Forensic DNA analysis and multi-locus match probability in finite populations: A fundamental difference between the Moran and Wright-Fisher models

Yun S. Song Departments of EECS and Statistics UC Berkeley

DIMACS April 27, 2009

Introduction	Random Mating	Graphical Framework	Results	Other Works
Outline				
 Intro F C Mode F Gra M C 	oduction andom match p cold hit lels of Random I accurrence equa phical Framewor latch graphs operations on gra	robability Mating tions k aphs		
• T 4 Res • A • V • E 5 Othe • P	opological order ults ccuracy of the p Vright-Fisher vs. Excluding siblings er Works verfect Monogam	ing and graph enume roduct rule Moran s ny Model	eration	

0/37

• Subdivided populations

Introduction ••••••	Random Mating	Graphical Framework	Results 00000	Other Work
Random match prob	pability			
Given				
Two rai	ndom individuals f	rom a population.		
Questi	on			
What is	s the probability th	at their DNA profile	s match?	
	Art source: René Magritte	L'	5	e>

E ► E ∽ ९. 1/37

Introduction ●000000000	Random Mating	Graphical Framework	Results 00000	Other Works
Random match probability				

Forensic science context

The question that often arises is the extent to which a complete match of DNA profiles between a suspect and a crime-scene sample indicates that the suspect is the source of the sample.

1/37

Introduction • 000000000	Random Mating	Graphical Framework	Results 00000	Other Works	
Random match probability					

Match probability depends on many factors, including

- The number of loci in the DNA profile.
- Mutation rates.
- Population history.

1/37

Introduction Random Mating Graphical Framework Results Other •••••••••• ••••••• •••••• ••••• ••••• •••••						
Random match pro	bability					
Short Tandem Repeats (a.k.a microsatellites)						
Repetitions of words usually $2 \sim 6$ base-pairs in length						
Simple	e Examples	of STR:				
Word Length	Locus	DNA Repeat Sequence	Copy Number Variation in Population			
2 bp	APOA2	ACACACAC···AC	[AC] _{8~22}			
3 bp	Huntingtin	CAGCAGCAG···CAG	[CAG] _{6~35} (Normal) [CAG] _{36~120} (Pathogenic)			
4 bp	TPOX	AATGAATG···AATG	[AATG] _{5~14}			

Allele

Useful genetic STR markers have a typical copy number of $10 \sim 30$. Copy numbers will be called *alleles*.

	roduction Random Mating Graphical Framework Results Ott 000000000 00000000 0000000 0000000 00000000 0000000 0000000 00000000 0000000 0000000			Results Other Wo	orks	
Rar	ndom match pro	bability				
	Short Tandem Repeats (a.k.a microsatellites)					
	Repeti	itions of wor	ds usually $2 \sim 6$ base	pairs in length		
_	Simple	e Examples	of STR:			
	Word Length	Locus	DNA Repeat Sequence	Copy Number Variation in Population		
	2 bp	APOA2	ACACACAC···AC	[AC] _{8~22}		
	3 bp	Huntingtin		$[CAG]_{6\sim35}$ (Normal)		
				[CAG] _{36~120} (Pathogenic	;)	
_	4 bp	TPOX	AATGAATG ··· AATG	[AATG] _{5~14}		

Allele

Useful genetic STR markers have a typical copy number of $10 \sim 30$. Copy numbers will be called *alleles*.

At present, 11 to 13 unlinked autosomal microsatellite loci are typed for forensic use.

ъ 3/37

ntroduction	Random Mating	g Grap	hical Framework	Results	Other Work
Random ma	atch probability				
E×	ample: an individ	dual's CODI	S profile		
	Chromosome	Locus	Genotype (U	nordered Pai	r)
	2	TPOX	7	, 8	_
	3	D3S1358	15	, 18	
	4	FGA	19	, 24	
	5	D5S818	11	, 13	
	5	CSF1PO	11	, 11	
	7	D7S820	10	, 11	
	8	D8S1179	12	, 13	
	11	THO1	8,	, 12	
	12	VWA	16	, 16	
	13	D13S317	11	, 16	
	16	D16S539	11	, 14	
	18	D18S51	12	, 13	
	21	D21S11	29	, 31	
		AMEL	106bp	, 112bp	

4/37

Introduction 000000000	Random Mating	Graphical Framework	Results 00000	Other Works	
Random match probability					

The DNA Identification Act of 1994

Authorized the FBI to establish a national DNA index for law enforcement purposes.

Combined DNA Index System (operational since 1998)

Three levels of hierarchy

- National DNA Index System Allows labs between states to exchange DNA profiles
- State DNA Index System Allows labs within states to exchange DNA profiles
- Local DNA Index System DNA profiles are collected at the local level

Introduction 0000000000	Random Mating	Graphical Framework	Results	Other Works
Random match pro	obability			
Numb	er of "offender"	profiles		
		As of Oct 2007	As of Dec 2008	
	Nation-wide	5,265,258	6,539,919	

Introduction ○○○○○●○○○○	Random Mating	Graphical Framework	Results 00000	Other Work
Random match pro	obability			
Numb	er of "offender"	profiles		
		As of Oct 2007	As of Dec 2008	
	Nation-wide	5,265,258	6,539,919	
	California	893,147	1,073,768	
	Florida	397,500	533,670	
	Texas	314,366	395,374	
	Virginia	260,403	285,851	
	Illinois	276,339	320,132	
	Michigan	221,354	255,274	
	New York	216,083	294,498	
	Wyoming	197	8,722	
	Rhode Island	834	3,890	

ntrodi	uction o●oooo	Random Mating	Graphical Framework	Results	Other Work
Rando	om match probab	ility			
	Number	of "offender"	orofiles		
			As of Oct 2007	As of Dec 2008	
	N	lation-wide	5,265,258	6,539,919	
	C	California	893,147	1,073,768	
	F	Iorida	397,500	533,670	
	Т	exas	314,366	395,374	
	V	/irginia	260,403	285,851	
	II	linois	276,339	320,132	
	Ν	/lichigan	221,354	255,274	
	Ν	lew York	216,083	294,498	
	v	Vyoming	197	8,722	
	F	Rhode Island	834	3,890	

Usually, but not always, conviction for some type of criminal offense is required to be included in the database.

Introduction 0000000000	Random Mating	Graphical Framework	Results 00000	Other Works		
Random match probability						
L-Locus Match Probability (MP)						

The probability of a complete match at *L* unlinked loci between two individuals randomly chosen from a population.

