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virulence

Evolution of pathogens in new hosts

Once a pathogen has emerged (R0 > 1), the important
question is whether it is going to evolve to be benign or
virulent.
The evolution of pathogens is generally considered in
terms of the basic reproductive number R0.

Pathogens evolve to maximize R0 (i.e., their total
transmission).
Pathogens evolve their virulence, defined as the reduction
in host fitness due to infection with the pathogen.
In models, virulence is measured by host mortality rate or
case mortality.

Anderson and May (1982); Bremermann and Thieme (1989)

4 / 52



Introduction Evolution of infectious diseases Conclusions Appendix I Appendix II

virulence

The basic reproductive number R0

For directly transmitted diseases

R0 = βN︸ ︷︷ ︸
infection rate

× 1
α + d + ν︸ ︷︷ ︸

duration of infection

=
β(α)N

α + d + ν(α)

α

β

ν
α

R0

Anderson and May (1982)

5 / 52



Introduction Evolution of infectious diseases Conclusions Appendix I Appendix II

virulence

Introduced virus strain: 1950
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Fenner and Fantini (1999);

virulence was measured in laboratory (standard) rabbits.
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Virus prevalence: 1952
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virulence

Virus prevalence: 1970
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virulence

Virus prevalence: 1984
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virulence

Trade-offs for the myxoma virus infection of rabbits
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a “within-host” approach

Within-host dynamics of pathogens
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a “within-host” approach

Dynamics of the pathogen and the immune response

Ṗ = rP − hPX,

P = 0, if P (t) ≥ D,

Ẋ =
sXP

k + P
,

l(r) = u

∫ ∆

0
P (t) dt.

Pathogen kills the host if it
reaches a lethal density D;

There is no transmission from a
dead host;

Pathogens evolve to maximize
their total transmission.

P – pathogen, X – immune response, l – total transmission, ∆ – duration of infection.

Parameters: P (0) = 1, X(0) = 1, h = 10−3, k = 103, s = 1, D = 109, r = 2.08.

Antia et al. 1994
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a “within-host” approach

Total transmission of pathogens
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where total transmission

l(r) =
∫ ∆

0
P (t) dt.
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a “within-host” approach

Stochastic heterogeneity in r

average growth rate 

r
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a “within-host” approach

Stochastic heterogeneity in r

growth rate r

p
r
o
b
d
e
n
s
i
t
y
f
u
n
c
t
i
o
n
f

σ=0.1

σ=0.2

σ

r
__

f(r, r) =
r/σ2

Γ(r2/σ2)

(
rr

σ2

)r2/σ2−1

× exp
[
− rr

σ2

]
,

L(r) =
∫ ∞

0

l(r)f(r, r)dr.

12 / 52



Introduction Evolution of infectious diseases Conclusions Appendix I Appendix II

a “within-host” approach

Optimal growth rate and total transmission

L(r) =
∫ ∞

0
l(r, x) f(x) dx.

1.6 1.8 2 2.2 2.4 2.6 2.8 3
the average growth rate r

__

0

20

40

60

80

100

%
t
o
t
a
l
t
r
a
n
s
m
i
s
s
i
o
n

σ=0.02

σ=0.05

where f(x) is given by a gamma distribution of r with standard deviation σ.
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a “within-host” approach

Changes in virulence

M(r) =
∫ ∞

r∗
f(r, r)dr
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a “within-host” approach

Estimating epidemiological parameters and trade-offs
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where m(r) is the probability of host’s death following infection.
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a “within-host” approach

Trade-offs emerging from the within-host dynamics
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a “within-host” approach

Short summary

Within-host and between host dynamics of pathogens are
inherently linked.
Trade-offs for the myxoma virus infection can be originated
from simple properties of the within-host dynamics.

but : other explanations may work too.

Prediction on the evolution of pathogen virulence may
depend on the definition of virulence used.

Ganusov et al. 2002; Gilchrist and Sasaki 2002; André et al. 2003; André and Gandon (2006); Ganusov and Antia

2003, 2006
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changing model details

Can virulence be predicted from a single factor?

Ewald 1983
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changing model details

Changing pathogen transmissibility
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changing model details

Changing mechanism of pathogenesis
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y = 105, d = 0.05. Heterogeneity is modelled by a normal distribution of r.

Ganusov and Antia 2003
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changing model details

Details do matter!

Changing the structure of the model may dramatically
affect the optimal level of virulence.

It seems unlikely that a single factor can determine
virulence of diverse pathogens.
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imperfect vaccines

Vaccines and pathogen evolution

Escape from vaccines

Evolution of pathogen virulence in response to vaccination
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imperfect vaccines

Imperfect vaccines and evolution of pathogens

Epidemiological approach and R0

R0[α∗, α] =
β∗(x̂ + σŷ)

d + α∗ + ν∗ + σβŷ
where ∗ and ·̂ denote mutant and resident, and σ is superinfection parameter.

