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Random match probability

Given
Two random individuals from a population.

Question
What is the probability that their DNA profiles match?

Art source: René Magritte
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Random match probability

Forensic science context
The question that often arises is the extent to which a complete
match of DNA profiles between a suspect and a crime-scene
sample indicates that the suspect is the source of the sample.

Art source: René Magritte
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Random match probability

Match probability depends on many factors, including
The number of loci in the DNA profile.
Mutation rates.
Population history.

Art source: René Magritte
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Random match probability

Short Tandem Repeats (a.k.a microsatellites)
Repetitions of words usually 2 ∼ 6 base-pairs in length

Simple Examples of STR:
Word Copy Number Variation
Length Locus DNA Repeat Sequence in Population
2 bp APOA2 ACACACAC· · ·AC [AC]8∼22

3 bp Huntingtin CAGCAGCAG· · ·CAG [CAG]6∼35 (Normal)
[CAG]36∼120 (Pathogenic)

4 bp TPOX AATGAATG· · ·AATG [AATG]5∼14

Allele
Useful genetic STR markers have a typical copy number of
10 ∼ 30. Copy numbers will be called alleles.

At present, 11 to 13 unlinked autosomal microsatellite loci are
typed for forensic use.
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Random match probability

Source: http://www.cstl.nist.gov/div831/strbase/fbicore.htm

FBI’s CODIS
(COmbined DNA
Index System)
Short Tandem
Repeat loci
(tetranucleotide)
AATGAATG· · ·AATG

Mostly on
different
chromosomes

Amelogenin Gene
On X: 106 bp
On Y: 112 bp
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Random match probability

Example: an individual’s CODIS profile

Chromosome Locus Genotype (Unordered Pair)
2 TPOX 7, 8
3 D3S1358 15, 18
4 FGA 19, 24
5 D5S818 11, 13
5 CSF1PO 11, 11
7 D7S820 10, 11
8 D8S1179 12, 13
11 THO1 8, 12
12 VWA 16, 16
13 D13S317 11, 16
16 D16S539 11, 14
18 D18S51 12, 13
21 D21S11 29, 31

AMEL 106bp, 112bp
4 / 37
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Random match probability

The DNA Identification Act of 1994
Authorized the FBI to establish a national DNA index for law
enforcement purposes.

Combined DNA Index System (operational since 1998)
Three levels of hierarchy

1 National DNA Index System
Allows labs between states to exchange DNA profiles

2 State DNA Index System
Allows labs within states to exchange DNA profiles

3 Local DNA Index System
DNA profiles are collected at the local level
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Random match probability

Number of “offender” profiles

As of Oct 2007 As of Dec 2008
Nation-wide 5,265,258 6,539,919

California 893,147 1,073,768
Florida 397,500 533,670
Texas 314,366 395,374
Virginia 260,403 285,851
Illinois 276,339 320,132
Michigan 221,354 255,274
New York 216,083 294,498

Wyoming 197 8,722
Rhode Island 834 3,890

Usually, but not always, conviction for some type of criminal
offense is required to be included in the database.
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Random match probability

L-Locus Match Probability (MP)
The probability of a complete match at L unlinked loci between
two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)
Assume statistical independence across all L loci.
Multiply the 1-locus MPs at those loci.

Warning
In a finite population, the genealogical relationships of
individuals can create statistical non-independence of alleles at
unlinked loci.

Question
Then, how accurate is the product rule, which assumes
independence between loci?
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Cold hit

Question on Question
In any case, everyone believes that the true 13-locus MP is a
very small number. Then, why are we interested in computing it
accurately?

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5
Profile 6

Profile d

Offender Database

Crime-scene sample

Unique match
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Cold hit

Cold Hit
A crime-scene sample is found to match a known profile in a
database, resulting in the identification of a suspect based only
on genetic evidence.

Profile 1
Profile 2
Profile 3
Profile 4
Profile 5
Profile 6

Profile d

Offender Database

Crime-scene sample

Unique match
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Cold hit

Cold hits and erroneous attribution
Consider a hypothetical series of cold hit cases.

The average probability that there exists another person in
the population whose profile matches the crime-scene
sample but who is not in the database is

1 + n × AMP − (1− AMP)n

1 + n × AMP
,

where AMP is the average match probability and n is the
total number of people not in the database.
(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)

This probability is approximately equal to 2n × AMP.
If the AMP is as large as 10−9, there is a considerable risk
that someone not in the database has the same profile.
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Cold hit

Challenge
Analytically computing true multi-locus match probability has
remained a very difficult problem.

