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IntroductionIntroductionIntroduction

• Structure Function & Interaction
– Protein structure initiative (PSI) is 

speeding up the information flow 
from sequence to structures.

– Information does not readily flow 
from structures to structures. 

– Neither does it readily flow from 
structures to applications.

• What are the bottle necks?
– Sampling method.
– Potential function.



Sampling Methods
-- Folding & Growth
Sampling MethodsSampling Methods

---- Folding & GrowthFolding & Growth

Growth MethodFolding Method

From http://www.bioinformatics.buffalo.edu/



Sequential Monte Carlo (SMC)
-- Step by Step
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SMC 
-- Summary

SMC SMC 
---- SummarySummary

• Short chains: 
– Exhaustive enumeration, useful for evaluation of SMC performance.

• Long chains: 
– Sequential Monte Carlo, estimating interesting properties.

• The main ingredients of SMC are: 
– Sequence of distributions “approaching” the target distribution π(x1,…,xn). 
– Sampling distribution gt+1(xt+1|x1,…,xt). 
– Resampling scheme.
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Near Native Structures of ProteinsNear Native Structures of ProteinsNear Native Structures of Proteins



Native State is an Ensemble of StructuresNative State is an Ensemble of StructuresNative State is an Ensemble of Structures

Ca2+ ATPase pumpLac repressor2BBN

• Protein functions and interactions are 
determined by the near native structures.



Biological ProblemsBiological ProblemsBiological Problems

• Stability
– Probability of NNS under Boltzmann distribution.

• Function
– Analysis of NNS to detect correlated structural 

changes.
• Interaction

– Near native structures with diversified interfaces.
• Difficulty of protein structure prediction

– Probability of NNS under uniform distribution.



Methods for Studying NNSMethods for Studying NNSMethods for Studying NNS

• Experimental method, such as NMR
– Study one protein at a time. Limited to protein types.

• MD simulation
– Computationally expensive. Applicable for small proteins.

• MCMC
– Folding around the constrained native structure template is 

not efficient.

• NMR combined with MD
– Vendruscolo M, et. al. Nature (2005), 433:128-32



Near Native Structures
-- Connecting Experimental Structures and Applications

Near Native StructuresNear Native Structures
---- Connecting Experimental Structures and ApplicationsConnecting Experimental Structures and Applications

SMC



Representation of Protein StructuresRepresentation of Protein StructuresRepresentation of Protein Structures

• Optimized discrete state 
model (ODSM).
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Sequential Monte Carlo for Sampling NNSSequential Monte Carlo for Sampling NNSSequential Monte Carlo for Sampling NNS

Near Native Structures

SMC

Native structure

•Definition of NNS:
–Structures with RMSD < 3 Å to 
native structure.
–Other similarity measures are 
possible.



Comparison with Enumeration I.
-- Estimation of Number of Conformations

Comparison with Enumeration I.Comparison with Enumeration I.
---- Estimation of Number of ConformationsEstimation of Number of Conformations

Sample size:
10,000.
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Comparison with Enumeration II.
-- Estimation of NNS

Comparison with Enumeration II.Comparison with Enumeration II.
---- Estimation of NNSEstimation of NNS
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RMSD Bin:
1: 1.0 Å - 1.5 Å;
2: 1.5 Å - 2.0 Å;
3: 2.0 Å - 2.5 Å; 
4: 2.5 Å - 3.0 Å;

5.94 × 10-8

5.60 × 10-8

Sample size:
10,000.



Comparison with Enumeration III.
-- Estimation of Native Contacts

Comparison with Enumeration III.Comparison with Enumeration III.
---- Estimation of Native ContactsEstimation of Native Contacts
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Probability of NNS
-- How Difficult Protein Structure Prediction is?

Probability of NNSProbability of NNS
---- How Difficult Protein Structure Prediction is?How Difficult Protein Structure Prediction is?

Probability of NNS for 70 non-homologous proteins
grouped by their length with 5 residues per interval.
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Probability of NNS 
-- Effect of Model Complexity
Probability of NNS Probability of NNS 

---- Effect of Model ComplexityEffect of Model Complexity

Average probability of NNS for 8 proteins at partial length and full length.
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• 4,5,6,8-state models all have same probability of NNS.



Probability Under Boltzmann Distribution Probability Under 
-- Contact Potentials

Probability Under BoltzmannBoltzmann Distribution Distribution 
---- Contact PotentialsContact Potentials

Piotr Pokarowski et. al., PROTEINS, 59:49–57 (2005)



Probability of NNS Under Boltzmann
Distributions

Probability of NNS Under Probability of NNS Under BoltzmannBoltzmann
DistributionsDistributions

• Probability of NNS for 32 proteins with length from 31 to 90.
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• Pair-wise contact potential function stabilize NNS poorly.



Summary for NNSSummary for NNSSummary for NNS

• Sequential Monte Carlo (SMC) for studying 
near native structures (NNS).

• Probability of NNS is estimated for proteins up 
to length 150.

• Models with different complexities have same 
probability of NNS.

• Rigorous evaluation criterion for potential 
functions. Contact potentials do not stabilize 
native structures.



Side Chain ModelingSide Chain ModelingSide Chain Modeling



IntroductionIntroductionIntroduction

• Side chain modeling is important for protein 
structure prediction, protein interaction, and 
protein design.

• Most current methods are looking for single 
conformation with minimum potential energy.

• In structure prediction, the energy of a 
conformation is normally calculated ignoring 
the side chain conformational entropy.



QuestionsQuestionsQuestions

• Do structures with similar compactness have similar 
side chain conformational entropy?

