Forensic DNA analysis and multi-locus match probability in finite populations:

A fundamental difference between the Moran and Wright-Fisher models

Yun S. Song
Departments of EECS and Statistics UC Berkeley

DIMACS
April 27, 2009

Outline

(1) Introduction

- Random match probability
- Cold hit
(2) Models of Random Mating
- Recurrence equations
(3) Graphical Framework
- Match graphs
- Operations on graphs
- Topological ordering and graph enumeration
(4) Results
- Accuracy of the product rule
- Wright-Fisher vs. Moran
- Excluding siblings
(5) Other Works
- Perfect Monogamy Model
- Subdivided populations

Given

Two random individuals from a population.

Question

What is the probability that their DNA profiles match?

Forensic science context

The question that often arises is the extent to which a complete match of DNA profiles between a suspect and a crime-scene sample indicates that the suspect is the source of the sample.

Match probability depends on many factors, including

- The number of loci in the DNA profile.
- Mutation rates.
- Population history.

Short Tandem Repeats (a.k.a microsatellites)

Repetitions of words usually $2 \sim 6$ base-pairs in length
Simple Examples of STR:

Word Length	Locus	DNA Repeat Sequence	Copy Number Variation
in Population			

Allele

Useful genetic STR markers have a typical copy number of $10 \sim 30$. Copy numbers will be called alleles.

Short Tandem Repeats (a.k.a microsatellites)

Repetitions of words usually $2 \sim 6$ base-pairs in length
Simple Examples of STR:

Word Length	Locus	DNA Repeat Sequence	Copy Number Variation in Population
2 bp	APOA2	ACACACAC \cdots AC	$[\mathrm{AC}]_{8 \sim 22}$
3 bp	Huntingtin	CAGCAGCAG...CAG	[CAG] ${ }_{6 \sim 35}$ (Normal) [CAG] ${ }_{36 \sim 120}$ (Pathogenic)
4 bp	TPOX	AATGAATG $\cdot .$. AATG	[AATG] ${ }_{5 \sim 14}$

Allele

Useful genetic STR markers have a typical copy number of $10 \sim 30$. Copy numbers will be called alleles.

At present, 11 to 13 unlinked autosomal microsatellite loci are typed for forensic use.

FBl's CODIS
(COmbined DNA Index System)
Short Tandem
Repeat loci
(tetranucleotide)
AATGAATG ...AATG

Mostly on different
chromosomes

Amelogenin Gene On X: 106 bp On Y: 112 bp

Example: an individual's CODIS profile

Chromosome	Locus	Genotype (Unordered Pair)
2	TPOX	7,8
3	D3S1358	15,18
4	FGA	19,24
5	D5S818	11,13
5	CSF1PO	11,11
7	D7S820	10,11
8	D8S1179	12,13
11	THO1	8,12
12	VWA	16,16
13	D13S317	11,16
16	D16S539	11,14
18	D18S51	12,13
21	D21S11	29,31
	AMEL	$106 \mathrm{bp}, 112 \mathrm{bp}$

The DNA Identification Act of 1994

Authorized the FBI to establish a national DNA index for law enforcement purposes.

Combined DNA Index System (operational since 1998)

Three levels of hierarchy
(1) National DNA Index System

Allows labs between states to exchange DNA profiles
(2) State DNA Index System

Allows labs within states to exchange DNA profiles
(3) Local DNA Index System

DNA profiles are collected at the local level

Number of "offender" profiles

> | | As of Oct 2007 | As of Dec 2008 |
| :--- | ---: | ---: |
| Nation-wide | $5,265,258$ | $6,539,919$ |

Number of "offender" profiles

As of Oct 2007 As of Dec 2008
Nation-wide $5,265,258 \quad 6,539,919$

California
Florida
Texas
Virginia
Illinois
Michigan
New York
Wyoming
Rhode Island

893,147
397,500
314,366
260,403
276,339
221,354
216,083
197
834

1,073,768 533,670 395,374 285,851 320,132 255,274 294,498

8,722
3,890

Number of "offender" profiles

	As of Oct 2007	As of Dec 2008
Nation-wide	$5,265,258$	$6,539,919$
California	893,147	$1,073,768$
Florida	397,500	533,670
Texas	314,366	395,374
Virginia	260,403	285,851
Illinois	276,339	320,132
Michigan	221,354	255,274
New York	216,083	294,498
Wyoming		
Rhode Island	197	8,722
	834	3,890

Usually, but not always, conviction for some type of criminal offense is required to be included in the database.

L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume statistical independence across all L loci.
- Multiply the 1 -locus MPs at those loci.

L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume statistical independence across all L loci.
- Multiply the 1 -locus MPs at those loci.

Warning

In a finite population, the genealogical relationships of individuals can create statistical non-independence of alleles at unlinked loci.

L-Locus Match Probability (MP)

The probability of a complete match at L unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume statistical independence across all L loci.
- Multiply the 1 -locus MPs at those loci.

Warning

In a finite population, the genealogical relationships of individuals can create statistical non-independence of alleles at unlinked loci.

Question

Then, how accurate is the product rule, which assumes independence between loci?

Question on Question

In any case, everyone believes that the true 13-locus MP is a very small number. Then, why are we interested in computing it accurately?

Cold Hit

A crime-scene sample is found to match a known profile in a database, resulting in the identification of a suspect based only on genetic evidence.

Offender Database
Crime-scene sample

Cold hits and erroneous attribution

- Consider a hypothetical series of cold hit cases.