Plan of the talk
1 We will introduce a flexible graphical framework to

compute multi-locus MPs analytically.
2 We will consider two standard models of random mating,

namely the Wright-Fisher and Moran models. (We will
reach the magic number 13 for the Moran model.)

3 We will describe a striking fundamental difference between
the two models which becomes transparent only when
many loci are considered in a finite population.

4 We will discuss the accuracy of the product rule.
5 If time permits, we will discuss the biparental diploid model

(Chang, 1999).
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Assumptions
Constant population size.
Random mating.
Infinite alleles model of mutation.

Population of 2N gametes

t− 3
t− 2
t− 1
t

Time

A gamete refers to a collection of alleles at 13 unlinked loci.
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Generating a newborn
Randomly sample two gametes, each with replacement, and
create a new gamete as an assortment of the two samples.

Parental Gamete x

x1 y3 x4 y5y2

Generation t + 1

Child Gamete

x1 x3 x4 x5x2 y1 y3 y4 y5

Parental Gamete y

y2

Generation t
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Infinite-alleles model of mutation
With probability µi , the child gamete has an allele (copy
number) at locus i that has never been seen before.

Child Gamete

x1 x3 x4 x5x2 y1 y3 y4 y5

Parental Gamete y

y2

Generation t

Parental Gamete x

x1 z3 x4 y5y2

Generation t + 1

12 / 37
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Wright-Fisher model
2NWF gametes.
Non-overlapping
generations. (The entire
population gets replaced
every generation.)

Moran model
2NM gametes.
Overlapping generations.
(Exactly one individual
gets replaced every
generation. All other
individuals survive to the
next generation.)

t− 3
t− 2
t− 1
t

Wright-Fisher Model Moran Model
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Wright-Fisher model
2NWF gametes.
Non-overlapping
generations. (The entire
population gets replaced
every generation.)

Moran model
2NM gametes.
Overlapping generations.
(Exactly one individual
gets replaced every
generation. All other
individuals survive to the
next generation.)

Facts
1 For the two models to have the same effective population

size Ne, we need to set NM = 2NWF.
2 The two models converge to the same diffusion limit.
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Genotypic Match Probability
Randomly choose two pairs of gametes without replacement.
At stationarity, what is the probability that the two pairs have a
complete genotypic match at L unlinked loci?

Haplotypic Match Probability
Randomly choose two gametes without replacement. At
stationarity, what is the probability that the two gametes have a
complete copy number match at L unlinked loci?

Pair 1
Locus Genotype

1 7,8
2 15,16
3 19,20
4 11,11
5 29,31

Pair 2
Locus Genotype

1 7,8
2 15,16
3 19,20
4 11,11
5 29,31

14 / 37
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Genotypic Match Probability
Randomly choose two pairs of gametes without replacement.
At stationarity, what is the probability that the two pairs have a
complete genotypic match at L unlinked loci?

Haplotypic Match Probability
Randomly choose two gametes without replacement. At
stationarity, what is the probability that the two gametes have a
complete copy number match at L unlinked loci?

Gamete x
Locus Copy Number

1 7
2 15
3 19
4 11
5 29

Gamete y
Locus Copy Number

1 7
2 15
3 19
4 11
5 29
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Recurrence equations

Consider two gametes x = (x1, . . . , xL) and y = (y1, . . . , yL).

t− 1

t

Time

x y

x′ y′z′

x y

Two possible ancestries for locus i under the WF model

1
2NWF

2NWF − 1
2NWF

Probability:

Recurrence equation Graphs

P(xi = yi) = (1− µi)
2
[

1
2NWF

+
2NWF − 1

2NWF
P(x ′

i = y ′
i )

]
At stationarity, P(xi = yi) = P(x ′

i = y ′
i ), so we can solve for the

stationary probability P(xi = yi).
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Recurrence equations

The ultimate goal

Want to compute P[(x1, . . . , xL) = (y1, . . . , yL)].

General strategy

Given a match relation R, use

P(R) =
∑

Ancestry

P(R | Ancestry) P(Ancestry)

to generate a recurrence equation of form P(R) =
∑

k

ckP(R′
k ),

where ck are coefficients which depend on N and µ1, . . . , µL.
Laurie and Weir (2003) adopted the same strategy.