Both virulence α and transmissibility β are reduced in
vaccinated hosts.

αV = (1− r2)(1− r4)αU ,

βV = (1− r3)βU [(1− r2)αU ],

where r2, r3, and r4 are the efficacies of vaccines blocking replication, transmission and virulence,

respectively.

Vaccination does not affect trade-offs β = β(α) and
ν = ν(α).

Gandon et al. 2001
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imperfect vaccines

Imperfect vaccines: Gandon et al. conclusions

Anti-growth and anti-virulence vaccines are expected to
select for pathogens with high virulence.

Anti-transmission vaccines are expected to select for
pathogens with low virulence.

Gandon et al. 2001
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imperfect vaccines

Within-host approach
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imperfect vaccines

Model

response X1 reduces the
rate of expansion of the
pathogen population within
the host;

response X2 reduces the
rate of pathogen
transmission from infected
hosts.

Ṗ = (r − h1X1)P,

Ẋi =
sXiP

k + P
, i = 1, 2,

l(r) =
∫ ∆

0

P (t)dt

1 + h2X2(t)
.

Vaccination results in an increase in the number of
pathogen-specific immune cells (precursor numbers) existing
prior to infection.

Ganusov and Antia 2006
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imperfect vaccines

Within-host dynamics: anti-growth vaccines
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10−9, the immune response densities are multipled by 4 × 10−6.
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imperfect vaccines

Transmission and virulence: anti-growth vaccines
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imperfect vaccines

Within-host dynamics: anti-transmission vaccines
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imperfect vaccines

Transmission/virulence: anti-transmission vaccines
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imperfect vaccines

ES growth rate and virulence: partially vaccinated
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For anti-growth vaccines, the precursor number increases from X10 = 1 to X10 = 2 (bold red lines) or to

X10 = 10 (plain red lines). For anti-transmission vaccines, the precursor number increases from X20 = 0 to

X20 = 10 (bold blue lines).
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imperfect vaccines

Do results depend on the model?
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In these models, the difference arises due to different description
of pathogenesis and as the result, due to high ES virulence in
unvaccinated hosts in the right panel (at p = 0).

Ganusov and Antia 2006; André and Gandon 2006
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implications for immuno-epidemiology

Implications for epidemiology

Epidemiological models can include the within-host dynamics:

dS(t)
dt

= λ− dS(t)− h(t)S(t),

∂I(t, τ)
∂t

+
∂I(t, τ)

∂τ
= −(d + α(τ) + ν(τ))I(t, τ),

dR(t)
dt

=
∫ t

0

I(t, τ)ν(τ) dτ − dR(t),

I(t, 0) = h(t)S(t) = S(t)
∫ t

0

I(t, τ)β(τ) dτ.

Future studies may investigate the role of mutation, co- and
super-infection in determining evolution of pathogens using
within-host models.

André and Gandon 2006
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implications for immuno-epidemiology

More implications for epidemiology

Predictions on the evolution of pathogens may depend on
the model used as well on the model parameters, and
therefore, building of proper models requires better
understanding of the biology of pathogen-host interactions.

Other factors may further complicate the picture:
within-host evolution of pathogens, co- and super-infection,
locality of transmission, host evolution, etc.
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implications for immuno-epidemiology
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implications for immuno-epidemiology

Testing model predictions?

Higher levels of (host) heterogeneity select for more
virulent pathogens.

High mutation rate of Neisseria meningitidis helps escaping
immune response.
Malaria (P. falciparum) infecting resistant adults and
nonimmune infants.

Transmission-blocking vaccines may select for more rapidly
growing pathogens

?

Testing both predictions in serial passage experiments?
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Coevolution of the myxoma virus and rabbits
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Heterogeneity in other parameters
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Changing pathogen transmissibility

0 2 4 6 8 10
parasite density, 108

0

0.2

0.4

0.6

0.8

1

t
r
a
n
s
m
i
s
s
i
o
n
r
a
t
e

linear
saturated

squared

1.6 1.8 2 2.2 2.4 2.6 2.8 3
growth rate r

0

20

40

60

80

100

%
m
a
x
i
m
a
l
t
r
a
n
s
m
i
s
s
i
o
n

linear

saturated

squared

r=r*

0 0.1 0.2 0.3 0.4 0.5
Heterogeneity

0

0.2

0.4

0.6

0.8

1

T
h
e
c
a
s
e
m
o
r
t
a
l
i
t
y

squared

saturated

linear

Heterogeneity (CV = σ/D) is modelled by a gamma distribution of the lethal density D.

Ganusov and Antia 2003 39 / 52



Introduction Evolution of infectious diseases Conclusions Appendix I Appendix II

details

Dynamics of the pathogen, resource and the immune
response

Ṗ =
rPR

c + R
− hPX,

Ṙ = d(R0 −R)− y−1 rPR

c + R
,

Ẋ =
sXP

k + P
,
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P – pathogen, R – resource, X – immune response.