Cold hits and erroneous attribution

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

$$
\frac{1+n \times A M P-(1-A M P)^{n}}{1+n \times A M P}
$$

where $A M P$ is the average match probability and n is the total number of people not in the database.
(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)

Cold hits and erroneous attribution

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

$$
\frac{1+n \times A M P-(1-A M P)^{n}}{1+n \times A M P}
$$

where $A M P$ is the average match probability and n is the total number of people not in the database.
(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)

- This probability is approximately equal to $2 n \times A M P$.

Cold hits and erroneous attribution

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

$$
\frac{1+n \times A M P-(1-A M P)^{n}}{1+n \times A M P},
$$

where $A M P$ is the average match probability and n is the total number of people not in the database.
(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)

- This probability is approximately equal to $2 n \times A M P$.
- If the $A M P$ is as large as 10^{-9}, there is a considerable risk that someone not in the database has the same profile.

Cold hit

Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

(1) We will introduce a flexible graphical framework to compute multi-locus MPs analytically.

We will consider two standard models of random mating, namely the reach the macic number 13 for the Moran model.) We will describe a the two models which becomes transparent only when many loci are considered in a finite population.

Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

(1) We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
(2) We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)

Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

(1) We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
(2) We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
(3) We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.

Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

(1) We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
(2) We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
(3) We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
(4) We will discuss the accuracy of the product rule.

Challenge

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

(1) We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
(2) We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
(3) We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
(4) We will discuss the accuracy of the product rule.
(5) If time permits, we will discuss the biparental diploid model (Chang, 1999).

Outline

(1) Introduction

- Random match probability
- Cold hit
(2) Models of Random Mating
- Recurrence equations
(3) Graphical Framework
- Match graphs
- Operations on graphs
- Topological ordering and graph enumeration
(4) Results
- Accuracy of the product rule
- Wright-Fisher vs. Moran
- Excluding siblings
(5) Other Works
- Perfect Monogamy Model
- Subdivided populations

Assumptions

- Constant population size.
- Random mating.
- Infinite alleles model of mutation.

A gamete refers to a collection of alleles at 13 unlinked loci.

Generating a newborn

Randomly sample two gametes, each with replacement, and create a new gamete as an assortment of the two samples.

Generation t

Infinite-alleles model of mutation

With probability μ_{i}, the child gamete has an allele (copy number) at locus i that has never been seen before.

Generation t

Wright-Fisher model

- $2 N_{\text {wF }}$ gametes.
- Non-overlapping generations. (The entire population gets replaced every generation.)

Wright-Fisher Model

Moran model

- $2 N_{\mathrm{M}}$ gametes.
- Overlapping generations. (Exactly one individual gets replaced every generation. All other individuals survive to the next generation.)

Moran Model

Wright-Fisher model

- $2 N_{\text {wF }}$ gametes.
- Non-overlapping generations. (The entire population gets replaced every generation.)

Moran model

- $2 N_{\text {M }}$ gametes.
- Overlapping generations. (Exactly one individual gets replaced every generation. All other individuals survive to the next generation.)

Facts

(1) For the two models to have the same effective population size N_{e}, we need to set $N_{M}=2 N_{\text {wF }}$.
(2) The two models converge to the same diffusion limit.

Genotypic Match Probability

Randomly choose two pairs of gametes without replacement. At stationarity, what is the probability that the two pairs have a complete genotypic match at L unlinked loci?

complete
Pair 1

Locus	Genotype
1	7,8
2	15,16
3	19,20
4	11,11
5	29,31

Pair 2

Locus	Genotype
1	7,8
2	15,16
3	19,20
4	11,11
5	29,31

Genotypic Match Probability

Randomly choose two pairs of gametes without replacement. At stationarity, what is the probability that the two pairs have a complete genotypic match at L unlinked loci?

Haplotypic Match Probability

Randomly choose two gametes without replacement. At stationarity, what is the probability that the two gametes have a complete copy number match at L unlinked loci?

Gamete x

Locus	Copy Number
1	7
2	15
3	19
4	11
5	29

Gamete y

Locus	Copy Number
1	7
2	15
3	19
4	11
5	29

Consider two gametes $x=\left(x_{1}, \ldots, x_{L}\right)$ and $y=\left(y_{1}, \ldots, y_{L}\right)$.
Two possible ancestries for locus i under the WF model

Consider two gametes $x=\left(x_{1}, \ldots, x_{L}\right)$ and $y=\left(y_{1}, \ldots, y_{L}\right)$.
Two possible ancestries for locus i under the WF model

$$
\text { Probability: } \quad \frac{1}{2 N_{W F}}
$$

$$
\frac{2 N_{W F}-1}{2 N_{W F}}
$$

Recurrence equation

$$
\mathbb{P}\left(x_{i}=y_{i}\right)=\left(1-\mu_{i}\right)^{2}\left[\frac{1}{2 N_{\mathrm{WF}}}+\frac{2 N_{\mathrm{WF}}-1}{2 N_{\mathrm{WF}}} \mathbb{P}\left(x_{i}^{\prime}=y_{i}^{\prime}\right)\right]
$$

At stationarity, $\mathbb{P}\left(x_{i}=y_{i}\right)=\mathbb{P}\left(x_{i}^{\prime}=y_{i}^{\prime}\right)$, so we can solve for the stationary probability

Consider two gametes $x=\left(x_{1}, \ldots, x_{L}\right)$ and $y=\left(y_{1}, \ldots, y_{L}\right)$.

