
Equations for Plug Flow

Nutrient S = S(x, y, z, t)

cell density u = u(x, y, z, t) satisfy:

St = dSxSxx + dSr∇2
yzS − v(r)Sx − γ−1ufu(S)

ut = duxuxx + dur∇2
yzu− v(r)ux + u[fu(S)− k]

in the tubular reactor

Ω = {(x, y, z) : 0 < x < L, y2 + z2 < R2}

with velocity profile:

v(r) = Vmax[1− (
r

R
)2],

and Monod uptake kinetics:

fu(S) =
mS

a+ S
.

Useful notation:

Luu = duxuxx + dur∇2
yzu− v(r)ux
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Danckwerts’ Boundary Conditions

at x = 0:

v(r)S0 = −dSxSx + v(r)S

0 = −duxux + v(r)u,

at x = L:

dSxSx − v(r)S = −v(r)S, i.e., Sx = 0

ux = 0

See R. Aris, ”Mathematical Modeling, a chem-

ical engineers perspective”, Academic Press,

1999.
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No Wall Growth Single Species

in the fluid:

St = LSS − γ−1ufu(S)

ut = Luu+ u[fu(S)− k]

at x = 0:

v(r)S0 = −dSxSx + v(r)S

0 = −duxux + v(r)u,

at x = L:

Sx = ux = 0

on the wall r = R

Sr = 0

ur = 0.
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Radial Boundary Conditions (r = R)

wall-attached bacterial fraction

w = w(x,R cos θ,R sin θ, t) ∈ [0, wmax] satisfies:

wt = w[fw(S)G(W )− kw − β] + αu(1−W ),

where W = w/wmax.

radial boundary conditions for S:

−dSr Sr = γ−1wfw(S)

radial boundary conditions for u:

−durur = αu(1−W )− wfw(S)[1−G(W )]− βw.
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With Wall Growth

wall-attached bacterial fraction on r = R

w = w(x,R cos θ,R sin θ, t) ∈ [0, wmax] satisfies:

wt = w[fw(S)G(W )− kw − β] + αu(1−W ),

where W = w/wmax.

radial boundary conditions for S:

−dSr Sr = γ−1wfw(S)

radial boundary conditions for u:

−durur = αu(1−W )− wfw(S)[1−G(W )]− βw.
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Summary of Single-Population Model

in the fluid:

St = LSS − γ−1ufu(S)

ut = Luu+ u[fu(S)− k]

on the wall r = R

wt = w[fw(S)G(W )− kw − β] + αu(1−W ).

at x = 0:

v(r)S0 = −dSxSx + v(r)S

0 = −duxux + v(r)u,

at x = L:

Sx = ux = 0

on the wall r = R

−dSr Sr = γ−1wfw(S)

−durur = αu(1−W )− w[fw(S)(1−G(W )) + β].
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Many-Populations with Wall Growth

in the fluid

St = LSS −
∑
i

γ−1
i uifui(S)

uit = Liui + ui[fui(S)− ki]

on the wall r = R

−dSr Sr =
∑
i

γ−1
i wifwi(S)

−diruir = αiu
i(1−W )

−wi[fwi(S)(1−Gi(W )) + βi]

wit = wi[fwi(S)Gi(W )− kwi − βi]

+αiu
i(1−W ).

where W =
∑
iw

i/wmax. at x = 0

v(r)S0 = −dSxSx + v(r)S

0 = −dixuix + v(r)ui,

at x = L

Sx = uix = 0.
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Linear Stability of Washout Steady State

S ≡ S0, u ≡ 0, w ≡ 0.

Linear stability analysis:

S = S0 + ε exp(λt)S̄

u = ε exp(λt)ū

w = ε exp(λt)w̄

0 < |ε| << 1, leads to the non-standard eigen-

value problem

λS̄ = LSS̄ − γ−1ūfu(S
0)

λū = Luū+ ū[fu(S
0)− k]

λw̄ = w̄[fw(S0)G(0)− kw − β] + αū

with homogeneous Danckwerts’ b.c. (x = 0, L)

and radial b.c. on r = R:

0 = dSr S̄r + γ−1w̄fw(S0)

0 = dur ūr + αū− w̄[fw(S0)(1−G(0)) + β].
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Principal Eigenvalue

Theorem: There exists a real simple eigen-

value λ∗ > fw(S0)G(0) − kw − β belonging to

the interval with endpoints:

fw(S0)− kw, fu(S
0)− k −

L

Vmax
λ

where −λ < 0 is the principal eigenvalue of the

(scaled x̄ = x/L, r̄ = r/R) eigenvalue problem:

λu = θxux̄x̄ − (1− r̄2)ux̄ + θrr̄
−1(r̄ur̄)r̄,

0 = −θxux̄ + (1− r̄2)u, x̄ = 0

0 = ux̄, x̄ = 1

ur̄ = 0, r̄ = 1,

θx = (dux/L
2)(L/Vmax), θr = (dur/R

2)(L/Vmax).

Corresponding to λ∗ is an eigenvector (S̄, ū, w̄)

satisfying S̄ < 0, ū > 0 in Ω and w̄ > 0 in r = R.

If λ∗ < 0 then washout is stable in the linear

approximation; if λ∗ > 0 then it is unstable.
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Global Stability of Washout

Theorem: If both

fu(S
0)− k −

L

Vmax
λ < 0, fw(S0)− kw < 0,

then λ∗ < 0 and

lim
t→∞

(
∫
Ω
udV +

∫
r=R

wdA) = 0.

