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Abstract

The goal of this paper is to present a new model for, or rather a new way of thinking of adap-
tive, risk–based access control. Our basic premise is that there is always inherent uncertainty in
access control decisions and such uncertainty leads to unpredictable risk that should be quantified

and addressed in an explicit way. The ability to quantify risk makes it possible to treat risk as
countable resource. This enables the use of economic principles to manage this resource with
the goal of achieving the optimal utilization of risk, i.e, allocate risk in a manner that optimizes
the risk vs. benefit tradeoff. We choose to expand the well known and practiced Bell–Lapadula
multi–level security (MLS) access control model as a proof–of–concept case study for our basic
premise. The resulting access control model is more like a Fuzzy Logic control system [Jyh97]
than a traditional access control system and hence the name “Fuzzy MLS”.

1 Introduction

In today’s information and knowledge driven business environment, there is an increasing need
to share information across traditional organizational boundaries and with partners to support
informed decision making and to rapidly respond to external events, yet sensitive business in-
formation must be protected from unauthorized disclosure. Traditional approaches to access
control and information security that are aligned with organization charts and roles are not
flexible enough to accommodate this new paradigm. Organizations essentially have a choice
to either set up a rigid policy that may inhibit necessary sharing or set up ad-hoc controls or
provide some users near-blanket access rights, which can result in unaccountable risk of infor-
mation leakage. Studies such as the JASON Report [JPO04] were explicitly commissioned to
investigate barriers to information sharing and have reached a similar conclusion. The problem
is due to the fact that existing access control policies specify access decisions statically whereas
the environments in which the policy is applied are dynamic. Thus the ideal case where an or-
ganization continually optimizes access control based on risk vs. benefit tradeoffs while capping
overall risk cannot be realized.

In this paper, we introduce Fuzzy MLS, a new access control model, which in a limited context
can be used to quantify risk associated with information access. The ability to quantify risk
makes it possible to treat risk that an organization is willing to take as limited and countable
resource. This enables the use of a variety of economic principles to manage this resource with
the goal of achieving the optimal utilization of risk, i.e, allocate risk in a manner that optimizes
the risk vs. benefit tradeoff.

This paper is structured as follows: section 2 discusses the problem with traditional access
control models, section 3 presents Fuzzy MLS as a solution in a limited context, section 4
presents the scenario under which the model is developed, section 5 presents the mathematics
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of the model, section 6 discusses the prototype implementation of the model and future work,
section 7 discusses related work.

2 The Problem

Controlling access to resources is a fundamental security concept through which an organization
tries to minimize its exposure to potential damage from mishaps and attacks by limiting illegit-
imate access while optimizing its operations by allowing legitimate access. With the advent of
computing, access control and access control policy models became a fundamental, well studied
and practiced area in computer security and several models such as Lattice Based Access Con-
trol (LBAC) [Den76], Role Based Access Control (RBAC)[FKC03], Domain Type Enforcement
(DTE)[WSB+96], MLS (multi–level security, a.k.a the Bell Lapadula Model [BL76]), ACLs and
Unix file permissions have been invented and deployed.

Given the multitude of policy models one would expect that an organization should be able
to select one (or more) of these models to achieve their access control goals. After all, any
security model can be used to write a security policy that specifies who gets access to what
resources; the different models mostly differ in terms of granularity, expressibility, confinement
and manageability properties. Unfortunately, our experience and the experience of other security
practitioners [JPO04] suggests otherwise: in many cases, especially for dynamic organizations
that have a lot of sensitive data that needs to be shared, the organization’s basic need to
discriminate between legitimate vs illegitimate access is not met by adopting any of these models.

