Evolution of pathogens: a within-host approach

Vitaly V. Ganusov

Theoretical Biology Utrecht University, Utrecht, The Netherlands

Introduction

Outline

Introduction

- evolution of virulence
- 2 Evolution of infectious diseases
 - a "within-host" approach
 - changing model details
 - imperfect vaccines
- 3 Conclusions
 - implications for immuno-epidemiology
- 4 Appendix I
 - heterogeneity
 - details
 - vaccines

- Appendix II
- modelling mortality

Conclusions

Appendix I

Appendix II

virulence

Emergence of infectious diseases

R₀ equals the average number of secondary infections causes by an infected host introduced into a wholly susceptible population.

Introduction o●ooo	Evolution of infectious diseases	Conclusions	Appendix I 00000000000	Appendix II
virulence				

Evolution of pathogens in new hosts

- Once a pathogen has emerged $(R_0 > 1)$, the important question is whether it is going to evolve to be benign or virulent.
- The evolution of pathogens is generally considered in terms of the basic reproductive number *R*₀.
 - Pathogens evolve to maximize R_0 (i.e., their total transmission).
 - Pathogens evolve their virulence, defined as the reduction in host fitness due to infection with the pathogen.
 - In models, virulence is measured by host mortality rate or case mortality.

Introduction	Evolution of infectious diseases	Conclusions	Appendix I 00000000000	Appendix II 00000
virulence				
The basic	reproductive num	ber R_0		
For direc	tly transmitted diseases			
	$R_0 = \underbrace{\beta N}_{\text{infection rate}} \times \underbrace{\frac{1}{\alpha + d}}_{\text{duration of inf}}$	$\frac{1}{1+\nu} = \frac{\beta(\alpha)}{\alpha+d}$	$\frac{\lambda(\alpha)N}{1+\nu(\alpha)}$	

Anderson and May (1982)

Introduction
00000

Conclusions

Appendix I

Appendix II

virulence

Introduced virus strain: 1950

virulence was measured in laboratory (standard) rabbits.

virulence was measured in laboratory (standard) rabbits.

Introduction 00000	Evolution of infectious diseases	Conclusions 0000	Appendix I 00000000000	Appendix II 00000
virulence				
Virus pr	evalence: 1970			
	100		1050	

virulence was measured in laboratory (standard) rabbits.

Introduction	Evolution of infectious diseases	Conclusions 0000	Appendix I ೦೦೦೦೦೦೦೦೦೦೦	Appendix II 00000
virulence				
Virus pre	evalence: 1984			
* rabbits infected	100 80 60 40		1984	

III Grade of the virus

IV

least virulent

case mortality ≈ 0.23

Fenner and Fantini (1999);

virulence was measured in laboratory (standard) rabbits.

ΙI

20

0 most virulent

case mortality > 0.99

Introduction
00000

Conclusions

Appendix I

Appendix II

virulence

Trade-offs for the myxoma virus infection of rabbits

7/52

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Within-host dynamics of pathogens

I

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Dynamics of the pathogen and the immune response

$$\dot{P} = rP - hPX,$$

$$P = 0, \text{ if } P(t) \ge D,$$

$$\dot{X} = \frac{sXP}{k+P},$$

$$t(r) = u \int_0^{\Delta} P(t) dt.$$

- Pathogen kills the host if it reaches a lethal density D;
- There is no transmission from a dead host;
- Pathogens evolve to maximize their total transmission.

P – pathogen, X – immune response, l – total transmission, Δ – duration of infection.

Parameters: $P(0) = 1, X(0) = 1, h = 10^{-3}, k = 10^{3}, s = 1, D = 10^{9}, r = 2.08.$

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Dynamics of the pathogen and the immune response

P – pathogen, X – immune response, l – total transmission, Δ – duration of infection.

