{n}) - V_{m} V_{n} G_{m,n} \sin(A_{m} - A_{n}), \forall (m, n) \\ P_{m} = \sum_{n} P_{m,n}, \forall m \\ Q_{m} = \sum_{n} P_{m,n}, \forall m \\ S_{m,n} = \sqrt{P_{m,n}^{2} + Q_{m,n}^{2}}, \forall (m, n) \\ 0 \leq (P_{b}^{g_{i}})^{2} + (Q_{b}^{g_{i}})^{2} \leq (C_{b}^{g_{i}})^{2} \\ Q_{b}^{d_{i}} = P_{b}^{d_{i}} \sin(\arccos(A_{d}^{d_{i}})) \end{split}$$

Distribution Market Problem formulation (cont.)

$$\begin{split} &-\sqrt{(C_b^{e_i})^2 - (P_b^{e_i})^2} \leq Q_b^{e_i} \leq \sqrt{(C_b^{e_i})^2 - (P_b^{e_i})^2}, \forall e_i \\ &P_b^{e_i} = \begin{cases} 0, if \ e_i \ is \ s \ tan \ d - alone \\ < 0, if \ e_i \ is \ associated \ with \ d_i \\ > 0, if \ e_i \ is \ associated \ with \ g_i \end{cases} \\ &\sum_i P_b^{g_i} + \sum_i P_b^{e_i} - \sum_i P_b^{d_i} = P_b, \forall b \neq \infty \\ &\sum_i Q_b^{g_i} + \sum_i Q_b^{e_i} - \sum_i Q_b^{d_i} = Q_b, \forall b \neq \infty \\ &\Gamma_{f_{b,m}} = \exp\left(\frac{15000}{383} - \frac{15000}{273 + \theta_{f_{b,m}}^H}\right), \forall f_{b,m} \\ &\theta_{f_{b,m}}^H = \theta^A + k_{1,f_{b,m}} + k_{2,f_{b,m}} S_{b,m}^2, \forall f_{b,m} \\ &\frac{V_b}{A_{\infty}} = 0 \end{split}$$

Distribution Market Benefits

- Marginal Losses Reflected in DLMPs=>Demand Adaptation
- Reactive Power Pricing motivates Dual Use of Power Electronics whose presence is expected to Become Ubiquitous while accompanying Distributed Clean Generation (e.g., PV) installations and Flexible Loads (e.g., EVs, Heat Pumps)
- Marginal Voltage Control Cost Reflected in DLMPs
 >Demand Adaptation
- Distribution Asset Degradation Marginal Costs Reflected in DLMPs =>Demand Adaptation
- Full Distr. Net Price Unbundling =>Distr. Net Rent