Problem
For large L, there are many ancestries and many match
relations to consider.
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Recurrence equations

The ultimate goal

Want to compute P[(x1, . . . , xL) = (y1, . . . , yL)].

t− 1

t

Time

x

S = {xi1 , . . . , xik} {1, . . . , L} \ S

y

Problem
For large L, there are many ancestries and many match
relations to consider.
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Recurrence equations

Question
How many inequivalent match relations do we need to consider
for the 13-locus haplotypic match probability computation?

General case
For arbitrary mutation rates µ1, . . . , µ13, we need to consider
2021616201559793 inequivalent match relations.

A special case
For µ1 = µ2 = · · · = µ13, we need to consider 3112753
inequivalent match relations.

Question
How do we generate the recurrence relations satisfied by those
match relations?
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Match graphs

We have developed a simple and flexible graphical framework
for computing match probabilities. (Song and Slatkin, 2007)

From match probabilities to match graphs
Match graph:

Vertex: Create a vertex labeled x for gamete x .
Edge: Draw an undirected edge labeled i between vertices
x and y if and only if xi = yi .

Two fully-labeled graphs (i.e., all vertices and edges are
labeled) are equivalent if they are isomorphic as
edge-labeled graphs (i.e., ignoring vertex labels).

P(x1 = y1, x2 = y2, x3 = z3) P(x1 = y1, x2 = y2, y3 = z3)G1 = x y z12 3 G2 = x y z12 3
18 / 37
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Match graphs

Observation
There is a 1-to-1 correspondence between the set of L-locus
match graphs and the set of loopless multigraphs with L edges
and non-isolated vertices.

Looped multigraph Loopless multigraph

General case
For arbitrary mutation rates µ1, . . . , µ13, we need to consider
loopless multigraphs with k labeled edges, for k = 1, . . . 13.

A special case
For µ1 = µ2 = · · · = µ13, we need to consider consider loopless
multigraphs with k unlabeled edges, for k = 1, . . . 13.
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Match graphs

Number of loopless multigraphs with L edges
L Edge labeled Edge unlabeled
1 1 1
2 3 3
3 16 8
4 139 23
5 1 750 66
6 29 388 212
7 624 889 686
8 16 255 738 2 389
9 504 717 929 8 682

10 18 353 177 160 33 160
11 769 917 601 384 132 277
12 36 803 030 137 203 550 835
13 1 984 024 379 014 193 2 384 411

Total 2 021 616 201 559 793 3 112 753
Labelle (2000), Harary and Palmer (1973)

19 / 37



Introduction Random Mating Graphical Framework Results Other Works

Operations on graphs

Finding recurrence equations
By performing a set of prescribed operations on a given graph
at generation t , we determine how it is related to a linear
combination of graphs at generation t − 1.

1 Vertex Split (inheritance pattern across loci for each gamete)
2 Vertex Merge (sharing of parents by two or more gametes)

GP = x y12 GS =w x y z1 2
w x y z1 2x y z1 2x y z1x y z2

GM1 =GM2 =GM3 =GM4 =2 splits
0 merge1 merge
1 merge1 merge

Vertex Split Vertex Merge

time t time t� 1

Split-merge operations have associated probabilities which
appear as coefficients in recurrence equations.
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Operations on graphs

Summary

GP GS1GS2GS3
GM1GM2GM3GM4

Vertex Split Vertex Merge
time t time t� 1
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Operations on graphs

Clearly, these graphs are isomorphic.
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Operations on graphs

How about these?
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

A closer look at the 2-locus SCC
for the Moran model
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

1-locus case: 1 equation

Wright-Fisher model:

= (1− µ)2
"

2NWF − 1

2NWF

+
1

2NWF

#

Ancestry

Moran model:
=

"

2NM − 2

2NM

+
2NM − 1

(2NM)2
2(1−µ)

#

+
2(1− µ)

(2NM)2
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

2-locus case: 3 coupled equations

=

"

2NM − 4

2NM

+
2NM − 3

(2NM)2
· 4(1 − µ)

#

+
2(1 − µ)

(2NM)2

 

4 + 2

!