Introduction 0000000000	Random Mating	Graphical Framework	Results 00000	Other Works	
Random match probability					

L-Locus Match Probability (MP) The probability of a complete match at *L* unlinked loci between

two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume statistical independence across all L loci.
- Multiply the 1-locus MPs at those loci.

Introduction 000000	Random Mating	Graphical Framework	Results 00000	Other Works
Random match probability				

L-Locus Match Probability (MP)

The probability of a complete match at *L* unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume statistical independence across all L loci.
- Multiply the 1-locus MPs at those loci.

Warning

In a finite population, the genealogical relationships of individuals can create statistical non-independence of alleles at unlinked loci.

Introduction 0000000000	Random Mating	Graphical Framework	Results 00000	Other Works
Random match probability				

L-Locus Match Probability (MP)

The probability of a complete match at *L* unlinked loci between two individuals randomly chosen from a population.

The Product Rule (currently used in US criminal courts)

- Assume statistical independence across all L loci.
- Multiply the 1-locus MPs at those loci.

Warning

In a finite population, the genealogical relationships of individuals can create statistical non-independence of alleles at unlinked loci.

Question

Then, how accurate is the product rule, which assumes independence between loci?

Introdu	uction ○○○●○○	Random Mating	Graphical Framework	Results 00000	Other Works
Cold h	it				
ļ	Questio	on on Question			
In any case, everyone believes that the true 13-locus MP is a very small number. Then, why are we interested in computing it					

accurately?

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				
Cold Hit A crime-s	cene sample	is found to match	a known profile in a	
on geneti	c evidence.			··· ·
Crime-s	scene sample	Unique match	Offender Database	

8/37

(ロ) (D) (D) (E) (E) (E) (E) (E)

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

• Consider a hypothetical series of cold hit cases.

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

$$\frac{1 + n \times AMP - (1 - AMP)^n}{1 + n \times AMP}$$

where AMP is the average match probability and n is the total number of people *not* in the database.

(Song, Patil, Murphy, Slatkin, J. Forensic Sciences, 2009.)

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

$$\frac{1 + n \times AMP - (1 - AMP)^n}{1 + n \times AMP}$$

where *AMP* is the average match probability and *n* is the total number of people *not* in the database. (Song, Patil, Murphy, Slatkin, *J. Forensic Sciences*, 2009.)

• This probability is approximately equal to $2n \times AMP$.

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

- Consider a hypothetical series of cold hit cases.
- The average probability that there exists another person in the population whose profile matches the crime-scene sample but who is not in the database is

$$\frac{1 + n \times AMP - (1 - AMP)^n}{1 + n \times AMP}$$

where *AMP* is the average match probability and *n* is the total number of people *not* in the database. (Song, Patil, Murphy, Slatkin, *J. Forensic Sciences*, 2009.)

• This probability is approximately equal to $2n \times AMP$.

• If the *AMP* is as large as 10⁻⁹, there is a considerable risk that someone not in the database has the same profile.

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				
Cha	llenge			
Ana rem	lytically computing t ained a very difficul	rue multi-locus matc t problem.	h probability	has
Pla				

(Chang, 1999).
(Chang, 1999).

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

- We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
- We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
- We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
- We will discuss the accuracy of the product rule.

If time permits, we will discuss the biparental diploid model (Chang, 1999).

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

- We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
- We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)

We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.

We will discuss the accuracy of the product rule.

If time permits, we will discuss the biparental diploid model (Chang, 1999).

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

- We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
- We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
- We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
- We will discuss the accuracy of the product rule.
- If time permits, we will discuss the biparental diploid model (Chang, 1999).

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

- We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
- We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
- We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
- We will discuss the accuracy of the product rule.
- If time permits, we will discuss the biparental diploid model (Chang, 1999).

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Cold hit				

Analytically computing true multi-locus match probability has remained a very difficult problem.

Plan of the talk

- We will introduce a flexible graphical framework to compute multi-locus MPs analytically.
- We will consider two standard models of random mating, namely the Wright-Fisher and Moran models. (We will reach the magic number 13 for the Moran model.)
- We will describe a striking fundamental difference between the two models which becomes transparent only when many loci are considered in a finite population.
- We will discuss the accuracy of the product rule.
- If time permits, we will discuss the biparental diploid model (Chang, 1999).

Introduction	Random Mating	Graphical Framework	Results	Other Works
Outline				
 Introdu Ran Cold Models Rec Graphi Mati Ope Tope Results Acc Wrig 	action dom match products of Random M surrence equation ical Framework ch graphs erations on grap ological orderin s uracy of the pro- ght-Fisher vs. 1	obability lating ons ng and graph enum oduct rule Moran	eration	
 Exc Other Perf Sub 	Works Fect Monogamy divided popula	v Model tions	< ㅁ > < 중 > < 돈 > < 돈	▶ ミックへで 10/37

A gamete refers to a collection of alleles at 13 unlinked loci.

Generation t + 1

Child Gamete *

ロトス団とスモンスモン

 $X_1 y_2 Z_3 X_4 y_5$

12/37

Introduction 0000000000	Random Mating ○○●○○○○	Graphical F	ramework	Results 00000	Other Works
Wright-F 2 <i>N</i> _{wr} Non- gene popu ever	isher model gametes. -overlapping erations. (The en ulation gets repla y generation.)	tire ced	Moran moo ● 2 <i>N</i> _M ga ● Overla (Exact gets re genera individ next g	del ametes. apping gener dy one indivi eplaced ever ation. All oth luals survive eneration.)	rations. dual y er to the
1 9	Wright-Fisher M	odel	M	oran Model	_
t-3	y a a a		Q (λ ο ρ	Q

≣ •⁄ ۹. (~ 13/37

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Wright-Fi 2 <i>N</i> _{wr} Non- gene popu ever	sher model gametes. overlapping erations. (The en lation gets repla y generation.)	tire ced	nodel gametes. erlapping gener actly one indivi s replaced ever eration. All oth viduals survive t generation.)	rations. dual y er to the
Facts For siz	r the two models $P_{N_{e}}$, we need to	to have the same set $N_{\rm M} = 2N_{\rm ME}$.	effective popul	ation

The two models converge to the same diffusion limit.

troduction	Random Mating	Graphical Framework	Results	Other Works
000000000	0000000			

Genotypic Match Probability

Randomly choose two pairs of gametes without replacement. At stationarity, what is the probability that the two pairs have a complete genotypic match at L unlinked loci?