Two possible ancestries for locus i under the WF model

Recurrence equation

$$
\mathbb{P}\left(x_{i}=y_{i}\right)=\left(1-\mu_{i}\right)^{2}\left[\frac{1}{2 N_{\mathrm{WF}}}+\frac{2 N_{\mathrm{WF}}-1}{2 N_{\mathrm{WF}}} \mathbb{P}\left(x_{i}^{\prime}=y_{i}^{\prime}\right)\right]
$$

At stationarity, $\mathbb{P}\left(x_{i}=y_{i}\right)=\mathbb{P}\left(x_{i}^{\prime}=y_{i}^{\prime}\right)$, so we can solve for the stationary probability $\mathbb{P}\left(x_{i}=y_{i}\right)$.

The ultimate goal

Want to compute $\mathbb{P}\left[\left(x_{1}, \ldots, x_{L}\right)=\left(y_{1}, \ldots, y_{L}\right)\right]$.

General strategy

Given a match relation R, use

$$
\mathbb{P}(R)=\sum_{\text {Ancestry }} \mathbb{P}(R \mid \text { Ancestry }) \mathbb{P}(\text { Ancestry })
$$

to generate a recurrence equation of form $\mathbb{P}(R)=\sum_{k} c_{k} \mathbb{P}\left(R_{k}^{\prime}\right)$, where c_{k} are coefficients which depend on N and μ_{1}, \ldots, μ_{L}. Laurie and Weir (2003) adopted the same strategy.

relations to consider.

Recurrence equations

The ultimate goal

Want to compute $\mathbb{P}\left[\left(x_{1}, \ldots, x_{L}\right)=\left(y_{1}, \ldots, y_{L}\right)\right]$.

General strategy

Given a match relation R, use

$$
\mathbb{P}(R)=\sum_{\text {Ancestry }} \mathbb{P}(R \mid \text { Ancestry }) \mathbb{P}(\text { Ancestry })
$$

to generate a recurrence equation of form $\mathbb{P}(R)=\sum_{k} c_{k} \mathbb{P}\left(R_{k}^{\prime}\right)$,
where c_{k} are coefficients which depend on N and μ_{1}, \ldots, μ_{L}. Laurie and Weir (2003) adopted the same strategy.

Problem

For large L, there are many ancestries and many match relations to consider.

Recurrence equations

The ultimate goal

Want to compute $\mathbb{P}\left[\left(x_{1}, \ldots, x_{L}\right)=\left(y_{1}, \ldots, y_{L}\right)\right]$.

$$
S=\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\} \quad\{1, \ldots, L\} \backslash S
$$

Problem

For large L, there are many ancestries and many match relations to consider.

Question
How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates $\mu_{1}, \ldots, \mu_{13}$, we need to consider 2021616201559793 inequivalent match relations.

Question

How many inequivalent match relations do we need to consider for the 13 -locus haplotypic match probability computation?

General case

For arbitrary mutation rates $\mu_{1}, \ldots, \mu_{13}$, we need to consider 2021616201559793 inequivalent match relations.

A special case

For $\mu_{1}=\mu_{2}=\cdots=\mu_{13}$, we need to consider 3112753 inequivalent match relations.

Question

How many inequivalent match relations do we need to consider for the 13 -locus haplotypic match probability computation?

General case

For arbitrary mutation rates $\mu_{1}, \ldots, \mu_{13}$, we need to consider 2021616201559793 inequivalent match relations.

A special case

For $\mu_{1}=\mu_{2}=\cdots=\mu_{13}$, we need to consider 3112753 inequivalent match relations.

Question

How do we generate the recurrence relations satisfied by those match relations?

Outline

(1)

Introduction

- Random match probability
- Cold hitModels of Random Mating
- Recurrence equations
(3) Graphical Framework
- Match graphs
- Operations on graphs
- Topological ordering and graph enumeration

Results

- Accuracy of the product rule
- Wright-Fisher vs. Moran
- Excluding siblings
(5)

Other Works

- Perfect Monogamy Model
- Subdivided populations

Match graphs

We have developed a simple and flexible graphical framework for computing match probabilities. (Song and Slatkin, 2007)

From match probabilities to match graphs

- Match graph:
- Vertex: Create a vertex labeled x for gamete x.
- Edge: Draw an undirected edge labeled i between vertices x and y if and only if $x_{i}=y_{i}$.
- Two fully-labeled graphs (i.e., all vertices and edges are labeled) are equivalent if they are isomorphic as edge-labeled graphs (i.e., ignoring vertex labels).

$$
\mathbb{P}\left(x_{1}=y_{1}, x_{2}=y_{2}, x_{3}=z_{3}\right)
$$

$$
\begin{aligned}
\mathbb{P}\left(x_{1}\right. & \left.=y_{1}, x_{2}=y_{2}, y_{3}=z_{3}\right) \\
G_{2} & =x
\end{aligned}
$$

Observation

There is a 1-to-1 correspondence between the set of L-locus match graphs and the set of loopless multigraphs with L edges and non-isolated vertices.

Looped multigraph

Loopless multigraph
\qquad

[^0]
Match graphs

Observation

There is a 1-to-1 correspondence between the set of L-locus match graphs and the set of loopless multigraphs with L edges and non-isolated vertices.

Looped multigraph

Loopless multigraph

General case

For arbitrary mutation rates $\mu_{1}, \ldots, \mu_{13}$, we need to consider loopless multigraphs with k labeled edges, for $k=1, \ldots 13$.

For $\mu_{1}=\mu_{2}=\cdots=\mu_{13}$, we need to consider consider loopless multigraphs with k

Observation

There is a 1 -to- 1 correspondence between the set of L-locus match graphs and the set of loopless multigraphs with L edges and non-isolated vertices.