=

(

2NM − 3

2NM

+
2NM − 2

(2NM)2
[2(1 − µ) + (1 − r)(1 − µ)2]

)

+
1

(2NM)2

(

2(1 − µ) + 2[(1 − r)(1 − µ)2 + (1 − µ)]

)

+
(1 − µ)2

(2NM)3
· r

(

(2NM − 2)(2NM − 3) + 3(2NM − 2)

+ + 2(2NM − 1) + 1

)

=

"

2NM − 2

2NM

+
2NM − 1

(2NM)2
· 2(1 − µ)2(1 − r)

#

+
1

(2NM)2
2(1 − µ)2(1 − r)

+
(1 − µ)2

(2NM)3
· 2r

(

(2NM − 1)(2NM − 2) + (2NM − 1)

"

2 +

#

+ 1

)

1-locus match graph appears as a known
constant.
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

3-locus case: 8 coupled equations

1-locus and 2-locus match graphs are treated as
known constants.
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

4-locus case: 23 coupled equations

So and so forth.
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

WF and Moran models have exactly the
same set of match graphs.
But, the WF model has significantly more
directed edges in each strongly connected
component.

2-locus SCC for the WF model
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Topological ordering and graph enumeration

1-locus

2-locus 

3-locus 

4-locus 

Topological Ordering
 of the System

Strongly
Connected
Component

WF and Moran models have exactly the
same set of match graphs.
But, the WF model has significantly more
directed edges in each strongly connected
component.

2-locus SCC for the Moran model
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Topological ordering and graph enumeration

Our graphical approach makes the combinatorial structure
of the problem easier to understand.
We implemented our method in a fully automated program,
thus reducing the chance of human error.

Related Problems
1 Graph isomorphism testing. (We used the nauty package.)
2 Canonical encoding of graphs.
3 Equivalence of split-merge operations. Two different vertex

split-merge operations on a graph with symmetries may
produce isomorphic match graphs.

4 Solving a large linear system of equations. (We used the
iterative Successive Over-Relaxation method.)

24 / 37



Introduction Random Mating Graphical Framework Results Other Works

Outline
1 Introduction

Random match probability
Cold hit

2 Models of Random Mating
Recurrence equations

3 Graphical Framework
Match graphs
Operations on graphs
Topological ordering and graph enumeration

4 Results
Accuracy of the product rule
Wright-Fisher vs. Moran
Excluding siblings

5 Other Works
Perfect Monogamy Model
Subdivided populations
Familial search
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Accuracy of the product rule

Moran model MPs for Ne = 10, 000 and µi = µ for all loci i :
L Prod. Rule True MP(L) Prod. Rule True MP(L) Prod. Rule True MP(L)

µ = 1 × 10−4 µ = 2 × 10−4 µ = 3 × 10−4

1 2.00×10−1 2.00×10−1 1.11×10−1 1.11×10−1 7.69×10−2 7.69×10−2

2 4.00×10−2 4.00×10−2 1.23×10−2 1.24×10−2 5.91×10−3 5.94×10−3

3 8.00×10−3 8.01×10−3 1.37×10−3 1.38×10−3 4.55×10−4 4.66×10−4

4 1.60×10−3 1.61×10−3 1.52×10−4 1.59×10−4 3.50×10−5 4.03×10−5

5 3.20×10−4 3.25×10−4 1.69×10−5 2.01×10−5 2.69×10−6 5.29×10−6

6 6.40×10−5 6.68×10−5 1.88×10−6 3.51×10−6 2.07×10−7 1.52×10−6

7 1.28×10−5 1.44×10−5 2.09×10−7 1.08×10−6 1.59×10−8 7.00×10−7

8 2.56×10−6 3.48×10−6 2.32×10−8 4.94×10−7 1.22×10−9 3.63×10−7

9 5.11×10−7 1.05×10−6 2.57×10−9 2.60×10−7 9.39×10−11 1.93×10−7

10 1.02×10−7 4.16×10−7 2.86×10−10 1.42×10−7 7.22×10−12 1.03×10−7

11 2.05×10−8 2.06×10−7 3.18×10−11 7.84×10−8 5.55×10−13 5.54×10−8

12 4.09×10−9 1.15×10−7 3.53×10−12 4.35×10−8 4.27×10−14 2.98×10−8

13 8.18×10−10 6.69×10−8 3.92×10−13 2.41×10−8 3.28×10−15 1.60×10−8

Recently, we succeeded in computing haplotypic MPs for up to 10 loci
in the WF model, and up to 13 loci in the Moran model.
(Bhaskar and Song, ISMB 2009, in press)
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Accuracy of the product rule

Moran model MPs for Ne = 10, 000 and µi = µ for all loci i :
L Prod. Rule True MP(L) Prod. Rule True MP(L) Prod. Rule True MP(L)