Parameters: $P(0) = 1, X(0) = 1, h = 10^{-3}, k = 10^{3}, s = 1, D = 10^{9}, r = 2.08.$

Antia et al. 1994

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Total transmission of pathogens

where total transmission

$$l(r) = \int_0^\Delta P(t) \, dt.$$

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Stochastic heterogeneity in r

average growth rate \overline{r}

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

$$\begin{split} f(r,\overline{r}) &= \frac{\overline{r}/\sigma^2}{\Gamma(\overline{r}^2/\sigma^2)} \left(\frac{\overline{r}r}{\sigma^2}\right)^{\overline{r}^2/\sigma^2 - 1} \times \exp\left[-\frac{\overline{r}r}{\sigma^2}\right],\\ L(\overline{r}) &= \int_0^\infty l(r) f(r,\overline{r}) dr. \end{split}$$

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Optimal growth rate and total transmission

where f(x) is given by a gamma distribution of r with standard deviation σ .

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II 00000
a "within-host" approa	ch			
Changes	in virulence			

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Changes in virulence

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II 00000

a "within-host" approach

Estimating epidemiological parameters and trade-offs

 $\hat{\beta}(r) = \frac{l(r)}{\Delta(r)}$ $\beta(\overline{r}) = \int_{0}^{\infty} \hat{\beta}(r) f(r, \overline{r}) dr$

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Estimating epidemiological parameters and trade-offs

$$\hat{\beta}(r) = \frac{l(r)}{\Delta(r)} \beta(\overline{r}) = \int_0^\infty \hat{\beta}(r) f(r, \overline{r}) dr$$

$$\begin{aligned} \alpha(\overline{r}) &= \int_0^\infty \frac{m(r)}{\Delta(r)} f(r,\overline{r}) \, dr \\ \nu(\overline{r}) &= \int_0^\infty \frac{1-m(r)}{\Delta(r)} f(r,\overline{r}) \, dr \end{aligned}$$

where m(r) is the probability of host's death following infection.

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

a "within-host" approach

Trade-offs emerging from the within-host dynamics

- Within-host and between host dynamics of pathogens are inherently linked.
- Trade-offs for the myxoma virus infection can be originated from simple properties of the within-host dynamics.
 - but: other explanations may work too.
- Prediction on the evolution of pathogen virulence may depend on the definition of virulence used.

Ganusov et al. 2002; Gilchrist and Sasaki 2002; André et al. 2003; André and Gandon (2006); Ganusov and Antia 2003, 2006

Conclusions

Appendix I

Appendix II

changing model details

Can virulence be predicted from a single factor?

	Transmission*		
Mortality	Without vectors	With vectors	
>1%	Kuru	Yellow fever virus	
	Variola	Bartonella bacilliformis	
	Corynebacterium diphtheriae	Rickettnia prowazekii	
	Mycobacterium tuberculosis (35)	Borrelia recurrentis	
	Treponema pallidum	Leishmania donovani	
		Plasmodium folciparum	
		P. malariae (57)	
		P. vivax (47)	
		Trupanosoma cruzi	
		T. brucel	
<1%	Adenovirus	Chikungunya	
	Coronavirus	Dengue (41)	
	Cytomegalovirus	O'nyong-nyong	
	Epstein-Barr	Oropouche	
	Herpes simplex	Phlebotomus fever virus	
	Influenza	Rochalimara quintana	
	Mumps	Plasmodium ovale	
	Papillomavirus	Leishmania tropica	
	Parainfluenza		
	Respiratory syncytial virus		
	Rhinovirus		
	Rubella		
	Rubeola (23)		
	Varicella-zoster		
	Bordetella parapertussis		
	B. pertussis (18)		
	Branhamella catarrhalis		
	Calymmobacterium granuloma		
	Chlamydia trachomatis		
	Gardnerella vaginalis		
	Hemophilus ducreyi		
	H. influenzae (90)		
	Hemophilus spp. (104)		
	Moraxella spp. (88)		
	Mycobacterium leprae (1)		
	Mycoplasma hominis		
	M. pneumoniae (64)		
	Neisseria gonorrhea		
	N. meningitides (8)		
	Neisseria spp. (88)		
	Staphylococcus aureus		
	S. epidermidis		
	S. saprophyticus		

Table 1 Mortality associated with parasites transmitted with and without vectors

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

changing model details

Changing pathogen transmissibility

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

changing model details

Changing pathogen transmissibility

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

changing model details

Changing mechanism of pathogenesis

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

changing model details

Changing mechanism of pathogenesis

 $y = 10^5$, d = 0.05. Heterogeneity is modelled by a normal distribution of r.