Looped multigraph

Loopless multigraph

General case

For arbitrary mutation rates $\mu_{1}, \ldots, \mu_{13}$, we need to consider loopless multigraphs with k labeled edges, for $k=1, \ldots 13$.

A special case

For $\mu_{1}=\mu_{2}=\cdots=\mu_{13}$, we need to consider consider loopless multigraphs with k unlabeled edges, for $k=1, \ldots 13$.

	Number of loopless multigraphs with L edges Edge labeled	Edge unlabeled
L	1	1
1	3	3
2	16	8
3	139	23
4	1750	66
5	29388	212
6	624889	686
7	16255738	2389
8	504717929	8682
9	18353177160	33160
10	769917601384	132277
11	36803030137203	550835
12	1984024379014193	2384411
13	2021616201559793	3112753

Finding recurrence equations

By performing a set of prescribed operations on a given graph at generation t, we determine how it is related to a linear combination of graphs at generation $t-1$.
(1) Vertex Split (inheritance pattern across loci for each gamete)
(2) Vertex Merge (sharing of parents by two or more gametes)

Finding recurrence equations

By performing a set of prescribed operations on a given graph at generation t, we determine how it is related to a linear combination of graphs at generation $t-1$.
(1) Vertex Split (inheritance pattern across loci for each gamete)
(2) Vertex Merge (sharing of parents by two or more gametes)

Split-merge operations have associated probabilities which appear as coefficients in recurrence equations.

Operations on graphs

Summary

Clearly, these graphs are isomorphic.

Operations on graphs

How about these?

Topological Ordering of the System

A closer look at the 2-locus SCC for the Moran model

Topological Ordering of the System

1-locus case: 1 equation

Topological Ordering
2-locus case: 3 coupled equations of the System \curvearrowleft. $=\left[\frac{2 N_{u}-4}{2 N_{N}}+\frac{2 N_{u}-3}{\left(2 N_{N u}\right)^{2}} \cdot 4(1-\mu)\right] \curvearrowleft \odot+\frac{2(1-\mu)}{\left(2 N_{N}\right)^{2}}\left({ }^{4} \curvearrowleft+2 \curvearrowleft\right)$

2-locus

1-locus

1-locus match graph appears as a known constant.

Topological Ordering of the System

1-locus and 2-locus match graphs are treated as known constants.

3-locus case: 8 coupled equations

Topological Ordering of the System

4-locus case: 23 coupled equations

So and so forth.

Topological Orderir of the System

- WF and Moran models have exactly the same set of match graphs.
- But, the WF model has significantly more directed edges in each strongly connected component.

2-locus SCC for the WF model

Topological Orderir of the System

- WF and Moran models have exactly the same set of match graphs.
- But, the WF model has significantly more directed edges in each strongly connected component.

2-locus SCC for the Moran model

- Our graphical approach makes the combinatorial structure of the problem easier to understand.
- We implemented our method in a fully automated program, thus reducing the chance of human error.

Related Problems

(1) Graph isomorphism testing. (We used the nauty package.)
(2) Canonical encoding of graphs.
(3) Equivalence of split-merge operations. Two different vertex split-merge operations on a graph with symmetries may produce isomorphic match graphs.
(9) Solving a large linear system of equations. (We used the iterative Successive Over-Relaxation method.)

Outline

O

Introduction

- Random match probability
- Cold hitModels of Random Mating
- Recurrence equations

Graphical Framework

- Match graphs
- Operations on graphs
- Topological ordering and graph enumeration
(4) Results
- Accuracy of the product rule
- Wright-Fisher vs. Moran
- Excluding siblings
(5) Other Works
- Perfect Monogamy Model
- Subdivided populations

Moran model MPs for $N_{e}=10,000$ and $\mu_{i}=\mu$ for all loci i :

L	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$
	$\mu=1 \times 10^{-4}$		$\mu=2 \times 10^{-4}$		$\mu=3 \times 10^{-4}$	
1	2.00×10^{-1}	2.00×10^{-1}	1.11×10^{-1}	1.11×10^{-1}	7.69×10^{-2}	7.69×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10^{-2}	1.24×10^{-2}	5.91×10^{-3}	5.94×10^{-3}
3	8.00×10^{-3}	8.01×10^{-3}	1.37×10^{-3}	1.38×10^{-3}	4.55×10^{-4}	4.66×10^{-4}
4	1.60×10^{-3}	1.61×10^{-3}	1.52×10^{-4}	1.59×10^{-4}	3.50×10^{-5}	4.03×10^{-5}
5	3.20×10^{-4}	3.25×10^{-4}	1.69×10^{-5}	2.01×10^{-5}	2.69×10^{-6}	5.29×10^{-6}
6	6.40×10^{-5}	6.68×10^{-5}	1.88×10^{-6}	3.51×10^{-6}	2.07×10^{-7}	1.52×10^{-6}
7	1.28×10^{-5}	1.44×10^{-5}	2.09×10^{-7}	1.08×10^{-6}	1.59×10^{-8}	7.00×10^{-7}
8	2.56×10^{-6}	3.48×10^{-6}	2.32×10^{-8}	4.94×10^{-7}	1.22×10^{-9}	3.63×10^{-7}
9	5.11×10^{-7}	1.05×10^{-6}	2.57×10^{-9}	2.60×10^{-7}	9.39×10^{-11}	1.93×10^{-7}
10	1.02×10^{-7}	4.16×10^{-7}	2.86×10^{-10}	1.42×10^{-7}	7.22×10^{-12}	1.03×10^{-7}
11	2.05×10^{-8}	2.06×10^{-7}	3.18×10^{-11}	7.84×10^{-8}	5.55×10^{-13}	5.54×10^{-8}
12	4.09×10^{-9}	1.15×10^{-7}	3.53×10^{-12}	4.35×10^{-8}	4.27×10^{-14}	2.98×10^{-8}
13	8.18×10^{-10}	6.69×10^{-8}	3.92×10^{-13}	2.41×10^{-8}	3.28×10^{-15}	1.60×10^{-8}