The inadequacy of these models in this scenario is not a reflection of their lack of express-
ibility, but rather the fact that when a security administrator creates the policy, she is guessing
and codifying what risk-benefit tradeoffs will be acceptable for information accesses that will
happen in the future. Clearly, for an organization with dynamic needs the future risk-benefit
tradeoffs are not predictable and the guesses made about future risk-benefit tradeoffs, encoded
in the security policy are likely to be in conflict with the real risk-benefit tradeoffs at the time
of access. For a traditional access control policy, these unforseen tradeoffs often result in the
creation of exceptions to the policy in order to meet practical needs [JPO04]. The creation
of these exceptions often needs human approval and is usually time–consuming. Furthermore,
exceptions are outside the access control policy and therefore the risk carried by an exception is
not accounted for by the policy. This unaccounted risk defeats the purpose of having an access
control policy.

Thus current access control models that are not adaptive to changing needs are usually
successful only in static environments and new, adaptive models are needed for highly dynamic
environments. Such models have to be designed so that they can meet the real time needs of
the users and of the organization, while bounding the potential damage, even as the needs of
the users, the organization and its tolerance for damage varies.

3 Fuzzy MLS: A Solution by Quantifying Risk

While building a general purpose, risk–adaptive access control model appears quite daunting,
the Fuzzy MLS model works in at least some settings where the traditional MLS Bell Lapadula
model can no longer meet an organization’s need for adaptive access control.

The basic premise of the traditional MLS Bell Lapadula model is to determine if a subject
is trustworthy enough and has the legitimate need–to–know to access an object. A subject is
usually a person or an application running on behalf of a person. An object is usually a piece
of information such as a file. Each subject or object is tagged with a security label which is a
<sensitivity level, categories set> tuple. A subject’s sensitivity level reflects the degree of trust
placed on the subject; a subject’s categories set specifies the categories of objects to which the
subject has a legitimate need–to–know. An object’s sensitivity level indicates how sensitive the
object is or the magnitude of the damage incurred by an unauthorized disclosure of the object;
an object’s categories set specifies the categories to which the object belong. All tuples in a
system form a partial–order relation set where < SL1, CS1 > ≥ < SL2, CS2 > if and only if
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SL1 ≥ SL2 and CS1 ⊇ CS2. This relation is called “dominate”. A subject can read an object
only if the subject’s label dominated the object’s label; this means that the subject is trustworthy
enough and has the legitimate need–to–know to read the object. The trustworthiness means
that the chance that the subject intentionally leak the information is low. The need–to–know
means that there is no unnecessary exposure of the information; such an exposure may lead to
an unintentional leakage the risk of which the organization is not willing to accept.

The main feature of Fuzzy MLS is that it considers access control as an exercise in risk
management where access control decisions are made on the basis of risk, risk tolerance, and
risk mitigation, where risk has the usual connotation of expected damage. Viewed in terms
of risk, the process of setting a traditional MLS policy is actually determining a fixed tradeoff
between the risk of leakage of sensitive information versus the need of the organization to provide
such information to its employees for them to perform their job. This fixed tradeoff sets up a
non-adaptive, binary access control decision model where accesses have been pre-classified as
having either acceptable risk or non acceptable risk and only the accesses with acceptable risk
are allowed.

Fuzzy MLS devises a way based on the rationale and experience behind MLS to compute a

quantified estimate of risk associated with a human subject reading an object by quantifying the
“gap” between the subject’s and the object’s labels. With these quantified estimates of risk, a
risk scale, depicted in Figure 1, can be built such that each access is associated with a point on
the scale. With such an scale, the access control model can be made risk–adaptive by adjusting

Figure 1: Risk–Adaptive Access Control on a Risk Scale

the point of trade-off on the scale as the needs and environment change. Fuzzy MLS goes one
step further by expanding this point of trade–off into a region on the scale. An access associated
with a point below the lower-bound of the region (also called the soft boundary) is allowed, an
access associated with a point above the upper-bound of the region (the hard boundary) is denied.
The region is further divided into bands of risk such that each band is associated with a risk
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mitigation measure. An access located in a band is allowed only if the risk mitigation measure
associated with that band can be applied to the access1. Thus, the Fuzzy MLS model depicts
a risk management system that resembles a Fuzzy control system [Jyh97] and thus the name
“Fuzzy MLS”.