Parameters: P (0) = 1, R(0) = R0 = 104, X(0) = 1, h = 10−3, k = 103, s = 1, Rd = 2.7 × 103,

c = 103, y = 105, d = 0, r = 2.08.
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Changing mechanism of pathogenesis
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P (0) = 1, R(0) = R0 = 104, X(0) = 1, h = 10−3, k = 103, s = 1, Rd = 2.7 × 103, c = 103,

y = 105, d = 0.
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Changes in trade-offs with vaccination
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vaccines

Changes in R0 with vaccination
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0 0.025 0.05 0.075 0.1 0.125 0.15
host mortality rate α, day-1

0

1

2

3

4

R
0

X10=1

X10=2
X10=10

0 0.025 0.05 0.075 0.1 0.125 0.15
host mortality rate α, day-1

0

1

2

3

4

R
0

X20=0

X20=10

Trade-offs do change with vaccination although changes may be
small at low efficacy of vaccines (small increase in X10 and X20).

Anti-transmission vaccines may select for more virulent
pathogens.
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vaccines

Virulence in unvaccinated and vaccinated hosts
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The relationship between virulence of a pathogen with a fixed
growth rate r in vaccinated αV and unvaccinated αU hosts is
nonlinear.
Note that in the study by Gandon et al. 2001,
αV = (1 − r2)(1 − r4)αU .
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Total transmission vs. r
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vaccines

Total transmission and virulence vs vaccine efficacy

1 10 102
precursor number after vaccination

0

10

20

30

40

%
t
r
a
n
s
m
i
s
s
i
o
n

anti- growth

anti-growth

anti- transm

anti-transm

1 10 102
precursor number after vaccination

0

0.2

0.4

0.6

0.8

1

c
a
s
e
m
o
r
t
a
l
i
t
y

anti- growth

anti-growth

anti- transm

anti-transm

46 / 52



Introduction Evolution of infectious diseases Conclusions Appendix I Appendix II

vaccines

Two stages

X1
Immune response
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Pathogenesis and transmission

The probability of host survival
S(t) until time t is the solution of

Ṡ(t) = −π[r, P (t)]S(t)

where π(r, P ) is the rate of host’s
death due to pathogen.

The total transmission of the
pathogen during the infection is

l =
∫ ∆

0
ζ[P (t)]S(t) dt

where ζ(P ) is the rate of
pathogen transmission.

π[r, P ] ∼ (P/D)n
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modelling mortality

Back to a more general “stochastic” approach

Host survival during an
infection is a stochastic
process

Ṡ(t) = −π[r, P (t)]S(t)

l(r) =
∫ ∆

0
ζ[P (t)]S(t) dt

Consider a particular case
when π ∼ Pn and ζ ∼ P :
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modelling mortality

Back to a more general “stochastic” approach: II

Basic formulas

Ṡ(t) = −π[r, P (t)]S(t)

l(r) =
∫ ∆

0
P (t)S(t) dt

M(r) = 1− S(∆)

Traditionally, stochastic
host survival is modelled
differently, π = λrmP .

Sasaki and Iwasa 1991; Gilchrist and Sasaki 2002; André et al. 2003.
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Ṡ(t) = −π[r, P (t)]S(t)

l(r) =
∫ ∆

0
P (t)S(t) dt

M(r) = 1− S(∆)

Traditionally, stochastic
host survival is modelled
differently, π = λrmP .

π(r, P ) = λr5P

1 1.5 2 2.5 3
growth rate r

0

1

2

3

4

5

t
r
a
n
s
m
i
s
s
i
o
n

*
1
0

-
8

m=5

1 1.5 2 2.5 3
growth rate r

0

0.2

0.4

0.6

0.8

1

c
a
s
e
m
o
r
t
a
l
i
t
y

m=5

Sasaki and Iwasa 1991; Gilchrist and Sasaki 2002; André et al. 2003.
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modelling mortality

Summary

Even in simple “within-host” models, a variety of methods
exist to describe pathogenesis.

Moderate levels of virulence (case mortality) can evolve if
rate of pathogenesis π ∼ Pn.

When π ∼ rmP , saturation in the transmission rate may
help to reduce the case mortality.
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Introducing heterogeneity in parameters

For a parameter X, f(x) dx is the probability that a during
a given infection, the parameter X will be in the range
(x, x + dx).
Then total transmission of the pathogen with the growth
rate r in a heterogeneous population is calculated as

L(r) =
∫ ∞

0
l(r, x) f(x) dx.

Thus, such heterogeneity may arise due to stochasticity in
pathogen-host interactions.

We illustrate the results with heterogeneity in the growth
rate r described by a gamma distribution.
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