Recently, we succeeded in computing haplotypic MPs for up to 10 loci in the WF model, and up to 13 loci in the Moran model.
(Bhaskar and Song, ISMB 2009, in press)

Moran model MPs for $N_{e}=10,000$ and $\mu_{i}=\mu$ for all loci i :

L	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$
	$\mu=1 \times 10^{-4}$	$\mu=2 \times 10^{-4}$		$\mu=3 \times 10^{-4}$		
1	2.00×10^{-1}	2.00×10^{-1}	1.11×10^{-1}	1.11×10^{-1}	7.69×10^{-2}	7.69×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10^{-2}	1.24×10^{-2}	5.91×10^{-3}	5.94×10^{-3}
3	8.00×10^{-3}	8.01×10^{-3}	1.37×10^{-3}	1.38×10^{-3}	4.55×10^{-4}	4.66×10^{-4}
4	1.60×10^{-3}	1.61×10^{-3}	1.52×10^{-4}	1.59×10^{-4}	3.50×10^{-5}	4.03×10^{-5}
5	3.20×10^{-4}	3.25×10^{-4}	1.69×10^{-5}	2.01×10^{-5}	2.69×10^{-6}	5.29×10^{-6}
6	6.40×10^{-5}	6.68×10^{-5}	1.88×10^{-6}	3.51×10^{-6}	2.07×10^{-7}	1.52×10^{-6}
7	1.28×10^{-5}	1.44×10^{-5}	2.09×10^{-7}	1.08×10^{-6}	1.59×10^{-8}	7.00×10^{-7}
8	2.56×10^{-6}	3.48×10^{-6}	2.32×10^{-8}	4.94×10^{-7}	1.22×10^{-9}	3.63×10^{-7}
9	5.11×10^{-7}	1.05×10^{-6}	2.57×10^{-9}	2.60×10^{-7}	9.39×10^{-11}	1.93×10^{-7}
10	1.02×10^{-7}	4.16×10^{-7}	2.86×10^{-10}	1.42×10^{-7}	7.22×10^{-12}	1.03×10^{-7}
11	2.05×10^{-8}	2.06×10^{-7}	3.18×10^{-11}	7.84×10^{-8}	5.55×10^{-13}	5.54×10^{-8}
12	4.09×10^{-9}	1.15×10^{-7}	3.53×10^{-12}	4.35×10^{-8}	4.27×10^{-14}	2.98×10^{-8}
13	8.18×10^{-10}	6.69×10^{-8}	3.92×10^{-13}	2.41×10^{-8}	3.28×10^{-15}	1.60×10^{-8}

- For a give mutation rate μ, the product rule becomes less accurate as the number of loci increases.
- Furthermore, for a large number L of loci, a slight change in μ causes the product rule MP to decrease by a large amount.

Moran model MPs for $N_{e}=10,000$ and $\mu_{i}=\mu$ for all loci i :

L	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$
	$\mu=1 \times 10^{-4}$		$\mu=2 \times 10^{-4}$		$\mu=3 \times 10^{-4}$	
1	2.00×10^{-1}	2.00×10^{-1}	1.11×10^{-1}	1.11×10^{-1}	7.69×10^{-2}	7.69×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10^{-2}	1.24×10^{-2}	5.91×10^{-3}	5.94×10^{-3}
3	8.00×10^{-3}	8.01×10^{-3}	1.37×10^{-3}	1.38×10^{-3}	4.55×10^{-4}	4.66×10^{-4}
4	1.60×10^{-3}	1.61×10^{-3}	1.52×10^{-4}	1.59×10^{-4}	3.50×10^{-5}	4.03×10^{-5}
5	3.20×10^{-4}	3.25×10^{-4}	1.69×10^{-5}	2.01×10^{-5}	2.69×10^{-6}	5.29×10^{-6}
6	6.40×10^{-5}	6.68×10^{-5}	1.88×10^{-6}	3.51×10^{-6}	2.07×10^{-7}	1.52×10^{-6}
7	1.28×10^{-5}	1.44×10^{-5}	2.09×10^{-7}	1.08×10^{-6}	1.59×10^{-8}	7.00×10^{-7}
8	2.56×10^{-6}	3.48×10^{-6}	2.32×10^{-8}	4.94×10^{-7}	1.22×10^{-9}	3.63×10^{-7}
9	5.11×10^{-7}	1.05×10^{-6}	2.57×10^{-9}	2.60×10^{-7}	9.39×10^{-11}	1.93×10^{-7}
10	1.02×10^{-7}	4.16×10^{-7}	2.86×10^{-10}	1.42×10^{-7}	7.22×10^{-12}	1.03×10^{-7}
11	2.05×10^{-8}	2.06×10^{-7}	3.18×10^{-11}	7.84×10^{-8}	5.55×10^{-13}	5.54×10^{-8}
12	4.09×10^{-9}	1.15×10^{-7}	3.53×10^{-12}	4.35×10^{-8}	4.27×10^{-14}	2.98×10^{-8}
13	8.18×10^{-10}	6.69×10^{-8}	3.92×10^{-13}	2.41×10^{-8}	3.28×10^{-15}	1.60×10^{-8}

- The observed homozygosity at the CODIS microsatellite loci typically ranges between 0.1 and 0.3 , with the average over all 13 loci being about 0.2 (Budowle et. al, 2001).
- Under the infinite alleles model with $N_{e}=10,000$, homozygosity $=0.2$ corresponds to $\mu=10^{-4}$.