µ = 1 × 10−4 µ = 2 × 10−4 µ = 3 × 10−4

1 2.00×10−1 2.00×10−1 1.11×10−1 1.11×10−1 7.69×10−2 7.69×10−2

2 4.00×10−2 4.00×10−2 1.23×10−2 1.24×10−2 5.91×10−3 5.94×10−3

3 8.00×10−3 8.01×10−3 1.37×10−3 1.38×10−3 4.55×10−4 4.66×10−4

4 1.60×10−3 1.61×10−3 1.52×10−4 1.59×10−4 3.50×10−5 4.03×10−5

5 3.20×10−4 3.25×10−4 1.69×10−5 2.01×10−5 2.69×10−6 5.29×10−6

6 6.40×10−5 6.68×10−5 1.88×10−6 3.51×10−6 2.07×10−7 1.52×10−6

7 1.28×10−5 1.44×10−5 2.09×10−7 1.08×10−6 1.59×10−8 7.00×10−7

8 2.56×10−6 3.48×10−6 2.32×10−8 4.94×10−7 1.22×10−9 3.63×10−7

9 5.11×10−7 1.05×10−6 2.57×10−9 2.60×10−7 9.39×10−11 1.93×10−7

10 1.02×10−7 4.16×10−7 2.86×10−10 1.42×10−7 7.22×10−12 1.03×10−7

11 2.05×10−8 2.06×10−7 3.18×10−11 7.84×10−8 5.55×10−13 5.54×10−8

12 4.09×10−9 1.15×10−7 3.53×10−12 4.35×10−8 4.27×10−14 2.98×10−8

13 8.18×10−10 6.69×10−8 3.92×10−13 2.41×10−8 3.28×10−15 1.60×10−8

For a give mutation rate µ, the product rule becomes less
accurate as the number of loci increases.

Furthermore, for a large number L of loci, a slight change in µ
causes the product rule MP to decrease by a large amount.
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Accuracy of the product rule

Moran model MPs for Ne = 10, 000 and µi = µ for all loci i :
L Prod. Rule True MP(L) Prod. Rule True MP(L) Prod. Rule True MP(L)

µ = 1 × 10−4 µ = 2 × 10−4 µ = 3 × 10−4

1 2.00×10−1 2.00×10−1 1.11×10−1 1.11×10−1 7.69×10−2 7.69×10−2

2 4.00×10−2 4.00×10−2 1.23×10−2 1.24×10−2 5.91×10−3 5.94×10−3

3 8.00×10−3 8.01×10−3 1.37×10−3 1.38×10−3 4.55×10−4 4.66×10−4

4 1.60×10−3 1.61×10−3 1.52×10−4 1.59×10−4 3.50×10−5 4.03×10−5

5 3.20×10−4 3.25×10−4 1.69×10−5 2.01×10−5 2.69×10−6 5.29×10−6

6 6.40×10−5 6.68×10−5 1.88×10−6 3.51×10−6 2.07×10−7 1.52×10−6

7 1.28×10−5 1.44×10−5 2.09×10−7 1.08×10−6 1.59×10−8 7.00×10−7

8 2.56×10−6 3.48×10−6 2.32×10−8 4.94×10−7 1.22×10−9 3.63×10−7

9 5.11×10−7 1.05×10−6 2.57×10−9 2.60×10−7 9.39×10−11 1.93×10−7

10 1.02×10−7 4.16×10−7 2.86×10−10 1.42×10−7 7.22×10−12 1.03×10−7

11 2.05×10−8 2.06×10−7 3.18×10−11 7.84×10−8 5.55×10−13 5.54×10−8

12 4.09×10−9 1.15×10−7 3.53×10−12 4.35×10−8 4.27×10−14 2.98×10−8

13 8.18×10−10 6.69×10−8 3.92×10−13 2.41×10−8 3.28×10−15 1.60×10−8

The observed homozygosity at the CODIS microsatellite loci
typically ranges between 0.1 and 0.3, with the average over all
13 loci being about 0.2 (Budowle et. al, 2001).