A primary cause of a access control policy being subverted is that the policy conflicts with
individual users’ legitimate needs. The Fuzzy MLS model addresses this issue by allowing some
risk taking when the risk of an access is within the region. An organization’s optimal goal
should be encouraging prudent, calculated risk taking by users to achieve better results while
still keeping the overall risk within the organization’s risk tolerance, without micro-managing
the human users. Fuzzy MLS model has been designed so that this optimal goal can be achieved
in different ways based on how an organization chooses to influence its user’s behavior.

One such system we propose is similar to a credit card system. Each human user will be
given a line of risk credit in some units of risk. If a user makes an access whose risk is within
the region, then the difference between the risk and the soft boundary (in units of risk) will
be charged against the user’s risk credit. This charge can be considered the price paid for
“purchasing” exceptional information and the necessary risk mitigation measures. Periodically,
the user’s return on investment (ROI) will be evaluated; the return is the evaluation of the results
delivered by the user, and the investment is the amount of risk charged. Greater reward will
be given to those users with higher ROI. This process could be part of performance evaluations
that organizations anyway conduct for their employees. A user’s line of risk credit could be
adjusted based on his/her ROI. The total risk for the organization’s is always below the sum
of all lines of risk credit. Also, each “purchase” will be logged so the users’ behaviors can be
reviewed and the overall security policy, including the hard and soft boundaries, lines of risk
credit, and users’ security labels can be regularly fine-tuned to be more aligned with the actual
needs. The line of credit also provides a means for users to tide over minor conflicts between
their needs and the current policy in real-time, i.e., provides flexibility in the short term whereas
the fine-tuning process which is to be done off-line adjusts the policy for long term trends.

Another system which extends the credit card approach above would be to create a market-

based mechanism for users to “purchase risk” using a pseudo currency. There will be a finite
number of risk units in the market based on the cap on risk that the organization is willing
to accept. As before, exceptional accesses will need to be paid for by the users based on the
difference between the risk of access and the soft boundary in risk units. Each user may be
allocated some amount of risk units and pseudo currency initially to get her started, but there
would be a market for users to buy and sell risk units for pseudo currency. To motivate prudent-
risk taking in such a market setting, a user’s contribution to the organization will be evaluated
periodically and a score will be given in an amount of pseudo–currency. It is important that
pseudo-currency should have direct value to a user, possibly by linking it directly to actual
monetary benefit. This way, a user who has knowledge and reason to believe that a particular
risky access has a disproportionate chance of yielding benefit compared to current market rate
for risk, would be motivated to purchase risk units from the market and pursue the opportunity;
whereas users who do not see any good opportunity to use their risk units would be encouraged
to sell their risk units in the market to acquire pseudo–currency. This way, it would be possible to
aggregate the collective knowledge of the users to optimally allocate the risk towards maximizing
the benefit to the organization.

The exact market mechanism to be used and how it should be run (e.g., time periods for
risk unit distribution and evaluations etc) would be subjects of further research.

The JASON report [JPO04] also presents some ideas on market mechanism; it discusses the
notion of an access token which grants access right to certain kinds of access. The report gives
the following example:

1 token = risk associated with one–day, soft–copy–only access to one document by
the average Secret–cleared individual.

A token associated with a specific kind of access is assigned a value using some common de-
nomination. This allows different tokens, and therefore different access rights, to be traded. So

1More discussion on this can be found in the Appendix
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it is more like a “my eggs for your milk” barter system; and the report does not present an
uniform way nor a mathematical model to quantify the risk associated with information access
or to compute the value of a token.

