Equations for Plug Flow
Nutrient S = S(x,vy, 2, t)
cell density u = u(x, vy, z,t) satisfy:

St

Ut

d3 Sez + d2 V2.8 — v(r)Se — v Tufu(S)
diugy + d;ﬁbvgzu —v(r)ugz + u[fu(S) — k]

in the tubular reactor

Q={(z,y,2) :0<z <L, y°+ z° < R?}

with velocity profile:

r
'v(r) — Vmax[l — (—)2]7
R
and Monod uptake Kinetics:
mS

fu(s) — o+ g

Useful notation:

LY = djugzy + d;fvgzu — v(r)ug



Danckwerts’ Boundary Conditions

at x = 0:

—nga; + v(r)S
—diugz + v(r)u,

v(r)S°
0

at x = L:

43Sy — v(r)S

Uy

—v(r)S, i.e., S; =0
0

See R. Aris, " Mathematical Modeling, a chem-
ical engineers perspective’, Academic Press,
1999.



No Wall Growth Single Species

in the fluid:

S = LS —~ tufu(S)

up = L%+ u[fu(S) — K]
at = 0:

v(r)s? = —ngx—I—v(r)S

0 = —diuz+ v(r)u,
at x = L:
Sx — Uy — 0

on the wall r = R

S,

Uy

Il
o O



Radial Boundary Conditions (r = R)

wall-attached bacterial fraction
w = w(x, Rcosh, Rsinb,t) € [0, wmaz] Satisfies:

wr = w[fw(S)GW) — kw — 8] + au(l — W),

where W = w/wmaz-

radial boundary conditions for S:

—dy Sr = v wfuw(S)

radial boundary conditions for u:

—d ur = au(l — W) —wfiy,(S)[1 — G(W)] — pw.



With Wall Growth

wall-attached bacterial fraction on r = R
w = w(x, Rcosh, Rsinb,t) € [0, wmaz] Satisfies:

wr = w[fw(S)GW) — kw — 8] + au(l — W),

where W = w/wmaz-

radial boundary conditions for S:

—dy Sr = v wfuw(S)

radial boundary conditions for u:

—d ur = au(l — W) —wfy(S)[1 — G(W)] — pw.



Summary of Single-Population Model

in the fluid:

L°S — vy tufyu(S)
L% + u[fu(S) — k]

St

Ut

on the wall r = R

wi = w[fuw(S)GW) — ky — B] + au(l — W).
at x = O:

v(r)s® = —ngx—I—v(r)S
0 = —diuz+ v(r)u,
at = L:
Sy =uy =20

on the wall r = R

= 7 twfuw(S)
au(l = W) = w[fuw(S)(1 = GW)) + 6.
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Many-Populations with Wall Growth

in the fluid
St = L7 =3 ulfui(S)
uj = L'u'+ ftzi[fm(s) — k]
on the wall r =R
—d7Sr = 3w fui(S)
i

—diul. = oyul(1l—W)
| —wi[fwi(S)(1 = Gi(W)) + G4]
wi = w[fuwi(S)GW) = kwi — B4]
+o;u' (1 — W).
where W = 3, w' /wmaz. at =0

v(r)S? = —ngx + v(r)S
0 —dbul 4 v(r)ul,

at x = L



Linear Stability of Washout Steady State

SESO, u=0, w=0.
Linear stability analysis:
S = S84 cexp(At)3

u = eexp(At)u
w = eexp(At)w

0 < |¢] << 1, leads to the non-standard eigen-
value problem

NS = L°5 — v 1af,(s9)
M o= L%+ a[fu(S°) — k]
Ao = W[fw(S?)G(0) — kw — 8] + ai

with homogeneous Danckwerts’ b.c. (z = 0, L)
and radial b.c. on r = R:

d2Sr + v 1o fu(S°)
d%ir + adi — o[ f(S°) (1 — G(0)) + 3].

O
O



Principal Eigenvalue

Theorem: There exists a real simple eigen-
value \* > f,(S9G(0) — kyw — B belonging to
the interval with endpoints:

L

fw(S%) — kw,  fu(S®) —k — A

max
where —\ < O is the principal eigenvalue of the

(scaled x = «x/L, r = r/R) eigenvalue problem:

o = Opuzz — (1 — 7)uz + 0.7 L (Fur)r,
0 = —Opuz+ (1L —7Du, z7=0

O = wuz, x=1

w: = 0, F=1,

Or = (dg/LQ)(L/Vmax)a Or = (dg/Rz)(L/Vmaa:)-
Corresponding to A\* is an eigenvector (S, u,w)
satisfying S <0, >0inQ and w >0 inr = R.