Moran model MPs for $N_{e}=10,000$ and $\mu_{i}=\mu$ for all loci i :

L	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$	Prod. Rule	True $M P(L)$
	$\mu=1 \times 10^{-4}$	$\mu=2 \times 10^{-4}$		$\mu=3 \times 10^{-4}$		
1	2.00×10^{-1}	2.00×10^{-1}	1.11×10^{-1}	1.11×10^{-1}	7.69×10^{-2}	7.69×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10^{-2}	1.24×10^{-2}	5.91×10^{-3}	5.94×10^{-3}
3	8.00×10^{-3}	8.01×10^{-3}	1.37×10^{-3}	1.38×10^{-3}	4.55×10^{-4}	4.66×10^{-4}
4	1.60×10^{-3}	1.61×10^{-3}	1.52×10^{-4}	1.59×10^{-4}	3.50×10^{-5}	4.03×10^{-5}
5	3.20×10^{-4}	3.25×10^{-4}	1.69×10^{-5}	2.01×10^{-5}	2.69×10^{-6}	5.29×10^{-6}
6	6.40×10^{-5}	6.68×10^{-5}	1.88×10^{-6}	3.51×10^{-6}	2.07×10^{-7}	1.52×10^{-6}
7	1.28×10^{-5}	1.44×10^{-5}	2.09×10^{-7}	1.08×10^{-6}	1.59×10^{-8}	7.00×10^{-7}
8	2.56×10^{-6}	3.48×10^{-6}	2.32×10^{-8}	4.94×10^{-7}	1.22×10^{-9}	3.63×10^{-7}
9	5.11×10^{-7}	1.05×10^{-6}	2.57×10^{-9}	2.60×10^{-7}	9.39×10^{-11}	1.93×10^{-7}
10	1.02×10^{-7}	4.16×10^{-7}	2.86×10^{-10}	1.42×10^{-7}	7.22×10^{-12}	1.03×10^{-7}
11	2.05×10^{-8}	2.06×10^{-7}	3.18×10^{-11}	7.84×10^{-8}	5.55×10^{-13}	5.54×10^{-8}
12	4.09×10^{-9}	1.15×10^{-7}	3.53×10^{-12}	4.35×10^{-8}	4.27×10^{-14}	2.98×10^{-8}
13	8.18×10^{-10}	6.69×10^{-8}	3.92×10^{-13}	2.41×10^{-8}	3.28×10^{-15}	1.60×10^{-8}

- For this value of μ, the product rule is reasonably accurate, especially for $L \leq 10$.
- But, for $\mu=2 \times 10^{-4}$, which corresponds to homozygosity $=$ 0.11 , the product rule produces considerably less accurate MPs.

Wright-Fisher vs Moran (for $N_{e}=10,000$)

L	WF	Moran	WF	Moran	WF	Moran
	$\mu=1 \times 10^{-4}$		$\mu=2 \times 10^{-4}$		$\mu=3 \times 10^{-4}$	
1	2.00×10^{-1}	2.00×10^{-1}	1.11×10^{-1}	1.11×10^{-1}	7.69×10^{-2}	7.69×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	1.24×10^{-2}	1.24×10^{-2}	5.93×10^{-3}	5.94×10^{-3}
3	8.01×10^{-3}	8.01×10^{-3}	1.38×10^{-3}	1.38×10^{-3}	4.60×10^{-4}	4.66×10^{-4}
4	1.60×10^{-3}	1.61×10^{-3}	1.55×10^{-4}	1.59×10^{-4}	3.68×10^{-5}	4.03×10^{-5}
5	3.22×10^{-4}	3.25×10^{-4}	1.78×10^{-5}	2.01×10^{-5}	3.26×10^{-6}	5.29×10^{-6}
6	6.48×10^{-5}	6.68×10^{-5}	2.16×10^{-6}	3.51×10^{-6}	3.80×10^{-7}	1.52×10^{-6}
7	1.31×10^{-5}	1.44×10^{-5}	3.02×10^{-7}	1.08×10^{-6}	6.86×10^{-8}	7.00×10^{-7}
8	2.69×10^{-6}	3.48×10^{-6}	5.41×10^{-8}	4.94×10^{-7}	1.74×10^{-8}	3.63×10^{-7}
9	5.65×10^{-7}	1.05×10^{-6}	1.28×10^{-8}	2.60×10^{-7}	5.08×10^{-9}	1.93×10^{-7}
10	1.24×10^{-7}	4.16×10^{-7}	3.72×10^{-9}	1.42×10^{-7}	1.55×10^{-9}	1.03×10^{-7}

- The two models agree very well in the single locus case.
- However, for large values of L, MPs in the Moran model can be orders of magnitude higher than that in the WF model.
- This difference grows with the number of loci and mutation rates.

The same diffusion limit

Send $\mu \rightarrow 0$ and $N_{e} \rightarrow \infty$ while keeping $\theta=4 N_{e} \mu$ fixed. Then,

$$
L \text {-locus MP } \rightarrow\left(\frac{1}{1+\theta}\right)^{L}
$$

in both the WF and Moran models.