4 Fuzzy MLS : Example Scenario

Consider a (futuristic) brokerage that has set up an information processing system for monitoring
and analyzing different data sources such as news reports, trading data as well other data from
non-public, sensitive sources. This system is available to its traders, fund managers and brokers
through a query interface that produces discrete and streaming results to the user’s inquiries.
Examples of such inquiries could be “what is the short term pricing trend for security X”.
Each query can dynamically result in a chain of analysis being performed within the system
using public as well as sensitive data that the brokerage has purchased at great cost or whose
usage it doesn’t want other business rivals to know about, and some of the analysis components
themselves could utilize the brokerage’s internal secrets such as models of markets. Different
queries could dynamically result in different chain of analysis processing being performed on
the input data to produce the results. Such a dynamic composition of analysis to respond to
different inquiries is possible using planning techniques from AI [RL05, RL06].

For this system, data centric access control model such as MLS with provision for data
downgrading is more appropriate than user centric models since results are generated from a
dynamic combination of analysis algorithms and data sources and a fundamental requirement
is that access restrictions on any result should be easy to determine. With this approach
data sources are labeled with sensitivity levels commensurate with the monetary loss if the
information is disclosed. For important stocks, categories are used to protect stock-specific
sensitive sources and algorithms. E.g., the brokerage estimates production figures for company
X (a packaged food supplier) using revenue estimates its packaging supplier which are available
from an expensive market intelligence newsletter. The brokerage also has a custom mathematical
model for X’s stock. Both the data source (newsletter) and the model are protected by the
category X. Brokers and traders specializing in the packaged foods industry are cleared for
category X and can receive detailed reports about X that include packaging revenues and stock
model parameters. Other users not cleared for category X only get limited trend prediction
for the stock X by means of downgraders. Valuable sources that can predict multiple stocks
are given their own categories and downgraders are used to indicate their influence on each
important stock. E.g., a sensitive source may be the daily sales figures for different food items
from a major grocery chain. It is assigned category Y and a downgrader can utilize only a part
of this data to produce competitive analysis of company X with respect to its peers.

However, any traditional access control model is not suitable in this dynamic environment.
When there is a market anomaly, the brokerage would be willing to accept more risk rather than
suffer huge losses and would temporarily want to allow wider access to sensitive information.
But, when times are good it would want to exercise tighter control on sensitive information to
avoid the risk of disclosure. Also, with this setup many traders will have their needs unmet
and no satisfactory way to meet them. Consider a hedge fund manager. From time to time
the manager needs to make huge short term bets on particular stocks, but requires detailed
information before making the bet. In the MLS model, either the hedge fund manager needs
to be given access to all major stock categories, giving him unfettered access to most of the
brokerage’s secrets or given no categories which mean he he gets only sanitized information
about stocks and that doesn’t serve his needs. Fuzzy MLS can solve both problem by having
adjustable hard and soft boundaries that can globally (or just for the traders) be adjusted by
security officer based on business conditions. The hedge fund manager will be given partial
membership in major stock categories and a risk budget so that, as needed, he can use his
budget to get detailed information about any particular stock but that access consumes his
budget and gets audited. This way, the hedge fund manager is able to perform his job, but the
company can control its risks with respect to how much information the fund manager gets over
time and audit records of what information he has accessed.
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5 Fuzzy MLS Details : Computing Risk

The rationale for the MLS model was essentially risk based [JPO04] but it suffers from a binary
decision model based on risk avoidance. Fuzzy MLS utilizes and extends the underlying risk
based rationale of MLS but changes the access model to be based on risk management. For a
human user’s read access, the risk is defined as the expected value of loss due to unauthorized
disclosure:

risk = (value of information) × (probability of unauthorized disclosure) (1)

The “value” of information is defined to be the damage sustained if this information is disclosed
in an unauthorized manner, where units of damage would be organization specific. Estimating
value may appear difficult but any organization already practicing MLS is expected to assign
sensitivity levels to information based on a rough estimate of its value as prescribed by the
principles in [DoD97]. Typically, sensitivity levels correspond to order of magnitude of loss and
thus approximate “value” can be derived from a traditional sensitivity level by an exponential
function.