Introduction 00000	Evolution of infectious diseases	Conclusions	Appendix I 00000000000	Appendix II 00000
changing model details				
Details do	matter!			

- Changing the structure of the model may dramatically affect the optimal level of virulence.
- It seems unlikely that a single factor can determine virulence of diverse pathogens.

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

Vaccines and pathogen evolution

Escape from vaccines

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

Vaccines and pathogen evolution

- Escape from vaccines
- Evolution of pathogen virulence in response to vaccination

Imperfect vaccines and the evolution of pathogen virulence

Sylvain Gandon*†, Margaret J. Mackinnon*†, Sean Nee* & Andrew F. Read*

NATURE VOL 414 13 DECEMBER 2001 www.nature.com

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

Imperfect vaccines and evolution of pathogens

• Epidemiological approach and R₀

$$R_0[\alpha^*, \alpha] = \frac{\beta^*(\hat{x} + \sigma\hat{y})}{d + \alpha^* + \nu^* + \sigma\beta\hat{y}}$$

where * and $\hat{\cdot}$ denote mutant and resident, and σ is superinfection parameter.

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

Imperfect vaccines and evolution of pathogens

• Epidemiological approach and R₀

$$R_0[\alpha^*, \alpha] = \frac{\beta^*(\hat{x} + \sigma\hat{y})}{d + \alpha^* + \nu^* + \sigma\beta\hat{y}}$$

where * and $\hat{\cdot}$ denote mutant and resident, and σ is superinfection parameter.

• Both virulence α and transmissibility β are reduced in vaccinated hosts.

$$\alpha_V = (1 - r_2)(1 - r_4)\alpha_U, \beta_V = (1 - r_3)\beta_U[(1 - r_2)\alpha_U],$$

where r_2 , r_3 , and r_4 are the efficacies of vaccines blocking replication, transmission and virulence, respectively.

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

Imperfect vaccines and evolution of pathogens

• Epidemiological approach and R₀

$$R_0[\alpha^*, \alpha] = \frac{\beta^*(\hat{x} + \sigma\hat{y})}{d + \alpha^* + \nu^* + \sigma\beta\hat{y}}$$

where * and $\hat{\cdot}$ denote mutant and resident, and σ is superinfection parameter.

• Both virulence α and transmissibility β are reduced in vaccinated hosts.

$$\alpha_V = (1 - r_2)(1 - r_4)\alpha_U, \beta_V = (1 - r_3)\beta_U[(1 - r_2)\alpha_U],$$

where r_2, r_3 , and r_4 are the efficacies of vaccines blocking replication, transmission and virulence, respectively.

• Vaccination does not affect trade-offs $\beta = \beta(\alpha)$ and $\nu = \nu(\alpha)$.

Conclusions

Appendix I

Appendix II

imperfect vaccines

Imperfect vaccines: Gandon et al. conclusions

- Anti-growth and anti-virulence vaccines are expected to select for pathogens with high virulence.
- Anti-transmission vaccines are expected to select for pathogens with low virulence.

Gandon et al. 2001

Introduction

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

imperfect vaccines

Within-host approach

Introduction	Evolution of infectious diseases	Conclusions 0000	Appendix I ೦೦೦೦೦೦೦೦೦೦೦	Appendix II
imperfect vaccines				
Model				

- response *X*₁ reduces the rate of expansion of the pathogen population within the host;
- response *X*₂ reduces the rate of pathogen transmission from infected hosts.

$$\dot{P} = (r - h_1 X_1) P, \dot{X}_i = \frac{s X_i P}{k + P}, \quad i = 1, 2, \dot{r}(r) = \int_0^\Delta \frac{P(t) dt}{1 + h_2 X_2(t)}.$$

Vaccination results in an increase in the number of pathogen-specific immune cells (precursor numbers) existing prior to infection.

Ganusov and Antia 2006

Introduction
00000

Conclusions

Appendix I

Appendix II

imperfect vaccines

Within-host dynamics: anti-growth vaccines

P(0) = 1, $h_1 = 10^{-3}$, $h_2 = 10^{-4}$, $k = 10^3$, s = 1, $D = 10^9$, r = 2.08, pathogen density is multiplied by 10^{-9} , the immune response densities are multiplied by 4×10^{-6} .