Haplotypic Match Probability

Randomly choose two gametes without replacement. At stationarity, what is the probability that the two gametes have a complete copy number match at *L* unlinked loci?

Pair 1			Pair 2			
Locus	Genotype		Locus	Genotype		
1	7,8		1	7,8		
2	15,16		2	15,16		
3	19,20		3	19,20		
4	11,11		4	11,11		
5	29,31		5	< □ > < 29,31 > < ≡ >	æ	<i>S</i>

14/37
troduction	Random Mating	Graphical Framework	Results	Other Works
000000000	0000000			

Genotypic Match Probability

Randomly choose two pairs of gametes without replacement. At stationarity, what is the probability that the two pairs have a complete genotypic match at L unlinked loci?

Haplotypic Match Probability

Randomly choose two gametes without replacement. At stationarity, what is the probability that the two gametes have a complete copy number match at *L* unlinked loci?

Gamete x		Gamete y		
Locus	Copy Number	Locus	Copy Number	
1	7	1	7	
2	15	2	15	
3	19	3	19	
4	11	4	11	
5	29	5	• • • • • • • • • • • • • • • • •	E ∽۹

At stationarity, $\mathbb{P}(x_i = y_i) = \mathbb{P}(x'_i = y'_i)$, so we can solve for the stationary probability $\mathbb{P}(x_i = y_i)$.

) Q (∾ 15/37

0 Q (P

At stationarity, $\mathbb{P}(x_i = y_i) = \mathbb{P}(x'_i = y'_i)$, so we can solve for the stationary probability $\mathbb{P}(x_i = y_i)$.

つへで 15/37

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Recurrence equation	s			
The ulti	mate goal			
Want to	compute $\mathbb{P}[(x_1,$	$\ldots, x_L) = (y_1, \ldots, y_L)$.)].	
Genera	l strategy			
Given a	match relation	R, use		
	$\mathbb{P}(R) = \sum_{Ancestr}$	ℙ(<i>R</i> Ancestry) ℙ(λ	Ancestry)	
to gene	rate a recurrenc	e equation of form $\mathbb P$	$(R) = \sum_{k} c_{k}$	$\mathbb{P}(\boldsymbol{R}_{k}^{\prime}),$
where a Laurie a	c_k are coefficient nd Weir (2003) ac	s which depend on a lopted the same strate	N and μ_1, \ldots	, μ _L .

For large *L*, there are many ancestries and many match relations to consider.

Introduction	Random Mating ○○○○○●○	Graphical Framework	Results 00000	Other Works
Recurrence equation	S			
The ulti	mate goal			
Want to	compute $\mathbb{P}[(x_1,$	$\ldots, x_L) = (y_1, \ldots, y_L)$	_)].	
Genera	l strategy			
Given a	a match relation	R, use		
	$\mathbb{P}(R) = \sum_{Ancestri}$	ℙ(<i>R</i> Ancestry)ℙ(. ^y	Ancestry)	
to gene	rate a recurrenc	e equation of form $\mathbb P$	$p(R) = \sum_{k} c_k \mathbb{I}$	$\mathbb{P}(\boldsymbol{R}'_k),$
where a Laurie a	c_k are coefficient and Weir (2003) ac	s which depend on a lopted the same strate	N and μ_1, \ldots	, μ _L .
Problem	n			

For large *L*, there are many ancestries and many match relations to consider.

Problem

For large *L*, there are many ancestries and many match relations to consider.

Introduction	Random Mating ○○○○○●	Graphical Framework	Results	Other Works
Recurrence equation	IS			
Question How m for the	on <mark>any inequivalent</mark> 13-locus haploty	match relations do v pic match probability	we need to co computation	onsider 1?

Introduction 000000000	Random Mating	Graphical Framework	Results 00000	Other Works
Recurrence equations				

Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates μ_1, \ldots, μ_{13} , we need to consider 2021616201559793 inequivalent match relations.

Introduction 000000000	Random Mating	Graphical Framework	Results	Other Works
Recurrence equations				

Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates μ_1, \ldots, μ_{13} , we need to consider 2021616201559793 inequivalent match relations.

A special case

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider 3112753 inequivalent match relations.

Introduction 000000000	Random Mating ○○○○○○●	Graphical Framework	Results 00000	Other Works
Recurrence equations				

Question

How many inequivalent match relations do we need to consider for the 13-locus haplotypic match probability computation?

General case

For arbitrary mutation rates μ_1, \ldots, μ_{13} , we need to consider 2021616201559793 inequivalent match relations.

A special case

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider 3112753 inequivalent match relations.

Question

How do we generate the recurrence relations satisfied by those match relations?

000000000000000000000000000000000000000	Random Mating		00000	Other Works
Outline				
 Introd Ra Co Mode Re Grap Ma Op To Resu Ac W Ex Othe Pee St 	duction andom match p old hit els of Random I ecurrence equa hical Framewor atch graphs perations on gra pological order its ccuracy of the p right-Fisher vs. ccluding siblings r Works erfect Monogam	robability Mating tions k aphs ing and graph enur roduct rule Moran s	neration	इ. २००,०
00	ibalinaca popul	ations		17/37

ntroduction	Random Mating	Graphical Framework	Results	Other Works
Match graphs				

We have developed a simple and flexible graphical framework for computing match probabilities. (Song and Slatkin, 2007)

From match probabilities to match graphs

- Match graph:
 - Vertex: Create a vertex labeled x for gamete x.
 - Edge: Draw an undirected edge labeled *i* between vertices x and y if and only if $x_i = y_i$.
- Two *fully-labeled* graphs (i.e., all vertices and edges are labeled) are equivalent if they are isomorphic as *edge-labeled* graphs (i.e., ignoring vertex labels).

$$\mathbb{P}(x_{1} = y_{1}, x_{2} = y_{2}, x_{3} = z_{3}) \qquad \mathbb{P}(x_{1} = y_{1}, x_{2} = y_{2}, y_{3} = z_{3})$$

$$G_{1} = x \underbrace{\begin{array}{c} 1 \\ 2 \\ 3 \end{array}}_{2} y \underbrace{\begin{array}{c} 0 \\ 0 \\ 3 \end{array}}_{2} z \qquad G_{2} = x \underbrace{\begin{array}{c} 0 \\ 2 \\ 2 \\ 3 \end{array}}_{3} y \underbrace{\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}}_{3} z = z_{3}$$

18/37

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Match graphs				
Observ	vation			
There i match and no	is a 1-to-1 correspon graphs and the set on n-isolated vertices.	ndence between t of loopless multig	he set of <i>L</i> -loc raphs with <i>L</i> ec	us dges
			• • •	
	Looped multigra	ph Looples	s multigraph	

For arbitrary mutation rates μ_1, \ldots, μ_{13} , we need to consider loopless multigraphs with k labeled edges, for $k = 1, \ldots 13$.