Determining the probability of unauthorized disclosure requires more work. A precise deter-
mination is generally impossible since that would require a precise prediction of future actions
of the user. Instead, the Fuzzy MLS model strives to develop a way to assign such probabilities
that is commensurate with common sense and intuition which largely comes from prior research
done on the traditional MLS model. For example, the probability should be very high when
a person without security clearance is given access to top secret information but relatively low
if the access is given to a person with top secret clearance. The Bell-Lapadula MLS model
[BL76] can be viewed as estimating such a probability P from two probabilities P1 and P2 and
combining them.

P1 =

{

0 human subject sensitivity level ≥ object sensitivity level
1 otherwise

P2 =

{

0 human subject category set ⊇ object category set
1 otherwise

P = P1 + P2 − P1P2 (2)

The Fuzzy MLS model also estimates P1 and P2 but they are no longer binary.

Computing P1: We consider P1 to be the probability that a human subject leaks the infor-
mation by succumbing to temptation. For a human user, the temptation would be a function of
user’s sensitivity level (sl) which indicates the user’s trustworthiness and object sensitivity level
(ol) which indicates the value of the object. Temptation should monotonically increase with
respect to ol and monotonically decrease with respect to sl. MLS takes a binary view of temp-
tation: no temptation when ol ≤ sl and temptation otherwise. MLS also uses a step function
to relate temptation to probability of disclosure P1, no disclosure when there is no temptation
and disclosure with probability 1 when there is temptation. We take a more nuanced view that
all accesses result in temptation which we quantify by a temptation index TI which varies over
a scale. The probability of leakage due to temptation should monotonically increase with TI.
While one could choose different ways to relate TI to probability of disclosure, in order to closely
parallel the MLS step function approach we choose a sigmoid function to relate P1 to TI, i.e.,
P1 is defined as

P1 =
1

1 + exp( (−k) × (TI − mid) )
(3)

where the parameter mid is the value of TI when P1 is 0.5 and k determines the slope of the P1

curve with regard to TI. There could be countless many ways to derive TI which is a function
of sl and ol but we submit that any such function should have the following properties that are
consistent with our intuition:

• The more sensitive an object is, the higher the temptation,
ol1 > ol2 ⇒ TI(sl, ol1) > TI(sl, ol2).
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• The more trustworthy a subject is, the lower the temptation,
sl1 > sl2 ⇒ TI(sl1, ol) < TI(sl1, ol)

• TI is always greater than 0. This implies our belief that no human subject is above
temptation nor completely trustworthy.

• TI is biased toward more sensitive objects.

– The more sensitive an object is, the faster TI increases as sl decreases,
ol1 > ol2 ⇒ 0 > ∂TI(sl, ol2)/∂sl > ∂TI(sl, ol1)/∂sl

– For a constant difference (sl − ol), TI increases as ol increases,
TI(sl1, ol1) > TI(sl2, ol2) if ol1 > ol2 and (sl1 − ol1) = (sl2 − ol2).

As an example formulation for TI, we choose formula 4 below since it is simple, analytic and
has all the above properties and some other nice properties as well2. Let a be a real number
that is greater than 1 and m be a real number that is greater than the maximum allowed value
of ol. We further assume that sl and ol are non–negative, then

TI(sl, ol) = (a−(sl−ol))/(m − ol) (4)

In this formulation TI approaches infinity as ol approaches m; the intuition behind m is that
the temptation for a human subject is considered to be too great if an object is as sensitive as
m or more sensitive than m and such access control decisions should not be made by machines.
Formula 4 can also be easily related to the Bell–LaPadula model based MLS policy since TI is
greater than 1/(m − ol) if sl < ol, less than 1/(m − ol) if sl > ol and equal to 1/(m − ol) if
sl = ol. Thus, with this formula we have that the the Bell–LaPadula model is violated iff TI is
greater than 1/(m− ol).