Introduction

Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

imperfect vaccines

Transmission and virulence: anti-growth vaccines

Introduc	tion

Conclusions

Appendix I

Appendix II

imperfect vaccines

Within-host dynamics: anti-transmission vaccines

Introduction

Evolution of infectious diseases

Conclusion:

Appendix I

Appendix II

imperfect vaccines

Transmission/virulence: anti-transmission vaccines

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

ES growth rate and virulence: partially vaccinated

For anti-growth vaccines, the precursor number increases from $X_{10} = 1$ to $X_{10} = 2$ (bold red lines) or to $X_{10} = 10$ (plain red lines). For anti-transmission vaccines, the precursor number increases from $X_{20} = 0$ to $X_{20} = 10$ (bold blue lines).

Introduction

Conclusions

Appendix I

Appendix II

imperfect vaccines

Do results depend on the model?

 In these models, the difference arises due to different description of pathogenesis and as the result, due to high ES virulence in unvaccinated hosts in the right panel (at p = 0).

Ganusov and Antia 2006; André and Gandon 2006

Introduction	Evolution of infectious diseases	Conclusions ●000	Appendix I	Appendix II
implications for immun	o-epidemiology			
Implicatio	ons for epidemiolog	У		

• Epidemiological models can include the within-host dynamics:

$$\begin{aligned} \frac{dS(t)}{dt} &= \lambda - dS(t) - h(t)S(t), \\ \frac{\partial I(t,\tau)}{\partial t} + \frac{\partial I(t,\tau)}{\partial \tau} &= -(d + \alpha(\tau) + \nu(\tau))I(t,\tau), \\ \frac{dR(t)}{dt} &= \int_0^t I(t,\tau)\nu(\tau) \,\mathrm{d}\tau - dR(t), \\ I(t,0) &= h(t)S(t) = S(t) \int_0^t I(t,\tau)\beta(\tau) \,\mathrm{d}\tau. \end{aligned}$$

 Future studies may investigate the role of mutation, co- and super-infection in determining evolution of pathogens using within-host models.

André and Gandon 2006

Introduction	Evolution of infectious diseases	Conclusions o●oo	Appendix I 0000000000	Appendix II
implications for immuno	-epidemiology			
More impl	ications for epidem	niology		

- Predictions on the evolution of pathogens may depend on the model used as well on the model parameters, and therefore, building of proper models requires better understanding of the biology of pathogen-host interactions.
- Other factors may further complicate the picture: within-host evolution of pathogens, co- and super-infection, locality of transmission, host evolution, etc.

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II 00000
implications for immund	-epidemiology			
Acknowle	dgements			

- Rustom Antia and Carl Bergstrom
- Theoretical Biology group at Utrecht University
- Marie Curie Incoming International Fellowship (Framework Programme 6)

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II
implications for immur	no-epidemiology			
Testing m	nodel predictions?			

- Higher levels of (host) heterogeneity select for more virulent pathogens.
 - High mutation rate of Neisseria meningitidis helps escaping immune response.
 - Malaria (P. falciparum) infecting resistant adults and nonimmune infants.
- Transmission-blocking vaccines may select for more rapidly growing pathogens

• ?

• Testing both predictions in serial passage experiments?

Introduction

Conclusions

Appendix I

Appendix II

heterogeneity

Coevolution of the myxoma virus and rabbits

Introduction 00000 Evolution of infectious diseases

Conclusions

Appendix I

Appendix II

heterogeneity

Coevolution of the myxoma virus and rabbits

Introduction

Conclusions

Appendix I

Appendix II

heterogeneity

Heterogeneity in other parameters

Introduction

Conclusions

Appendix I

Appendix II

details

Changing pathogen transmissibility

Heterogeneity ($CV = \sigma/D$) is modelled by a gamma distribution of the lethal density D.

Conclusions

Appendix I

Appendix II

details

Dynamics of the pathogen, resource and the immune response

P - pathogen, R - resource, X - immune response.

Parameters: P(0) = 1, $R(0) = R_0 = 10^4$, X(0) = 1, $h = 10^{-3}$, $k = 10^3$, s = 1, $R_d = 2.7 \times 10^3$, $c = 10^3$, $y = 10^5$, d = 0, r = 2.08.