A special case

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider consider loopless multigraphs with *k* unlabeled edges, for $k = 1, \dots 13$.

Introduction	Random Mating	Graphical Framework	Results	Other Works
Match graphs				
Observ	ation			
There is match g and nor	s a <mark>1-to-1</mark> corresp graphs and the se <mark>n-isolated</mark> vertice	pondence between et of <mark>loopless multi</mark> s.	the set of <i>L</i> -lo graphs with <i>L</i> e	cus edges
		• •		
	Looped multig	raph Loople	ess multigraph	ו
Genera	l case			
For arb looples	itrary mutation ra s multigraphs wit	tes μ_1,\ldots,μ_{13} , we h k labeled edges,	need to consider for $k = 1, \dots 1$	der 3.
A speci	al case			

multigraphs with k unlabeled edges, for k = 1, ...

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works			
Match graphs							
Observ	ation						
There is match g and not	There is a 1-to-1 correspondence between the set of <i>L</i> -locus match graphs and the set of loopless multigraphs with <i>L</i> edges and non-isolated vertices.						
		• •					
	Looped multigra	ph Looples	ss multigraph				
Genera	l case						

For arbitrary mutation rates μ_1, \ldots, μ_{13} , we need to consider loopless multigraphs with *k* labeled edges, for $k = 1, \ldots 13$.

A special case

For $\mu_1 = \mu_2 = \cdots = \mu_{13}$, we need to consider consider loopless multigraphs with *k* unlabeled edges, for $k = 1, \dots 13$.

Introduction	Ra	ndom Mating	Graphical Framework	Results 00000	Other Works
Match graphs					
-		Number o	of loopless multigra	aphs with <i>L</i> edges	
	L		Edge labeled	Edge unlabeled	
-	1		1	1	
	2		3	3	
	3		16	8	
	4		139	23	
	5		1 750	66	
	6		29 388	212	
	7		624 889	686	
	8		16 255 738	2 389	
	9		504 717 929	8 682	
	10		18 353 177 160	33 160	
	11	7	69 917 601 384	132 277	
	12	36 8	03 030 137 203	550 835	
	13	1 984 0	24 379 014 193	2 384 411	
-	Total	2 021 6	16 201 559 793	3 112 753	

19/37

Introduction 000000000	Random Mating	Graphical Framework	Results 00000	Other Works
Operations on graphs				

Finding recurrence equations

By performing a set of prescribed operations on a given graph at generation t, we determine how it is related to a linear combination of graphs at generation t - 1.

Vertex Split (inheritance pattern across loci for each gamete)
 Vertex Merge (sharing of parents by two or more gametes)

Introduction 000000000	Random Mating	Graphical Framework	Results 00000	Other Works
Operations on graphs				

Finding recurrence equations

By performing a set of prescribed operations on a given graph at generation t, we determine how it is related to a linear combination of graphs at generation t - 1.

Vertex Split (inheritance pattern across loci for each gamete)
 Vertex Merge (sharing of parents by two or more gametes)

Split-merge operations have associated probabilities which appear as coefficients in recurrence equations.

Introduction 0000000000	Random Mating	Graphical Framework	Results 00000	Other Works
Operations on graphs				

time t

time t-1

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Operations on graphs				

Clearly, these graphs are isomorphic.

Introduction 0000000000	Random Mating	Graphical Framework	Results 00000	Other Works		
Topological ordering and graph enumeration						

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 か Q () 23/37

◆□ ▶ < ⑦ ▶ < ミ ▶ < ミ ▶ ミ ● ○ Q () 23/37

<ロ> <@> < 注> < 注> < 注</p>

23/37

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works		
Topological ordering and graph enumeration						

- Our graphical approach makes the combinatorial structure of the problem easier to understand.
- We implemented our method in a fully automated program, thus reducing the chance of human error.

Related Problems

- Graph isomorphism testing. (We used the *nauty* package.)
- Canonical encoding of graphs.
- Equivalence of split-merge operations. Two different vertex split-merge operations on a graph with symmetries may produce isomorphic match graphs.
- Solving a large linear system of equations. (We used the iterative Successive Over-Relaxation method.)

Introduction	Random Mating	Graphical Framework	Results	Other Works
Outline				
 Introdu Rar Col Model Rec Graph Mai Ope Top Result Acco Wri 	uction ndom match pro d hit is of Random W currence equati ical Framework tch graphs erations on grap pological orderir ts curacy of the pro obt-Fisher vs	obability lating ons c bhs ng and graph enum oduct rule Moran	neration	
• Exc	luding siblings			
OtherPer	Works fect Monogamy	Model		
- 0		All a second		E → E · A Q A