Computing P2: Our intuition for P2 comes from the probability of inadvertent disclosure. This
is the probability that a human subject discloses the information unintentionally; this kind of
“slip of tongue” is always possible once the information is in a human’s mind. When a human
subject has a very strong, legitimate need–to–know of information in a category, the organization
is more willing to accept this probability as the usual risk associated with conducting its business.
When the subject only has marginal or no need–to–know, the organization is less willing to
accept the probability. If a subject accesses an object belonging to only one category, P2 is the
difference between the probability of inadvertent disclosure and the probability the organization
is willing to accept for that subject; P2 is zero if the difference is negative. If the object belongs
to multiple categories, we make the simplifying assumption that the object is a monolithic entity
and compute a difference for each category and use the maximum difference as P2.

More research is needed to determine the probability of inadvertent disclosure for a category.
We are currently experimenting with the following formulation to compute P2. For a category
c, a subject is given a fuzzy membership in [0, 1] that indicates the subject’s need–to–know
for information in the category; an object is also given a fuzzy membership that indicates the
relevance of this object to the category. The subject and object membership can be used as ol
and sl in formula in 4 to compute a “willingness index”. This index can be used in place of TI
in formula 3 to compute wc =“willingness to accept for c” which is a number in [0, 1]. If Pc

denotes the probability of inadvertent disclosure for category c,

P2 = Maximum{ Pc(1 − wc) | c is a category } (5)

Computing Risk: For a given subject and object label, the value of the object is computed
from its sensitivity level, the probabilities P1 and P2 are computed as above, the probability of
disclosure is computed using formula 2 and finally the risk is computed using formula 1.

6 Implementation, Extentions and Future Work

We have experimented with Fuzzy MLS on a prototype with 10 levels and a few categories with
fuzzy subject membership to gain experience in setting the risk calculation parameters. Fuzzy

2more information provided in the Appendix
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MLS is now being implemented in a larger prototype system and will undergo adjustments as
further experience is gained from its usage, especially with how risk estimates and risk budgets
should be managed. In this prototype, the core data processing is done using the MLS model
whereas requests for exceptional access by users are processed using Fuzzy MLS. We use a
lattice alteration strategy to bridge between the two models. I.e., the results are moved to a
new temporary lattice point introduced within the MLS lattice where they can be picked up by
the user’s process operating at this lattice point. Even at this stage, some advantages of Fuzzy
MLS are apparent which may help address issues that arise in current MLS systems. These will
be the subject of further research, we briefly discuss these ideas.

• Label Uncertainty: In an MLS system labels are assumed to be correct. Also most MLS sys-
tems include the notion of perfect secrecy downgraders that sanitize data [STH85, SRS+00].
This situation makes data difficult to share because human labelers and downgraders err
on side of higher secrecy. If labels were uncertain or probabilistic to account for the uncer-
tainty in ascertaining the right secrecy level, then the situation of over-classification could
be addressed. But traditional MLS model cannot make access decisions with labels having
uncertainty. However this is not a problem with Fuzzy MLS since it can still compute the
risk associated with the access and make the decision based on risk.

• Loss variance based access decisions: Fuzzy MLS can be easily extended so that both the
expected loss and the variance of loss can be used to make access decisions; users may
have variance in their trustworthiness and data may have variance with respect to their
secrecy and these can be combined to compute risk and variance of loss for making access
decisions.

• Aggregation Problem: This problem has not been satisfactorily resolved in MLS systems,
even in the simplest form, where a sequence of allowed accesses to less sensitive data
results in a collection of data that is more sensitive than the individual items. With
Fuzzy MLS, the aggregation problem gets exposed, as each user access to data incurs a
risk and multiple accesses should accumulate risk. We are exploring ways in which label
uncertainty can be used to address the aggregation problem. If individual data items have
label X but collectively have higher secrecy label Y, one idea is to assign the individual
data item an uncertain label which indicates that it has a small probability of having the
label Y. Repeated access to such objects would then incur an aggregate risk comparable
to an access to Y.