Introduction

Conclusions

Appendix I

Appendix II

details

Changing mechanism of pathogenesis

Heterogeneity ($CV = \sigma/R_d$) is modelled by a gamma distribution in the minimal resource density R_d . $P(0) = 1, R(0) = R_0 = 10^4, X(0) = 1, h = 10^{-3}, k = 10^3, s = 1, R_d = 2.7 \times 10^3, c = 10^3, u = 10^5, d = 0.$

Introduction

Conclusions

Appendix I

Appendix II

details

Changing mechanism of pathogenesis

Heterogeneity ($CV = \sigma/R_d$) is modelled by a gamma distribution in the minimal resource density R_d . $P(0) = 1, R(0) = R_0 = 10^4, X(0) = 1, h = 10^{-3}, k = 10^3, s = 1, R_d = 2.7 \times 10^3, c = 10^3,$ $u = 10^5, d = 0.$

Introduction
00000

Conclusions

Appendix I

Appendix II

vaccines

Changes in trade-offs with vaccination

101010

Conclusions

Appendix I

Appendix II

vaccines

Changes in R_0 with vaccination

- Trade-offs do change with vaccination although changes may be small at low efficacy of vaccines (small increase in X₁₀ and X₂₀).
- Anti-transmission vaccines may select for more virulent pathogens.

Introduction

Conclusions

Appendix I

Appendix II

vaccines

Virulence in unvaccinated and vaccinated hosts

- The relationship between virulence of a pathogen with a fixed growth rate r in vaccinated α_V and unvaccinated α_U hosts is nonlinear.
- Note that in the study by Gandon et al. 2001, $\alpha_V = (1 - r_2)(1 - r_4)\alpha_U.$

Introduction
00000

Conclusions

Appendix I

Appendix I

vaccines

Total transmission vs. r

Appendix I

Appendix II

vaccines

Total transmission and virulence vs vaccine efficacy

Introduction

Evolution of infectious diseases

Conclusions

Appendix I

Appendix I 00000

vaccines

Two stages

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II •oooo
modelling mortality				

• The probability of host survival *S*(*t*) until time *t* is the solution of

 $\dot{S}(t) = -\pi[r, P(t)]S(t)$

where $\pi(r, P)$ is the rate of host's death due to pathogen.

 $\pi[r,P]\sim (P/D)^n$

Introduction	Evolution of infectious diseases	Conclusions	Appendix I 00000000000	Appendix II ●0000
modelling mortality				

• The probability of host survival *S*(*t*) until time *t* is the solution of

 $\dot{S}(t) = -\pi[r, P(t)]S(t)$

where $\pi(r, P)$ is the rate of host's death due to pathogen.

$$\pi[r, P] = \lim_{n \to \infty} (P/D)^n$$

00000	0000	00000000000	●0000
modelling mortality			

• The probability of host survival *S*(*t*) until time *t* is the solution of

 $\dot{S}(t) = -\pi[r, P(t)]S(t)$

where $\pi(r,P)$ is the rate of host's death due to pathogen.

 The total transmission of the pathogen during the infection is

where $\zeta(P)$ is the rate of pathogen transmission.

$$\pi[r, P] = \lim_{n \to \infty} (P/D)^n$$

48/52

Introduction 00000	Evolution of infectious diseases	Conclusions	Appendix I 0000000000	Appendix II ●0000
modelling mortality				

• The probability of host survival *S*(*t*) until time *t* is the solution of

 $\dot{S}(t) = -\pi[r, P(t)]S(t)$

where $\pi(r,P)$ is the rate of host's death due to pathogen.