Subdivided populations

Introduc	ction 000000	Random Mating	Graphical F	ramework	Results ●○○○○	Other Works			
Accura	Accuracy of the product rule								
	Moran model MPs for $N_e = 10,000$ and $\mu_i = \mu$ for all loci <i>i</i> :								
L	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)			
	$\mu = 1$	imes 10 ⁻⁴	$\mu = 2$ >	< 10 ⁻⁴	$\mu=$ 3 >	< 10 ⁻⁴			
1	2.00×10 ⁻¹	2.00×10^{-1}	1.11×10 ⁻¹	1.11×10 ⁻¹	7.69×10 ⁻²	7.69×10 ⁻²			
2	4.00×10 ⁻²	4.00×10 ⁻²	1.23×10 ⁻²	1.24×10 ⁻²	5.91×10 ⁻³	5.94×10 ⁻³			
3	8.00×10 ⁻³	8.01×10 ⁻³	1.37×10 ⁻³	1.38×10 ⁻³	4.55×10 ⁻⁴	4.66×10 ⁻⁴			
4	1.60×10 ⁻³	1.61×10 ⁻³	1.52×10 ⁻⁴	1.59×10 ⁻⁴	3.50×10 ⁻⁵	4.03×10 ⁻⁵			
5	3.20×10 ⁻⁴	3.25×10^{-4}	1.69×10 ⁻⁵	2.01×10^{-5}	2.69×10 ⁻⁶	5.29×10 ⁻⁶			
6	6.40×10 ⁻⁵	6.68×10 ⁻⁵	1.88×10 ⁻⁶	3.51×10 ⁻⁶	2.07×10 ⁻⁷	1.52×10 ⁻⁶			
7	1.28×10 ⁻⁵	1.44×10 ⁻⁵	2.09×10 ⁻⁷	1.08×10 ⁻⁶	1.59×10 ⁻⁸	7.00×10 ⁻⁷			
8	2.56×10 ⁻⁶	3.48×10 ⁻⁶	2.32×10 ⁻⁸	4.94×10^{-7}	1.22×10 ⁻⁹	3.63×10 ⁻⁷			
9	5.11×10 ⁻⁷	1.05×10 ⁻⁶	2.57×10 ⁻⁹	2.60×10 ⁻⁷	9.39×10 ⁻¹¹	1.93×10 ⁻⁷			
10	1.02×10 ⁻⁷	4.16×10 ⁻⁷	2.86×10 ⁻¹⁰	1.42×10 ⁻⁷	7.22×10 ⁻¹²	1.03×10 ⁻⁷			
11	2.05×10 ⁻⁸	2.06×10 ⁻⁷	3.18×10 ⁻¹¹	7.84×10 ⁻⁸	5.55×10 ⁻¹³	5.54×10 ⁻⁸			
12	4.09×10 ⁻⁹	1.15×10 ⁻⁷	3.53×10 ⁻¹²	4.35×10 ⁻⁸	4.27×10 ⁻¹⁴	2.98×10 ⁻⁸			
13	8.18×10 ⁻¹⁰	6.69×10 ⁻⁸	3.92×10 ⁻¹³	2.41×10^{-8}	3.28×10 ⁻¹⁵	1.60×10 ⁻⁸			

Recently, we succeeded in computing haplotypic MPs for up to 10 loci in the WF model, and up to 13 loci in the Moran model. (Bhaskar and Song, *ISMB 2009, in press*)

Introduc 00000	ction 00000	Random Mating	Graphical F	ramework	Results ●○○○○	Other Works
Accurac	cy of the product ru	le				
	Moran r	nodel MPs fo	or $N_e = 10, 0$	000 and μ_i	$=\mu$ for all lo	oci <i>i</i> :
L	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)
	$\mu = 1$	imes 10 ⁻⁴	$\mu = 2 angle$	< 10 ⁻⁴	$\mu=$ 3 >	< 10 ⁻⁴
1	2.00×10 ⁻¹	2.00×10 ⁻¹	1.11×10 ⁻¹	1.11×10 ⁻¹	7.69×10 ⁻²	7.69×10 ⁻²
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10 ⁻²	1.24×10 ⁻²	5.91×10^{-3}	5.94×10 ⁻³
3	8.00×10 ⁻³	8.01×10 ⁻³	1.37×10 ⁻³	1.38×10 ⁻³	4.55×10^{-4}	4.66×10 ⁻⁴
4	1.60×10 ⁻³	1.61×10 ⁻³	1.52×10 ⁻⁴	1.59×10 ⁻⁴	3.50×10 ⁻⁵	4.03×10 ⁻⁵
5	3.20×10 ⁻⁴	3.25×10^{-4}	1.69×10 ⁻⁵	2.01×10^{-5}	2.69×10 ⁻⁶	5.29×10 ⁻⁶
6	6.40×10 ⁻⁵	6.68×10 ⁻⁵	1.88×10 ⁻⁶	3.51×10 ⁻⁶	2.07×10 ⁻⁷	1.52×10 ⁻⁶
7	1.28×10 ⁻⁵	1.44×10 ⁻⁵	2.09×10 ⁻⁷	1.08×10 ⁻⁶	1.59×10 ⁻⁸	7.00×10 ⁻⁷
8	2.56×10 ⁻⁶	3.48×10 ⁻⁶	2.32×10 ⁻⁸	4.94×10^{-7}	1.22×10 ⁻⁹	3.63×10 ⁻⁷
9	5.11×10 ⁻⁷	1.05×10 ⁻⁶	2.57×10 ⁻⁹	2.60×10 ⁻⁷	9.39×10 ⁻¹¹	1.93×10 ⁻⁷
10	1.02×10 ⁻⁷	4.16×10 ⁻⁷	2.86×10 ⁻¹⁰	1.42×10 ⁻⁷	7.22×10 ⁻¹²	1.03×10 ⁻⁷
11	2.05×10 ⁻⁸	2.06×10 ⁻⁷	3.18×10 ⁻¹¹	7.84×10 ⁻⁸	5.55×10 ⁻¹³	5.54×10 ⁻⁸
12	4.09×10 ⁻⁹	1.15×10 ⁻⁷	3.53×10 ⁻¹²	4.35×10 ⁻⁸	4.27×10 ⁻¹⁴	2.98×10 ⁻⁸
13	8.18×10 ⁻¹⁰	6.69×10 ⁻⁸	3.92×10 ⁻¹³	2.41×10^{-8}	3.28×10 ⁻¹⁵	1.60×10 ⁻⁸

- For a give mutation rate μ, the product rule becomes less accurate as the number of loci increases.
- Furthermore, for a large number L of loci, a slight change in μ causes the product rule MP to decrease by a large amount.