Conjecture: The result remains valid if only

λ∗ < 0.
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Population steady state

The equations for a steady state are

0 = LSS − γ−1ufu(S)

0 = Luu+ u[fu(S)− k], in Ω

0 = w[fw(S)G(W )− kw − β] + αu(1−W ), r = R.

Danckwerts’ boundary conditions at x = 0, L

and radial boundary conditions:

dSr Sr = −γ−1wfw(S)

durur = −αu(1−W ) + w[fw(S)(1−G(W )) + β].

Theorem: Let λ∗ > 0 and fw(S0)G(0)− kw −
β 6= 0. Then there exists a radially symmet-

ric steady state solution (S, u, w) satisfying (in

cylindrical coordinates)

0 < S(x, r) ≤ S0, u(x, r) > 0, and 0 < w(x) ≤ wmax.
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Criterion for Survival

λ∗ > 0 if both

fw(S0)− kw > 0

and

fu(S
0)− k −

L

Vmax
λ > 0

hold, or if

fw(S0)G(0)− kw − β > 0

holds.

In case of no wall growth (α = w = 0),

λ∗ = fu(S
0)− k −

L

Vmax
λ

so middle inequality suffices for survival.
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Effects of Influx of Antibiotic

Concentration A = A(x, y, z, t) satisfies:

At = dAxAxx + dAr ∇2
yzA− v(r)Ax

0 = dAr Ar, r = R (impenetrable biofilm)

v(r)A0 = −dAxAx + v(r)A, x = 0 (influx of A)

0 = Ax, x = L.

As for substrate in absence of bacteria,

A(x, y, z, t) → A0, t→∞.

If planktonic cell death rate k = k(A0), k′ > 0,

then effect on λ∗ is minimal since:

fw(S0)G(0)− kw − β < λ∗

where we assume adherent cell death rate kw

independent of A. Contrast to case of no wall

growth (α = w = 0) where

λ∗ = fu(S
0)− k(A0)−

L

Vmax
λ.
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A pair of eigenvalue problems

λu = Liu+ au, Ω

λw = bw+ αu, r = R

0 = drur + αu− cw, r = R (1)

0 = −dxux + v(r)u, x = 0

0 = ux, x = L

The corresponding adjoint problem is given by:

λu = Liu+ au, Ω

λw = bw+ cu, r = R

0 = drur + αu− αw, r = R (2)

0 = dxux + v(r)u, x = L

0 = ux, x = 0

here, a, b, c, α are real constants.
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In order to see in what sense (2) is adjoint to

(1) we make the following observation.

Proposition

Let u ∈ C2(Ω) ∩ C1(Ω) satisfy the Danckw-

erts’ boundary conditions at x = 0, L, û ∈
C2(Ω)∩C1(Ω) satisfy the adjoint Danckwerts’

boundary conditions at x = 0, L, u,w satisfy

the inhomogeneous radial boundary condition

h = drur + αu− cw, r = R

and û, ŵ satisfy the homogeneous adjoint radial

boundary condition in (2). Then we have∫
Ω
(Liu)ûdV +

∫
r=R

(bw+ αu)ŵdA

=
∫
Ω
(Liû)udV +

∫
r=R

hû+ w(bŵ+ cû)dA

If h ≡ 0, then we obtain the adjoint relation of

(2) and (1).
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Principal Eigenvalue Theorem Let α, c > 0.

Then there exists a real simple eigenvalue λ∗ >
b of (1) satisfying:

b+ c < λ∗ ≤ a− λi, if b+ c < a− λi
b+ c = λ∗, if b+ c = a− λi

a− λi < λ∗ < b+ c, if b+ c > a− λi

Corresponding to eigenvalue λ∗ is an eigenvec-

tor (ū, w̄) satisfying ū > 0 in Ω and w̄ > 0 in

r = R. If λ is any other eigenvalue of (1) cor-

responding to an eigenvector (u,w) ≥ 0, then

λ = λ∗ and (u,w) = c(ū, w̄) for some c > 0.

ū, w̄ are axially symmetric, i.e., in cylindrical

coordinates (r, θ, x), ū = ū(r, x), w̄ = w̄(x).

λ∗ is also an eigenvalue of (2) corresponding

to an eigenvector (u,w) = (ψ, χ). Moreover,

(ψ, χ) has the same uniqueness up to scalar

multiple, positivity and symmetry properties as

does (ū, w̄).
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bacterial growth is limited by supplied

substrate

Let (ψi, χi) be the PEV corresponding to the

eigenvalue λi of (2) in the case that a = 0, b =

−βi, α = αi, c = βi, dr = dir, dx = dix. Normalize

(ψi, χi) by requiring ψi, χi ≤ φ ≤ 1. By PEV

Theorem and the fact that b+ c = 0, we have

λi < 0.

Theorem: A Priori Estimates

lim sup
t→∞

S(t, x, y, z) ≤ S0,

uniformly in (x, y, z) ∈ Ω and

lim sup
t→∞

(
∫
Ω
SφdV +

∑
i

γ−1
i [

∫
Ω
uiψidV

+
∫
r=R

wiχidA])

≤
2πS0 ∫R

0 rv(r)dr

minj{λS,−λj + kj,−λj + kwj}
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