 The total transmission of the pathogen during the infection is

where $\zeta(P)$ is the rate of pathogen transmission.

$$\pi[r, P] = \lim_{n \to \infty} (P/D)^n$$

48/52

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendi
				00000

modelling mortality

Back to a more general "stochastic" approach

 Host survival during an infection is a stochastic process

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$
$$l(r) = \int_0^{\Delta} \zeta[P(t)]S(t) dt$$

П

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II
				0000

modelling mortality

Back to a more general "stochastic" approach

 Host survival during an infection is a stochastic process

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$l(r) = \int_0^\Delta \zeta[P(t)]S(t) \, dt$$

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach

 Host survival during an infection is a stochastic process

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$\pi(r,P) = \left[\frac{P}{D}\right]^1$$

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach

 Host survival during an infection is a stochastic process

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$\pi(r,P) = \left[\frac{P}{D}\right]^2$$

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach

 Host survival during an infection is a stochastic process

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$\pi(r,P) = \left[\frac{P}{D}\right]^5$$

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach

 Host survival during an infection is a stochastic process

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

 Consider a particular case when π ∼ Pⁿ and ζ ∼ P:

$$\pi(r,P) = \left[\frac{P}{D}\right]^{10}$$

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II
				00000

modelling mortality

Back to a more general "stochastic" approach: II

Basic formulas

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$
$$l(r) = \int_0^{\Delta} P(t)S(t) dt$$
$$M(r) = 1 - S(\Delta)$$

• Traditionally, stochastic host survival is modelled differently, $\pi = \lambda r^m P$.

Introduction	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II
				00000

modelling mortality

Back to a more general "stochastic" approach: II

Basic formulas

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$
$$l(r) = \int_0^{\Delta} P(t)S(t) dt$$
$$M(r) = 1 - S(\Delta)$$

• Traditionally, stochastic host survival is modelled differently, $\pi = \lambda r^m P$.

$$\pi(r,P) = \lambda r^1 P$$

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach: II

Basic formulas

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$l(r) = \int_0^{\Delta} P(t)S(t) dt$$
$$M(r) = 1 - S(\Delta)$$

• Traditionally, stochastic host survival is modelled differently, $\pi = \lambda r^m P$.

$$\pi(r, P) = \lambda r^1 P$$

Sasaki and Iwasa 1991; Gilchrist and Sasaki 2002; André et al. 2003.

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach: II

Basic formulas

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$l(r) = \int_0^{\Delta} P(t)S(t) dt$$
$$M(r) = 1 - S(\Delta)$$

• Traditionally, stochastic host survival is modelled differently, $\pi = \lambda r^m P$.

$$\pi(r, P) = \lambda r^2 P$$

Sasaki and Iwasa 1991; Gilchrist and Sasaki 2002; André et al. 2003.

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach: II

Basic formulas

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$l(r) = \int_0^{\Delta} P(t)S(t) dt$$
$$M(r) = 1 - S(\Delta)$$

• Traditionally, stochastic host survival is modelled differently, $\pi = \lambda r^m P$.

$$\pi(r, P) = \lambda r^5 P$$

Sasaki and Iwasa 1991; Gilchrist and Sasaki 2002; André et al. 2003.

Introduction 00000

Conclusions

Appendix I

Appendix II

modelling mortality

Back to a more general "stochastic" approach: II

Basic formulas

$$\dot{S}(t) = -\pi[r, P(t)]S(t)$$

$$l(r) = \int_0^{\Delta} P(t)S(t) dt$$
$$M(r) = 1 - S(\Delta)$$

• Traditionally, stochastic host survival is modelled differently, $\pi = \lambda r^m P$.

$$\pi(r, P) = \lambda r^{10} P$$

Introduction 00000	Evolution of infectious diseases	Conclusions	Appendix I	Appendix II ooo●o
modelling mortality				
Summary	/			

- Even in simple "within-host" models, a variety of methods exist to describe pathogenesis.
- Moderate levels of virulence (case mortality) can evolve if rate of pathogenesis π ~ Pⁿ.
- When $\pi \sim r^m P$, saturation in the transmission rate may help to reduce the case mortality.

Introduction

Conclusions

Appendix I

Appendix II

modelling mortality

Introducing heterogeneity in parameters

- For a parameter X, f(x) dx is the probability that a during a given infection, the parameter X will be in the range (x, x + dx).
- Then total transmission of the pathogen with the growth rate *r* in a heterogeneous population is calculated as

$$L(r) = \int_0^\infty l(r, x) f(x) \, dx.$$

- Thus, such heterogeneity may arise due to stochasticity in pathogen-host interactions.
- We illustrate the results with heterogeneity in the growth rate *r* described by a gamma distribution.