The same diffusion limit

Send $\mu \rightarrow 0$ and $N_{e} \rightarrow \infty$ while keeping $\theta=4 N_{e} \mu$ fixed. Then,

$$
L \text {-locus MP } \rightarrow\left(\frac{1}{1+\theta}\right)^{L} .
$$

in both the WF and Moran models.

Match
probabilities
for $N_{e}=10^{4}$
and $\mu=10^{-3}$.

L	$1 /(1+\theta)^{L}$	WF	Moran
1	2.44×10^{-2}	2.44×10^{-2}	2.44×10^{-2}
2	5.95×10^{-4}	6.09×10^{-4}	6.17×10^{-4}
3	1.45×10^{-5}	1.87×10^{-5}	2.39×10^{-5}
4	3.54×10^{-7}	1.42×10^{-6}	4.41×10^{-6}
5	8.63×10^{-9}	2.88×10^{-7}	1.92×10^{-6}
6	2.11×10^{-10}	7.45×10^{-8}	9.38×10^{-7}
7	5.13×10^{-12}	1.99×10^{-8}	4.70×10^{-7}
8	1.25×10^{-13}	5.36×10^{-9}	2.39×10^{-7}
9	3.05×10^{-15}	1.45×10^{-9}	1.21×10^{-7}

The same diffusion limit

Send $\mu \rightarrow 0$ and $N_{e} \rightarrow \infty$ while keeping $\theta=4 N_{e} \mu$ fixed. Then,

$$
L \text {-locus MP } \rightarrow\left(\frac{1}{1+\theta}\right)^{L} .
$$

in both the WF and Moran models.

Match probabilities for $N_{e}=10^{9}$ and $\mu=10^{-8}$.

L	$1 /(1+\theta)^{L}$	WF	Moran
1	2.44×10^{-2}	2.44×10^{-2}	2.44×10^{-2}
2	5.95×10^{-4}	5.95×10^{-4}	5.95×10^{-4}
3	1.45×10^{-5}	1.45×10^{-5}	1.45×10^{-5}
4	3.54×10^{-7}	3.54×10^{-7}	3.54×10^{-7}
5	8.63×10^{-9}	8.63×10^{-9}	8.65×10^{-9}
6	2.11×100^{-10}	2.11×10^{-10}	2.20×10^{-10}
7	5.13×10^{-12}	5.34×10^{-12}	9.86×10^{-12}
8	1.25×10^{-13}	1.79×10^{-13}	2.52×10^{-12}
9	3.05×10^{-15}	1.75×10^{-14}	1.22×10^{-12}

MPs conditioned on the event that the two individuals being compared are neither full-sibs nor half-sibs.

- This computation can be carried out by restricting vertex-merge operations.
- The product rule becomes much more accurate if we are provided with the additional information that the individuals being compared are not close relatives.

L	Prod. Rule WF	Wrod. Rule WF	Prod. Rule	WF		
	$\mu=1 \times 10^{-4}$		$\mu=5 \times 10^{-4}$		$\mu=1 \times 10^{-3}$	
1	2.00×10^{-1}	2.00×10^{-1}	4.75×10^{-2}	4.75×10^{-2}	2.43×10^{-2}	2.43×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	2.26×10^{-3}	2.26×10^{-3}	5.91×10^{-4}	5.95×10^{-4}
3	7.99×10^{-3}	7.99×10^{-3}	1.07×10^{-4}	1.08×10^{-4}	1.44×10^{-5}	1.48×10^{-5}
4	1.60×10^{-3}	1.60×10^{-3}	5.11×10^{-6}	5.20×10^{-6}	3.49×10^{-7}	3.93×10^{-7}
5	3.19×10^{-4}	3.20×10^{-4}	2.43×10^{-7}	2.54×10^{-7}	8.48×10^{-9}	1.22×10^{-8}
6	6.39×10^{-5}	6.39×10^{-5}	1.15×10^{-8}	1.28×10^{-8}	2.06×10^{-10}	5.19×10^{-10}
7	1.28×10^{-5}	1.28×10^{-5}	5.48×10^{-10}	6.81×10^{-10}	5.01×10^{-12}	3.15×10^{-11}
8	2.55×10^{-6}	2.56×10^{-6}	2.61×10^{-11}	4.02×10^{-11}	1.22×10^{-13}	2.39×10^{-12}
9	5.10×10^{-7}	5.12×10^{-7}	1.24×10^{-12}	2.76×10^{-12}	2.96×10^{-15}	2.00×10^{-13}
10	1.02×10^{-7}	1.03×10^{-7}	5.89×10^{-14}	2.23×10^{-13}	7.19×10^{-17}	$1=74 \times 10^{-14}$

No analogous results for the Moran model.