Introduc 00000	ction 00000	Random Mating	Graphical F	ramework	Results ●○○○○	Other Works		
Accurac	Accuracy of the product rule							
	Moran r	nodel MPs fo	or <i>N_e</i> = 10,0	000 and μ_i	$=\mu$ for all lo	oci <i>i</i> :		
L	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)		
	$\mu = 1$	imes 10 ⁻⁴	$\mu=$ 2 >	< 10 ⁻⁴	$\mu=$ 3 >	< 10 ⁻⁴		
1	2.00×10 ⁻¹	2.00×10^{-1}	1.11×10 ⁻¹	1.11×10 ⁻¹	7.69×10 ⁻²	7.69×10 ⁻²		
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10 ⁻²	1.24×10 ⁻²	5.91×10^{-3}	5.94×10 ⁻³		
3	8.00×10 ⁻³	8.01×10 ⁻³	1.37×10 ⁻³	1.38×10 ⁻³	4.55×10 ⁻⁴	4.66×10 ⁻⁴		
4	1.60×10 ⁻³	1.61×10 ⁻³	1.52×10 ⁻⁴	1.59×10 ⁻⁴	3.50×10 ⁻⁵	4.03×10 ⁻⁵		
5	3.20×10 ⁻⁴	3.25×10^{-4}	1.69×10 ⁻⁵	2.01×10^{-5}	2.69×10 ⁻⁶	5.29×10 ⁻⁶		
6	6.40×10 ⁻⁵	6.68×10 ⁻⁵	1.88×10 ⁻⁶	3.51×10 ⁻⁶	2.07×10 ⁻⁷	1.52×10 ⁻⁶		
7	1.28×10 ⁻⁵	1.44×10 ⁻⁵	2.09×10 ⁻⁷	1.08×10 ⁻⁶	1.59×10 ⁻⁸	7.00×10 ⁻⁷		
8	2.56×10 ⁻⁶	3.48×10 ⁻⁶	2.32×10 ⁻⁸	4.94×10^{-7}	1.22×10 ⁻⁹	3.63×10 ⁻⁷		
9	5.11×10 ⁻⁷	1.05×10 ⁻⁶	2.57×10 ⁻⁹	2.60×10^{-7}	9.39×10 ⁻¹¹	1.93×10 ⁻⁷		
10	1.02×10 ⁻⁷	4.16×10 ⁻⁷	2.86×10 ⁻¹⁰	1.42×10 ⁻⁷	7.22×10 ⁻¹²	1.03×10 ⁻⁷		
11	2.05×10 ⁻⁸	2.06×10 ⁻⁷	3.18×10 ⁻¹¹	7.84×10 ⁻⁸	5.55×10 ⁻¹³	5.54×10 ⁻⁸		
12	4.09×10 ⁻⁹	1.15×10 ⁻⁷	3.53×10 ⁻¹²	4.35×10 ⁻⁸	4.27×10 ⁻¹⁴	2.98×10 ⁻⁸		
13	8.18×10 ⁻¹⁰	6.69×10 ⁻⁸	3.92×10 ⁻¹³	2.41×10^{-8}	3.28×10 ⁻¹⁵	1.60×10 ⁻⁸		

- The observed homozygosity at the CODIS microsatellite loci typically ranges between 0.1 and 0.3, with the average over all 13 loci being about 0.2 (Budowle *et. al*, 2001).
- Under the infinite alleles model with $N_e = 10,000$, homozygosity = 0.2 corresponds to $\mu = 10^{-4}$.

Introduction		Random Mating	Graphical Framework		Results ●○○○○	Other Works			
Accuracy of the product rule									
Moran model MPs for $N_e = 10,000$ and $\mu_i = \mu$ for all loci <i>i</i> :									
L	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)	Prod. Rule	True MP(L)			
	$\mu = 1 \times 10^{-4}$		$\mu =$ 2 $ imes$ 10 ⁻⁴		$\mu = 3 imes 10^{-4}$				
1	2.00×10 ⁻¹	2.00×10^{-1}	1.11×10 ⁻¹	1.11×10 ⁻¹	7.69×10 ⁻²	7.69×10 ⁻²			
2	4.00×10^{-2}	4.00×10^{-2}	1.23×10 ⁻²	1.24×10 ⁻²	5.91×10^{-3}	5.94×10 ⁻³			
3	8.00×10 ⁻³	8.01×10 ⁻³	1.37×10 ⁻³	1.38×10 ⁻³	4.55×10^{-4}	4.66×10 ⁻⁴			
4	1.60×10 ⁻³	1.61×10 ⁻³	1.52×10 ⁻⁴	1.59×10 ⁻⁴	3.50×10 ⁻⁵	4.03×10 ⁻⁵			
5	3.20×10 ⁻⁴	3.25×10^{-4}	1.69×10 ⁻⁵	2.01×10^{-5}	2.69×10 ⁻⁶	5.29×10 ⁻⁶			
6	6.40×10 ⁻⁵	6.68×10^{-5}	1.88×10 ⁻⁶	3.51×10 ⁻⁶	2.07×10 ⁻⁷	1.52×10 ⁻⁶			
7	1.28×10 ⁻⁵	1.44×10^{-5}	2.09×10 ⁻⁷	1.08×10 ⁻⁶	1.59×10 ⁻⁸	7.00×10 ⁻⁷			
8	2.56×10 ⁻⁶	3.48×10 ⁻⁶	2.32×10 ⁻⁸	4.94×10^{-7}	1.22×10 ⁻⁹	3.63×10 ⁻⁷			
9	5.11×10^{-7}	1.05×10 ⁻⁶	2.57×10 ⁻⁹	2.60×10 ⁻⁷	9.39×10 ⁻¹¹	1.93×10 ⁻⁷			
10	1.02×10 ⁻⁷	4.16×10 ⁻⁷	2.86×10 ⁻¹⁰	1.42×10 ⁻⁷	7.22×10 ⁻¹²	1.03×10 ⁻⁷			
11	2.05×10 ⁻⁸	2.06×10 ⁻⁷	3.18×10 ⁻¹¹	7.84×10 ⁻⁸	5.55×10 ⁻¹³	5.54×10 ⁻⁸			
12	4.09×10 ⁻⁹	1.15×10 ⁻⁷	3.53×10 ⁻¹²	4.35×10 ⁻⁸	4.27×10 ⁻¹⁴	2.98×10 ⁻⁸			
13	8.18×10 ⁻¹⁰	6.69×10 ⁻⁸	3.92×10 ⁻¹³	2.41×10^{-8}	3.28×10 ⁻¹⁵	1.60×10 ⁻⁸			

- For this value of μ, the product rule is reasonably accurate, especially for L ≤ 10.
- But, for $\mu = 2 \times 10^{-4}$, which corresponds to homozygosity = 0.11, the product rule produces considerably less accurate MPs.