If \* < 0 then washout is stable in the linear
approximation: if A* > 0 then it is unstable.
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Global Stability of Washout

Theorem: If both
Fu(S9) — k —

then A\* < 0 and

A <0, fw(S%) —ky <0,

max

lim ( udV—I—/_RwdA) —0.

t—oo JQO

Conjecture: The result remains valid if only
AT < 0.
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Population steady state

The equations for a steady state are

0 = L°S— v Lufu(S)

0 L%u 4+ u[fu(S) — k], in Q

0 w[fw(S)GW) —ky — B8] + au(l — W), r = R.

Danckwerts’ boundary conditions at x = O, L
and radial boundary conditions:

—y " w fuw(S)
—au(l = W) + w[fw(S)(1 — G(W)) + ).

d> Sy

U
d’l" Ur

Theorem: Let A\* > 0 and fu(S9G(0) — ky —
B #= 0. Then there exists a radially symmet-
ric steady state solution (S, u,w) satisfying (in
cylindrical coordinates)

0< S(z,7) < 8% wu(z,r) >0, and 0 < w(z) < wmaz.
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Criterion for Survival

A* > 0 if both

f’w(SO) — kyw >0

and
fu(S9) — k — A>0
maax
hold, or if
fw(SO)G(O) — kw — B > 0
holds.

In case of no wall growth (o = w = 0),

L

M= fu(S0) — k — A

maax
so middle inequality suffices for survival.
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Effects of Influx of Antibiotic

Concentration A = A(x,vy, z,t) satisfies:

Ay = df Ape +dV2 A — u(r) Ay

0 = d#A4,, r = R (impenetrable biofilm)
v(r)AY = —dj;lAg; + v(r)A, x =0 (influx of A)

O = Ay, z=1L.

As for substrate in absence of bacteria,
A(x,y,z,t) — A%t - .

If planktonic cell death rate k = k(A9), k' > 0,
then effect on \* is minimal since:

fw(SP)G(0) = kw — B < X"

where we assume adherent cell death rate ky
independent of A. Contrast to case of no wall
growth (a« = w = 0) where

L

M= £u(S9) — k(AD) — A

max
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A pair of eigenvalue problems

AU L'y + auw, S2

2w = bw+au, r=R
0 = drup+aou—cw, r=R (1)
0 = —dyuz+v(r)u, x=0
0

Ug, x =1L

The corresponding adjoint problem is given by:

A = Lju—4au, £2

Aw = bw—+cu, r=R
0 = drur+au—aw, r=R (2)
0 = dyuz+v(r)u, x=1L
O = ug, x=0

here, a,b,c,a are real constants.
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In order to see in what sense (2) is adjoint to
(1) we make the following observation.

Proposition
Let u € C?(2) N CL(Q) satisfy the Danckw-

—~

erts’ boundary conditions at = O0,L, u €
C2(Q)NCL(Q) satisfy the adjoint Danckwerts’
boundary conditions at z = 0,L, wu,w satisfy
the inhomogeneous radial boundary condition

h=drur +ou—cw, r=R

and u, w satisfy the homogeneous adjoint radial
boundary condition in (2). Then we have

/ (Liw)adV + / (bw 4 au)BdA
Q r=R
— / (L;@)udV + / hii + w(b@ + ci)dA
Q r=R
If h =0, then we obtain the adjoint relation of
(2) and (1).
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Principal Eigenvalue Theorem Let a,c > 0.
Then there exists a real simple eigenvalue \* >
b of (1) satisfying:

bt+cec< AN <a—)X;, ifb+ec<a—\
b+ c = \*, ifo+c=a— )\
a— X\, < AN*<b+4tec ifbt+c>a—X\

Corresponding to eigenvalue \* is an eigenvec-
tor (u,w) satisfying & > 0 in Q and @ > 0 in
r = R. If X\ is any other eigenvalue of (1) cor-
responding to an eigenvector (u,w) > 0, then
A = X\ and (u,w) = c(u,w) for some ¢ > O.
u,w are axially symmetric, i.e., in cylindrical
coordinates (r,0,x), u = u(r,z),w = w(x).

A* is also an eigenvalue of (2) corresponding
to an eigenvector (u,w) = (¥,x). Moreover,
(), x) has the same uniqueness up to scalar
multiple, positivity and symmetry properties as
does (u,w).
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bacterial growth is limited by supplied
substrate

Let (¢%, x*) be the PEV corresponding to the
eigenvalue )\; of (2) in the case that a = 0,b =
—B;, o0 = aj, ¢ = B;,dr = d.,dy = d... Normalize
(%, x*) by requiring ¢t x* < ¢ < 1. By PEV
Theorem and the fact that b+ ¢ = 0, we have
A < 0.

Theorem: A Priori Estimates

limsup S(t,z,v,z) < S°,

t—00

uniformly in (z,y,2z) € 2 and

lim sup(/Q SpdV + 27;1[/9 uipidV

t—00
+ [ wix'da))
2750 f(fQ ro(r)dr
o minj{AS, —)\_j —+ kj, —)\_j —+ kwg}
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