Under the infinite alleles model with Ne = 10, 000, homozygosity
= 0.2 corresponds to µ = 10−4.
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Accuracy of the product rule

Moran model MPs for Ne = 10, 000 and µi = µ for all loci i :
L Prod. Rule True MP(L) Prod. Rule True MP(L) Prod. Rule True MP(L)

µ = 1 × 10−4 µ = 2 × 10−4 µ = 3 × 10−4

1 2.00×10−1 2.00×10−1 1.11×10−1 1.11×10−1 7.69×10−2 7.69×10−2

2 4.00×10−2 4.00×10−2 1.23×10−2 1.24×10−2 5.91×10−3 5.94×10−3

3 8.00×10−3 8.01×10−3 1.37×10−3 1.38×10−3 4.55×10−4 4.66×10−4

4 1.60×10−3 1.61×10−3 1.52×10−4 1.59×10−4 3.50×10−5 4.03×10−5

5 3.20×10−4 3.25×10−4 1.69×10−5 2.01×10−5 2.69×10−6 5.29×10−6

6 6.40×10−5 6.68×10−5 1.88×10−6 3.51×10−6 2.07×10−7 1.52×10−6

7 1.28×10−5 1.44×10−5 2.09×10−7 1.08×10−6 1.59×10−8 7.00×10−7

8 2.56×10−6 3.48×10−6 2.32×10−8 4.94×10−7 1.22×10−9 3.63×10−7

9 5.11×10−7 1.05×10−6 2.57×10−9 2.60×10−7 9.39×10−11 1.93×10−7

10 1.02×10−7 4.16×10−7 2.86×10−10 1.42×10−7 7.22×10−12 1.03×10−7

11 2.05×10−8 2.06×10−7 3.18×10−11 7.84×10−8 5.55×10−13 5.54×10−8

12 4.09×10−9 1.15×10−7 3.53×10−12 4.35×10−8 4.27×10−14 2.98×10−8

13 8.18×10−10 6.69×10−8 3.92×10−13 2.41×10−8 3.28×10−15 1.60×10−8

For this value of µ, the product rule is reasonably accurate,
especially for L ≤ 10.

But, for µ = 2× 10−4, which corresponds to homozygosity =
0.11, the product rule produces considerably less accurate MPs.
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Wright-Fisher vs. Moran

Wright-Fisher vs Moran (for Ne = 10, 000)
L WF Moran WF Moran WF Moran

µ = 1 × 10−4 µ = 2 × 10−4 µ = 3 × 10−4

1 2.00×10−1 2.00×10−1 1.11×10−1 1.11×10−1 7.69×10−2 7.69×10−2

2 4.00×10−2 4.00×10−2 1.24×10−2 1.24×10−2 5.93×10−3 5.94×10−3

3 8.01×10−3 8.01×10−3 1.38×10−3 1.38×10−3 4.60×10−4 4.66×10−4

4 1.60×10−3 1.61×10−3 1.55×10−4 1.59×10−4 3.68×10−5 4.03×10−5

5 3.22×10−4 3.25×10−4 1.78×10−5 2.01×10−5 3.26×10−6 5.29×10−6

6 6.48×10−5 6.68×10−5 2.16×10−6 3.51×10−6 3.80×10−7 1.52×10−6

7 1.31×10−5 1.44×10−5 3.02×10−7 1.08×10−6 6.86×10−8 7.00×10−7

8 2.69×10−6 3.48×10−6 5.41×10−8 4.94×10−7 1.74×10−8 3.63×10−7

9 5.65×10−7 1.05×10−6 1.28×10−8 2.60×10−7 5.08×10−9 1.93×10−7

10 1.24×10−7 4.16×10−7 3.72×10−9 1.42×10−7 1.55×10−9 1.03×10−7

The two models agree very well in the single locus case.

However, for large values of L, MPs in the Moran model can be
orders of magnitude higher than that in the WF model.

This difference grows with the number of loci and mutation rates.
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Wright-Fisher vs. Moran

The same diffusion limit
Send µ → 0 and Ne →∞ while keeping θ = 4Neµ fixed. Then,

L-locus MP →
(

1
1 + θ

)L

.

in both the WF and Moran models.
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Wright-Fisher vs. Moran

The same diffusion limit
Send µ → 0 and Ne →∞ while keeping θ = 4Neµ fixed. Then,

L-locus MP →
(

1
1 + θ

)L

.

in both the WF and Moran models.

Match
probabilities
for Ne = 104

and µ = 10−3.

L 1/(1 + θ)L WF Moran
1 2.44× 10−2 2.44×10−2 2.44×10−2

2 5.95× 10−4 6.09×10−4 6.17×10−4

3 1.45× 10−5 1.87×10−5 2.39×10−5

4 3.54× 10−7 1.42×10−6 4.41×10−6

5 8.63× 10−9 2.88×10−7 1.92×10−6

6 2.11× 10−10 7.45×10−8 9.38×10−7

7 5.13× 10−12 1.99×10−8 4.70×10−7

8 1.25× 10−13 5.36×10−9 2.39×10−7

9 3.05× 10−15 1.45×10−9 1.21×10−7
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Wright-Fisher vs. Moran

The same diffusion limit
Send µ → 0 and Ne →∞ while keeping θ = 4Neµ fixed. Then,

L-locus MP →
(

1
1 + θ

)L

.

in both the WF and Moran models.