Introduction	Random Mating	Graphical Framework	Results	Other Works
			0000	

Wright-Fisher vs. Moran

Wright-Fisher vs Moran (for $N_e = 10,000$)

L	WF	Moran	WF	Moran	WF	Moran
	$\mu = 1 \times 10^{-4}$		$\mu =$ 2 $ imes$ 10 $^{-4}$		$\mu=$ 3 $ imes$ 10 $^{-4}$	
1	2.00×10 ⁻¹	2.00×10 ⁻¹	1.11×10 ⁻¹	1.11×10 ⁻¹	7.69×10 ⁻²	7.69×10 ⁻²
2	4.00×10 ⁻²	4.00×10^{-2}	1.24×10 ⁻²	1.24×10 ⁻²	5.93×10 ⁻³	$5.94 imes 10^{-3}$
3	8.01×10^{-3}	8.01×10^{-3}	1.38×10 ⁻³	1.38×10 ⁻³	4.60×10^{-4}	4.66×10^{-4}
4	1.60×10 ⁻³	1.61×10 ⁻³	1.55×10^{-4}	1.59×10^{-4}	3.68×10^{-5}	4.03×10^{-5}
5	3.22×10 ⁻⁴	3.25×10^{-4}	1.78×10^{-5}	2.01×10^{-5}	3.26×10 ⁻⁶	5.29×10 ⁻⁶
6	6.48×10 ⁻⁵	6.68×10 ⁻⁵	2.16×10 ⁻⁶	3.51×10 ⁻⁶	3.80×10 ⁻⁷	1.52×10 ⁻⁶
7	1.31×10 ⁻⁵	1.44×10^{-5}	3.02×10 ⁻⁷	1.08×10 ⁻⁶	6.86×10 ⁻⁸	7.00×10^{-7}
8	2.69×10 ⁻⁶	3.48×10 ⁻⁶	5.41×10 ⁻⁸	4.94×10^{-7}	1.74×10 ⁻⁸	3.63×10^{-7}
9	5.65×10^{-7}	1.05×10 ⁻⁶	1.28×10 ⁻⁸	2.60×10 ⁻⁷	5.08×10 ⁻⁹	1.93×10 ⁻⁷
10	1.24×10^{-7}	4.16×10 ⁻⁷	3.72×10 ⁻⁹	1.42×10^{-7}	1.55×10 ⁻⁹	1.03×10^{-7}

- The two models agree very well in the single locus case.
- However, for large values of *L*, MPs in the Moran model can be orders of magnitude higher than that in the WF model.
- This difference grows with the number of loci and mutation rates.
| Introdu
0000 | uction
000000 | Random Mating | Graphical Framework | Results
○○●○○ | Other Works |
|-----------------|--|-----------------|---|------------------|-------------|
| Wright | -Fisher vs. Moran | | | | |
| | The same | diffusion limit | | | |
| | Send $\mu \rightarrow 0$ and $N_e \rightarrow \infty$ while keeping $\theta = 4 N_e \mu$ fixed. Then | | | | |
| | | L-locus I | $MP \to \left(\frac{1}{1+\theta}\right)^L.$ | | |
| | | | | | |

in both the WF and Moran models.

Introd	uction 000000	Random Mating	Graphical Framework	Results ○○●○○	Other Works		
Wrigh	t-Fisher vs. Moran						
	The same	e diffusion limit					
	Send $\mu \rightarrow 0$ and $N_e \rightarrow \infty$ while keeping $\theta = 4N_e\mu$ fixed. Then,						
	L -locus MP $ ightarrow \left(rac{1}{1+ heta} ight)^L$.						
	in both the	e WF and Mor	an models.				

Match probabilities for $N_e = 10^4$ and $\mu = 10^{-3}$.

L	$1/(1+ heta)^L$	WF	Moran
1	$2.44 imes 10^{-2}$	2.44×10 ⁻²	2.44×10 ⁻²
2	$5.95 imes10^{-4}$	6.09×10 ⁻⁴	6.17×10 ⁻⁴
3	$1.45 imes10^{-5}$	1.87×10 ⁻⁵	2.39×10 ⁻⁵
4	$3.54 imes10^{-7}$	1.42×10 ⁻⁶	4.41×10 ⁻⁶
5	$8.63 imes10^{-9}$	2.88×10 ⁻⁷	1.92×10 ⁻⁶
6	$2.11 imes 10^{-10}$	7.45×10 ⁻⁸	9.38×10 ⁻⁷
7	$5.13 imes 10^{-12}$	1.99×10 ⁻⁸	4.70×10 ⁻⁷
8	$1.25 imes 10^{-13}$	5.36×10 ⁻⁹	2.39×10 ⁻⁷
9	3.05×10^{-15}	1.45×10 ⁻⁹	1.21×10 ⁻⁷

√ < (~</p>27/37

Introd	uction 000000	Random Mating	Graphical Framework	Results ○o●○○	Other Works		
Wrigh	t-Fisher vs. Moran						
	The same	diffusion limit					
	Send $\mu \rightarrow 0$ and $N_e \rightarrow \infty$ while keeping $\theta = 4N_e\mu$ fixed. Then,						
	L -locus MP $\rightarrow \left(rac{1}{1+ heta} ight)^L$.						
	in both the	e WF and Moran	models.				

Match probabilities for $N_e = 10^9$ and $\mu = 10^{-8}$.

L	$1/(1+ heta)^L$	WF	Moran
1	$2.44 imes 10^{-2}$	$2.44 imes 10^{-2}$	$2.44 imes 10^{-2}$
2	$5.95 imes10^{-4}$	$5.95 imes10^{-4}$	$5.95 imes10^{-4}$
3	$1.45 imes10^{-5}$	$1.45 imes10^{-5}$	$1.45 imes10^{-5}$
4	$3.54 imes10^{-7}$	$3.54 imes10^{-7}$	$3.54 imes10^{-7}$
5	$8.63 imes10^{-9}$	$8.63 imes10^{-9}$	$8.65 imes10^{-9}$
6	$2.11 imes 10^{-10}$	$2.11 imes 10^{-10}$	$2.20 imes10^{-10}$
7	$5.13 imes10^{-12}$	$5.34 imes10^{-12}$	$9.86 imes 10^{-12}$
8	$1.25 imes10^{-13}$	$1.79 imes 10^{-13}$	$2.52 imes 10^{-12}$
9	$3.05 imes10^{-15}$	$1.75 imes 10^{-14}$	1.22×10^{-12}

ntrod	uction 000000	Random Mating	Graphical Framework	Results ○○○●○	Other Works	
Exclu	ding siblings					
	MPs cond compared	ditioned on the d are neither fu	event that the two ir Ill-sibs nor half-sibs.	ndividuals bei	ing	
	• This computation can be carried out by restricting					

- This computation can be carried out by restricting vertex-merge operations.
- The product rule becomes much more accurate if we are provided with the additional information that the individuals being compared are not close relatives.