L	Prod. Rule	WF	Prod. Rule	WF	Prod. Rule	WF
	$\mu=1 \times 10^{-4}$		$\mu=5 \times 10^{-4}$		$\mu=1 \times 10^{-3}$	
1	2.00×10^{-1}	2.00×10^{-1}	4.75×10^{-2}	4.75×10^{-2}	2.43×10^{-2}	2.43×10^{-2}
2	4.00×10^{-2}	4.00×10^{-2}	2.26×10^{-3}	2.26×10^{-3}	5.91×10^{-4}	5.95×10^{-4}
3	7.99×10^{-3}	7.99×10^{-3}	1.07×10^{-4}	1.08×10^{-4}	1.44×10^{-5}	1.48×10^{-5}
4	1.60×10^{-3}	1.60×10^{-3}	5.11×10^{-6}	5.20×10^{-6}	3.49×10^{-7}	3.93×10^{-7}
5	3.19×10^{-4}	3.20×10^{-4}	2.43×10^{-7}	2.54×10^{-7}	8.48×10^{-9}	1.22×10^{-8}
6	6.39×10^{-5}	6.39×10^{-5}	1.15×10^{-8}	1.28×10^{-8}	2.06×10^{-10}	5.19×10^{-10}
7	1.28×10^{-5}	1.28×10^{-5}	5.48×10^{-10}	6.81×10^{-10}	5.01×10^{-12}	3.15×10^{-11}
8	2.55×10^{-6}	2.56×10^{-6}	2.61×10^{-11}	4.02×10^{-11}	1.22×10^{-13}	2.39×10^{-12}
9	5.10×10^{-7}	5.12×10^{-7}	1.24×10^{-12}	2.76×10^{-12}	2.96×10^{-15}	2.00×10^{-13}
10	1.02×10^{-7}	1.03×10^{-7}	5.89×10^{-14}	2.23×10^{-13}	7.19×10^{-17}	$177 \times \times 10^{-14}$

Summary

(1) For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.

Excluding siblings

Summary

(1) For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
(2) We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.

Excluding siblings

Summary

(1) For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
(2) We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
(3) We have revealed a striking difference between the Wright-Fisher and Moran models.

Summary

(1) For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
(2) We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
(3) We have revealed a striking difference between the Wright-Fisher and Moran models.
(1) Genealogical interpretation? We speculate that the times to the most recent common ancestors at unlinked loci are more correlated in the Moran model than in the WF model.

Summary

(1) For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
(2) We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
(3) We have revealed a striking difference between the Wright-Fisher and Moran models.
(0) Genealogical interpretation? We speculate that the times to the most recent common ancestors at unlinked loci are more correlated in the Moran model than in the WF model.
(0. It is tempting to suspect that other quantities of interest to population genomics may be fundamentally different in the two models, especially when many loci are considered.

Outline

(1)
Introduction

- Random match probability
- Cold hitModels of Random Mating
- Recurrence equations
(3)

Graphical Framework

- Match graphs
- Operations on graphs
- Topological ordering and graph enumeration
(4)

Results

- Accuracy of the product rule
- Wright-Fisher vs. Moran
- Excluding siblings
(5) Other Works
- Perfect Monogamy Model
- Subdivided populations

Perfect Monogamy Model

Using our graphical framework, we can consider other models of mating scheme.

Perfect Monogamy

Two gametes cannot be half sibs.

Perfect Monogamy Model

Using our graphical framework, we can consider other models of mating scheme.

Perfect Monogamy

Two gametes cannot be half sibs.

Biparental diploid model

The perfect monogamy haploid model just described is equivalent to a biparental diploid model.

Biparental diploid model

The perfect monogamy haploid model just described is equivalent to a biparental diploid model.

Constraints on vertex merge under Perfect Monogamy

(1) Two vertices joined by an edge labeled " s " may not merge.
(2) Vertex merges may not produce a non-cyclic length-2 path $(\bullet s \bullet s)$ with both edges labeled " s ".

time t
time $t-1$
In a split graph G_{S}, add a new edge labeled "s" between the pair of vertices that arose from splitting a single vertex in G_{p}.

Perfect monogamy MP

Promiscuous mating MP

		μ					
L	1×10^{-4}	2×10^{-4}	3×10^{-4}	1×10^{-3}	1×10^{-2}	1×10^{-1}	
2	1.000	1.001	1.002	1.026	1.723	1.995	
3	1.001	1.008	1.024	1.556	3.914	3.992	
4	1.006	1.049	1.188	5.184	7.828	7.977	
5	1.019	1.259	2.240	12.248	15.573	15.929	
6	1.062	2.246	6.994	24.018	30.930	31.768	
7	1.192	6.122	19.341	45.882	61.286	63.210	
8	1.580	17.218	40.575	87.134	120.899	125.190	
9	2.699	39.413	74.664	164.510	236.485	245.708	

Summary of results

- The effect of monogamy increases with the number of loci.
- For a given number of loci, the effect of monogamy increases with the mutation rate.

Upper bounds on the effect of monogamy for L loci

Consider the Wright-Fisher model with $\mu_{i}=\mu$ for all loci i.

Proposition

$\lim _{\mu \uparrow 1} \frac{L \text {-locus MP under perfect monogamy }}{L-\text {-locus MP under promiscuous mating }}=2^{L-1}+O\left(\frac{1}{N_{\text {wF }}}\right)$.

Subdivided populations

It is possible to incorporate population structure in the graphical framework.

Key idea

Use vertex-colored graphs. Different colors for different subpopulations.

(Joint work with Anna Malaspinas and Monty Slatkin.)

Recent California policy on familial search

- California recently implemented a policy for using partial DNA matches to identify potential close relatives of the individual who left a crime-scene sample.
- In addition to the 13-locus CODIS profiles, the policy also calls for using Y-linked markers to provide further evidence of relatedness.
- We just submitted a paper on the population genetics consequences of the policy. Specifically, we have an estimate on the number and ethnic distribution of false leads.
(Joint work with Erin Murphy and Monty Slatkin.)

Thank you for your attention.

Acknowledgments

UC Berkeley

Monty Slatkin (Integrative Biology)
Erin Murphy (School of Law) Anand Bhaskar (Computer Science)
Anna Malaspinas (Integrative Biology)

Research supported in part by NIH, NSF, Alfred P. Sloan Research Fellowship, and Packard Fellowship for Science and Engineering

[^0]: loopless multigraphs with k