Match
probabilities
for Ne = 109

and µ = 10−8.

L 1/(1 + θ)L WF Moran
1 2.44× 10−2 2.44× 10−2 2.44× 10−2

2 5.95× 10−4 5.95× 10−4 5.95× 10−4

3 1.45× 10−5 1.45× 10−5 1.45× 10−5

4 3.54× 10−7 3.54× 10−7 3.54× 10−7

5 8.63× 10−9 8.63× 10−9 8.65× 10−9

6 2.11× 10−10 2.11× 10−10 2.20× 10−10

7 5.13× 10−12 5.34× 10−12 9.86× 10−12

8 1.25× 10−13 1.79× 10−13 2.52× 10−12

9 3.05× 10−15 1.75× 10−14 1.22× 10−12
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Excluding siblings

MPs conditioned on the event that the two individuals being
compared are neither full-sibs nor half-sibs.

This computation can be carried out by restricting
vertex-merge operations.
The product rule becomes much more accurate if we are
provided with the additional information that the individuals
being compared are not close relatives.

L Prod. Rule WF Prod. Rule WF Prod. Rule WF
µ = 1 × 10−4 µ = 5 × 10−4 µ = 1 × 10−3

1 2.00 × 10−1 2.00 × 10−1 4.75 × 10−2 4.75 × 10−2 2.43 × 10−2 2.43 × 10−2

2 4.00 × 10−2 4.00 × 10−2 2.26 × 10−3 2.26 × 10−3 5.91 × 10−4 5.95 × 10−4

3 7.99 × 10−3 7.99 × 10−3 1.07 × 10−4 1.08 × 10−4 1.44 × 10−5 1.48 × 10−5

4 1.60 × 10−3 1.60 × 10−3 5.11 × 10−6 5.20 × 10−6 3.49 × 10−7 3.93 × 10−7

5 3.19 × 10−4 3.20 × 10−4 2.43 × 10−7 2.54 × 10−7 8.48 × 10−9 1.22 × 10−8

6 6.39 × 10−5 6.39 × 10−5 1.15 × 10−8 1.28 × 10−8 2.06 × 10−10 5.19 × 10−10

7 1.28 × 10−5 1.28 × 10−5 5.48 × 10−10 6.81 × 10−10 5.01 × 10−12 3.15 × 10−11

8 2.55 × 10−6 2.56 × 10−6 2.61 × 10−11 4.02 × 10−11 1.22 × 10−13 2.39 × 10−12

9 5.10 × 10−7 5.12 × 10−7 1.24 × 10−12 2.76 × 10−12 2.96 × 10−15 2.00 × 10−13

10 1.02 × 10−7 1.03 × 10−7 5.89 × 10−14 2.23 × 10−13 7.19 × 10−17 1.74 × 10−14
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Excluding siblings

No analogous results for the Moran model.

L Prod. Rule WF Prod. Rule WF Prod. Rule WF
µ = 1 × 10−4 µ = 5 × 10−4 µ = 1 × 10−3

1 2.00 × 10−1 2.00 × 10−1 4.75 × 10−2 4.75 × 10−2 2.43 × 10−2 2.43 × 10−2

2 4.00 × 10−2 4.00 × 10−2 2.26 × 10−3 2.26 × 10−3 5.91 × 10−4 5.95 × 10−4

3 7.99 × 10−3 7.99 × 10−3 1.07 × 10−4 1.08 × 10−4 1.44 × 10−5 1.48 × 10−5

4 1.60 × 10−3 1.60 × 10−3 5.11 × 10−6 5.20 × 10−6 3.49 × 10−7 3.93 × 10−7

5 3.19 × 10−4 3.20 × 10−4 2.43 × 10−7 2.54 × 10−7 8.48 × 10−9 1.22 × 10−8

6 6.39 × 10−5 6.39 × 10−5 1.15 × 10−8 1.28 × 10−8 2.06 × 10−10 5.19 × 10−10

7 1.28 × 10−5 1.28 × 10−5 5.48 × 10−10 6.81 × 10−10 5.01 × 10−12 3.15 × 10−11

8 2.55 × 10−6 2.56 × 10−6 2.61 × 10−11 4.02 × 10−11 1.22 × 10−13 2.39 × 10−12

9 5.10 × 10−7 5.12 × 10−7 1.24 × 10−12 2.76 × 10−12 2.96 × 10−15 2.00 × 10−13

10 1.02 × 10−7 1.03 × 10−7 5.89 × 10−14 2.23 × 10−13 7.19 × 10−17 1.74 × 10−14
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Excluding siblings

Summary
1 For a finite population, the accuracy of multi-locus MPs

predicted by the product rule is highly sensitive to mutation
rates in the range of interest, while the true MPs are not.