• Do structures with similar fold have similar side 
chain conformational entropy?

• Do native structures have higher side chain entropy 
than random structures with similar compactness or 
similar fold? 

We address these questions with our 
new side chain modeling method.



SMC for Side Chain ModelingSMC for Side Chain ModelingSMC for Side Chain Modeling

• Number of side chain 
conformations, Nsc.

• Side chain conformational 
entropy.

Ssc = kBln(Nsc)

• Stability.
• Folding and Packing.



Validation of SMC
-- Comparison with Enumeration

Validation of SMCValidation of SMC
---- Comparison with EnumerationComparison with Enumeration
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The total SAW side chain conformation for a fragment of 3ebx, residue 1-17,
is 396,325,923,840 (3.96×1011). 
The estimated number is 4.01×1011 with a sample size of 1,000 for 10 runs.



Do structures with similar compactness 
have similar side chain conformational 

entropy?

Do structures with similar compactness Do structures with similar compactness 
have similar side chain conformational have similar side chain conformational 

entropy?entropy?

• Structures satisfying:
– same sequence,
– similar compactness,
– different backbone conformations.



Decoys StructuresDecoys StructuresDecoys Structures

• Decoys are generated to fool potential functions.
• 24 decoy proteins are selected from 5 decoy sets in 

Decoys ‘R’ Us database.
– 4state_reduced: 7 proteins (about 600 structures each 

protein).
– fisa: 3 proteins (500 decoys).
– fisa_casp3: 4 proteins (1000-2500 decoys).
– lattice_ssfit: 5 proteins (2000 decoys).
– lmds: 5 proteins (300-500 decoys).

• Compactness are measured by one of the two 
parameters: radius of gyration (Rg) or number of 
residue contact (Nc).



Side Chain Entropy of Native 
and Decoys Structures

Side Chain Entropy of Native Side Chain Entropy of Native 
and Decoys Structuresand Decoys Structures
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On average, the number of side chain conformations for 
native 1ctf is 105 times more than a decoy structure!



Native vs. DecoysNative vs. DecoysNative vs. Decoys

Protein Nsc Type   DecoySet Protein Nsc Type    DecoySet

1ctf    Y       4state 1r69    Y       4state
1sn3    Y       4state 2cro    Y      4state
3icb    N      M 4state 4pti    N          S 4state
4rxn   N      M 4state 1fc2    N          I fisa
1hdd-C  N      I fisa 4icb    N         M fisa
1bg8-A  N     S fisa_casp3 1bl0    Y      fisa_casp3
1eh2    N     M fisa_casp3 smd3    Y      fisa_casp3
1beo    N      S lattice 1dkt-A  N          I lattice
1fca    Y      lattice 1nkl   Y      lattice
1pgb    Y      lattice 1b0n    N         M lmds
1bba    N      NMR lmds 1igd    Y      lmds
1shf    Y      lmds 2ovo    N          S lmds

Y: Proteins for which side chain entropy is maximized.
N: Proteins for which side chain entropy is not maximized.
M: Metal binding protein
S:  Disulfide protein
I:   Involved in Interaction



Proteins with Disulfide BondsProteins with Disulfide BondsProteins with Disulfide Bonds
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Structures with similar compactness can have 
very different side chain conformational entropy.

Native structures tend to maximize side chain 
conformational entropy.

Structures with similar compactness can have Structures with similar compactness can have 
very different side chain conformational entropy.very different side chain conformational entropy.

Native structures tend to maximize side chain Native structures tend to maximize side chain 
conformational entropy.conformational entropy.



Do structures with similar conformation 
have similar side chain conformational 

entropy?

Do structures with similar conformation Do structures with similar conformation 
have similar side chain conformational have similar side chain conformational 

entropy?entropy?

• Structures satisfying:
– same sequence,
– similar (but not the same) conformations.



X-ray and NMR StructuresXX--ray and NMR Structuresray and NMR Structures

• Experimental X-ray structure vs. NMR 
structures
– Very similar backbone folds.
– Differ in details, such as packing of loop and 

contacts.
– Potential derived from X-ray structures fails to 

recognize NMR structures and vice versa. Why?

Sergiy O. Garbuzynskiy et. al., Proteins, 60:139–147 (2005)



Side Chain Entropy of 
X-ray and NMR Structures 

Side Chain Entropy of Side Chain Entropy of 
XX--ray and NMR Structures ray and NMR Structures 
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X-ray structures have similar fold and compactness as 
NMR structures, but higher side chain entropy.



Side Chain Entropy Difference between 
X-ray and NMR Structures

Side Chain Entropy Difference between Side Chain Entropy Difference between 
XX--ray and NMR Structuresray and NMR Structures
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In general, X-ray structure has higher side chain 
entropy than NMR structures of the same protein.



Two Packing Modes
-- Balance between Enthalpy and Entropy

Two Packing ModesTwo Packing Modes
---- Balance between Enthalpy and EntropyBalance between Enthalpy and Entropy
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Higher compactness, 
comparable side chain entropy.

Lower compactness, much
higher side chain entropy.



Summary for Side Chain ModelingSummary for Side Chain ModelingSummary for Side Chain Modeling

• Protein folding is a subtle balance between enthalpy 
and entropy, not simply minimizing enthalpy to 
compensate the lose of entropy.

• Side chain entropy plays very important role in 
protein stability, and can be used in discrimination of 
native and decoy structures, especially similar 
structures.

• Packing of NMR structures are sub-optimal compared 
to X-ray structures. 
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