7 Related Work

Research on risk in access control models, flexible access control models, and risk management in
general have been done for many years. We highlight a few recent ones that are more related to
our work. The JASON report [JPO04] discusses the importance for a risk–based access control
system in which the risk is measurable. McDaniel [McD03] discussed how the context of an
access control decision can affect the decision. Nissanke and Khayat [NK04] analyzed the risk
associated with permissions assigned to a role in an RBAC system but the risk is assessed by an
independent assessment process. None of the works presented a way to quantify risk. Dimmoc et
al. [DBIM05] discussed a computational approach to estimate risk and uses the estimate to make
optimal decisions. However, the subjects in their model are autonomous agents, not humans;
and it seems that the model requires a prior knowledge of outcomes of all possible combinations
of states and actions when a decision is being made and we doubt if such knowledge is obtainable
in general.
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A Temptation Index Formula: Motivation and Example

In Section 5, we proposed the following formula to compute the Temptation Index TI.

TI(sl, ol) = (a−(sl−ol))/(m − ol)

The basic motivation for this formula follows from experience with MLS. We expect the value
of an object to increase exponentially with the sensitivity level. Also, the way the user clear-
ance process works today, subject labeled to a certain sensitivity level are allowed accesses to
objects upto that level. This means that a measure of subject trustworthiness also increases
exponentially with the subject level and at a rate which is probably commensurate with the
rate at which object value increases. So a basic formula TI ′ where

TI ′(sl, ol) = a−(sl−ol)

captures the basis intuition in MLS that the temptation from an exponentially rising object
value can be balanced by exponentially rising subject sensitivity level. TI ′ has the property
that when its above 1 access is denied. But it does not conform to our intuition that given
equal subject and object levels, temptation should increase with higher object level. Therefore
we tweaked TI ′ to create TI which creates a temptation bias towards higher value objects.

Here we show a table of temptation indices (Table 1) and the corresponding probabilities
(Table 2). The main point to make here is that temptation are indices usually fairly large or
fairly low except the cases where the subject and object levels are close. This is the place where
calculated risk taking should be allowed.

ol\sl 1 2 3 4 5

1 1.000e− 01 1.000e− 02 1.000e− 03 1.000e − 04 1.000e− 05
2 1.111e + 00 1.111e− 01 1.111e− 02 1.111e − 03 1.111e− 04
3 1.250e + 01 1.250e + 00 1.250e− 01 1.250e − 02 1.250e− 03
4 1.429e + 02 1.429e + 01 1.429e + 00 1.429e − 01 1.429e− 02
5 1.667e + 03 1.667e + 02 1.667e + 01 1.667e + 00 1.667e− 01
6 2.000e + 04 2.000e + 03 2.000e + 02 2.000e + 01 2.000e + 00
7 2.500e + 05 2.500e + 04 2.500e + 03 2.500e + 02 2.500e + 01
8 3.333e + 06 3.333e + 05 3.333e + 04 3.333e + 03 3.333e + 02
9 5.000e + 07 5.000e + 06 5.000e + 05 5.000e + 04 5.000e + 03
10 1.000e + 09 1.000e + 08 1.000e + 07 1.000e + 06 1.000e + 05