2 We assumed an infinite alleles model, in which identity in
allelic state implies identity by descent. Our work studies
the effect of shared genealogies in a finite population on
the joint probability of identity by descent.

3 We have revealed a striking difference between the
Wright-Fisher and Moran models.

4 Genealogical interpretation? We speculate that the times
to the most recent common ancestors at unlinked loci are
more correlated in the Moran model than in the WF model.

5 It is tempting to suspect that other quantities of interest to
population genomics may be fundamentally different in the
two models, especially when many loci are considered.
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Perfect Monogamy Model

Using our graphical framework, we can consider other models
of mating scheme.

Perfect Monogamy
Two gametes cannot be half sibs.

Half Sibs

y1 y3y4y5y2

x1 y3x4y5y2

z1 z3z4z5z2x1 x3x4x5x2

y1 z3z4y5y2
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Perfect Monogamy Model

Biparental diploid model
The perfect monogamy haploid model just described is
equivalent to a biparental diploid model.

Population of N diploid individuals

t− 1

Time

t

t− 2

31 / 37



Introduction Random Mating Graphical Framework Results Other Works

Perfect Monogamy Model

Biparental diploid model
The perfect monogamy haploid model just described is
equivalent to a biparental diploid model.

Population of N diploid individuals

t− 1

Time

t

t− 2

31 / 37



Introduction Random Mating Graphical Framework Results Other Works

Perfect Monogamy Model

Constraints on vertex merge under Perfect Monogamy
1 Two vertices joined by an edge labeled “s” may not merge.
2 Vertex merges may not produce a non-cyclic length-2 path

(• s • s •) with both edges labeled “s”.

GP = x y12 GS =w x y zs s1 2
w x y z1 2x y12x y

GM1 =GM2 =GM3 =2 splits
0 merge2 merges
2 merges

Vertex Split Vertex Merge
time t time t� 1

In a split graph GS, add a new edge labeled “s” between the
pair of vertices that arose from splitting a single vertex in GP .
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Perfect Monogamy Model

Perfect monogamy MP
Promiscuous mating MP

µ
L 1× 10−4 2× 10−4 3× 10−4 1× 10−3 1× 10−2 1× 10−1

2 1.000 1.001 1.002 1.026 1.723 1.995
3 1.001 1.008 1.024 1.556 3.914 3.992
4 1.006 1.049 1.188 5.184 7.828 7.977
5 1.019 1.259 2.240 12.248 15.573 15.929
6 1.062 2.246 6.994 24.018 30.930 31.768
7 1.192 6.122 19.341 45.882 61.286 63.210
8 1.580 17.218 40.575 87.134 120.899 125.190
9 2.699 39.413 74.664 164.510 236.485 245.708

Summary of results
The effect of monogamy increases with the number of loci.
For a given number of loci, the effect of monogamy
increases with the mutation rate.
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Perfect Monogamy Model

Upper bounds on the effect of monogamy for L loci

Consider the Wright-Fisher model with µi = µ for all loci i .

Proposition

lim
µ↑1

L-locus MP under perfect monogamy
L-locus MP under promiscuous mating

= 2L−1 + O
(

1
NWF

)
.
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Subdivided populations

Subdivided populations
It is possible to incorporate population structure in the graphical
framework.

Key idea
Use vertex-colored graphs. Different colors for different
subpopulations.

(Joint work with Anna Malaspinas and Monty Slatkin.)
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Familial search

Recent California policy on familial search
California recently implemented a policy for using partial
DNA matches to identify potential close relatives of the
individual who left a crime-scene sample.
In addition to the 13-locus CODIS profiles, the policy also
calls for using Y-linked markers to provide further evidence
of relatedness.
We just submitted a paper on the population genetics
consequences of the policy. Specifically, we have an
estimate on the number and ethnic distribution of false
leads.
(Joint work with Erin Murphy and Monty Slatkin.)
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Familial search

Thank you for your attention.
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