ol\sl 6 7 8 9 10

ol 6 7 8 9 10
1 1.000e− 06 1.000e− 07 1.000e− 08 1.000e − 09 1.000e− 10
2 1.111e− 05 1.111e− 06 1.111e− 07 1.111e − 08 1.111e− 09
3 1.250e− 04 1.250e− 05 1.250e− 06 1.250e − 07 1.250e− 08
4 1.429e− 03 1.429e− 04 1.429e− 05 1.429e − 06 1.429e− 07
5 1.667e− 02 1.667e− 03 1.667e− 04 1.667e − 05 1.667e− 06
6 2.000e− 01 2.000e− 02 2.000e− 03 2.000e − 04 2.000e− 05
7 2.500e + 00 2.500e− 01 2.500e− 02 2.500e − 03 2.500e− 04
8 3.333e + 01 3.333e + 00 3.333e− 01 3.333e − 02 3.333e− 03
9 5.000e + 02 5.000e + 01 5.000e + 00 5.000e − 01 5.000e− 02
10 1.000e + 04 1.000e + 03 1.000e + 02 1.000e + 01 1.000e + 00

Table 1: TI values, m = 11.0, a = 10.0
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ol\sl 1 2 3 4 5

1 5.215e− 02 4.788e− 02 4.747e− 02 4.743e − 02 4.743e− 02
2 1.314e− 01 5.271e− 02 4.793e− 02 4.748e − 02 4.743e− 02
3 9.999e− 01 1.480e− 01 5.340e− 02 4.799e − 02 4.748e− 02
4 1.000e + 00 1.000e− 00 1.720e− 01 5.431e − 02 4.808e− 02
5 1.000e + 00 1.000e + 00 1.000e− 00 2.086e − 01 5.555e− 02
6 1.000e + 00 1.000e + 00 1.000e + 00 1.000e − 00 2.689e− 01
7 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00 1.000e− 00
8 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00
9 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00
10 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00 1.000e + 00

ol\sl 6 7 8 9 10

1 4.743e− 02 4.743e− 02 4.743e− 02 4.743e − 02 4.743e− 02
2 4.743e− 02 4.743e− 02 4.743e− 02 4.743e − 02 4.743e− 02
3 4.743e− 02 4.743e− 02 4.743e− 02 4.743e − 02 4.743e− 02
4 4.749e− 02 4.743e− 02 4.743e− 02 4.743e − 02 4.743e− 02
5 4.818e− 02 4.750e− 02 4.743e− 02 4.743e − 02 4.743e− 02
6 5.732e− 02 4.834e− 02 4.752e− 02 4.743e − 02 4.743e− 02
7 3.775e− 01 6.009e− 02 4.857e− 02 4.754e − 02 4.744e− 02
8 1.000e− 00 5.826e− 01 6.497e− 02 4.895e − 02 4.758e− 02
9 1.000e + 00 1.000e + 00 8.808e− 01 7.586e − 02 4.974e− 02
10 1.000e + 00 1.000e + 00 1.000e + 00 9.991e − 01 1.192e− 01

Table 2: Probability for TI values in Table 1, k = 1.0, mid = 3.0

B Risk Mitigation

In Section 3, we introduced the notion of risk credit as currency for purchasing risk mitigation
measures for risky access. We describe possible risk mitigation measures in more detail here.
Since a subject cannot be made more trustworthy instantly, risk mitigation measures are geared
towards making the subject less likely to disclose information. Such measures usually fall into
the following categories : deterrence, prevention and limiting damage which are discussed below.

• Deterrence: provide (strong) disincentives for wrong doings. For example, detailed au-
diting and mandatory computer or human review may be used to ensure that risky accesses
are made for the right reasons. This could also set the stage for administrative or legal
actions.

• Prevention: To prevent a user process (not the user) from inadvertently disclosing infor-
mation, one can insist on that the user process runs in a special environment which has
extra physical and/or logical security. For example, exceptional accesses may require the
process to run within a specific secure location or on a specific trustworthy system, or the
process could be sandboxed [CC03].

• Limiting Damage: to assume that bad things will happen and take precaution measures
to limit the potential damage. Examples are limiting the output rate of information flow
to a user/user process, reduced scheduling priority, etc. Another measure is to further
restrict the user’s future access to resources based on the already granted access.
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