L	Prod. Rule	WF	Prod. Rule	WF	Prod. Rule	WF
	$\mu = 1$	imes 10 ⁻⁴	$\mu = 5$	$\times 10^{-4}$	$\mu = 1$	$ imes$ 10 $^{-3}$
1	2.00×10^{-1}	$2.00 imes 10^{-1}$	4.75×10^{-2}	$4.75 imes 10^{-2}$	2.43×10^{-2}	$2.43 imes10^{-2}$
2	4.00×10^{-2}	$4.00 imes10^{-2}$	$2.26 imes 10^{-3}$	$2.26 imes10^{-3}$	$5.91 imes 10^{-4}$	$5.95 imes10^{-4}$
3	7.99×10^{-3}	$7.99 imes10^{-3}$	1.07×10^{-4}	$1.08 imes10^{-4}$	$1.44 imes 10^{-5}$	$1.48 imes10^{-5}$
4	1.60×10^{-3}	$1.60 imes 10^{-3}$	5.11×10^{-6}	$5.20 imes10^{-6}$	$3.49 imes 10^{-7}$	$3.93 imes10^{-7}$
5	3.19×10^{-4}	$3.20 imes10^{-4}$	$2.43 imes 10^{-7}$	$2.54 imes10^{-7}$	$8.48 imes 10^{-9}$	$1.22 imes 10^{-8}$
6	$6.39 imes 10^{-5}$	$6.39 imes10^{-5}$	$1.15 imes 10^{-8}$	$1.28 imes 10^{-8}$	2.06×10^{-10}	$5.19 imes10^{-10}$
7	1.28×10^{-5}	$1.28 imes10^{-5}$	5.48×10^{-10}	$6.81 imes 10^{-10}$	5.01×10^{-12}	$3.15 imes 10^{-11}$
8	$2.55 imes 10^{-6}$	$2.56 imes10^{-6}$	2.61×10^{-11}	$4.02 imes 10^{-11}$	1.22×10^{-13}	$2.39 imes10^{-12}$
9	5.10×10^{-7}	$5.12 imes10^{-7}$	1.24×10^{-12}	$2.76 imes 10^{-12}$	$2.96 imes 10^{-15}$	$2.00 imes10^{-13}$
10	1.02×10^{-7}	$1.03 imes10^{-7}$	5.89×10^{-14}	$2.23 imes10^{-13}$	7.19 🛪 10 - 17	1≣74 × ∎0 ^{⊸14}

Introduction 000000000	Random Mating	Graphical Framework	Results ○○○●○	Other Works
Excluding siblings				

No analogous results for the Moran model.

L	Prod. Rule	WF	Prod. Rule	WF	Prod. Rule	WF
	$\mu = 1$	imes 10 ⁻⁴	$\mu = 5$	imes 10 ⁻⁴	$\mu = 1$	$ imes$ 10 $^{-3}$
1	2.00×10^{-1}	$2.00 imes 10^{-1}$	$4.75 imes 10^{-2}$	$4.75 imes 10^{-2}$	2.43×10^{-2}	$2.43 imes 10^{-2}$
2	4.00×10^{-2}	$4.00 imes10^{-2}$	$2.26 imes 10^{-3}$	$2.26 imes10^{-3}$	$5.91 imes 10^{-4}$	$5.95 imes10^{-4}$
3	7.99×10^{-3}	$7.99 imes10^{-3}$	1.07×10^{-4}	$1.08 imes10^{-4}$	1.44×10^{-5}	$1.48 imes 10^{-5}$
4	1.60×10^{-3}	$1.60 imes10^{-3}$	$5.11 imes 10^{-6}$	$5.20 imes10^{-6}$	3.49×10^{-7}	$3.93 imes10^{-7}$
5	3.19×10^{-4}	$3.20 imes10^{-4}$	$2.43 imes 10^{-7}$	$2.54 imes10^{-7}$	$8.48 imes 10^{-9}$	$1.22 imes 10^{-8}$
6	$6.39 imes 10^{-5}$	$6.39 imes10^{-5}$	$1.15 imes 10^{-8}$	$1.28 imes10^{-8}$	2.06×10^{-10}	$5.19 imes10^{-10}$
7	1.28×10^{-5}	$1.28 imes10^{-5}$	5.48×10^{-10}	$6.81 imes 10^{-10}$	5.01×10^{-12}	$3.15 imes 10^{-11}$
8	2.55×10^{-6}	$2.56 imes10^{-6}$	2.61×10^{-11}	$4.02 imes 10^{-11}$	1.22×10^{-13}	$2.39 imes10^{-12}$
9	5.10×10^{-7}	$5.12 imes10^{-7}$	1.24×10^{-12}	$2.76 imes 10^{-12}$	2.96×10^{-15}	$2.00 imes10^{-13}$
10	1.02×10^{-7}	$1.03 imes10^{-7}$	$5.89 imes 10^{-14}$	2.23×10^{-13}	7:19 🛪 10 - 17	1≣74 ×∃0 ^{⊸14}

28/37

Introduction	Random Mating	Graphical Framework	Results	Other Works
Excluding siblings				
Summa	arv			

For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.

Introduction 000000000	Random Mating	Graphical Framework	Results ○○○○●	Other Works
Excluding siblings				

- For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
- We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.

Introduction	Random Mating	Graphical Framework	Results ○○○○●	Other Works
Excluding siblings				

- For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
- We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
- We have revealed a striking difference between the Wright-Fisher and Moran models.

Introduction 000000000	Random Mating	Graphical Framework	Results ○○○○●	Other Works
Excluding siblings				

- For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
- We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
- We have revealed a striking difference between the Wright-Fisher and Moran models.
- Genealogical interpretation? We speculate that the times to the most recent common ancestors at unlinked loci are more correlated in the Moran model than in the WF model.

Introduction 000000000	Random Mating	Graphical Framework	Results ○○○○●	Other Works
Excluding siblings				

- For a finite population, the accuracy of multi-locus MPs predicted by the product rule is highly sensitive to mutation rates in the range of interest, while the true MPs are not.
- We assumed an infinite alleles model, in which identity in allelic state implies identity by descent. Our work studies the effect of shared genealogies in a finite population on the joint probability of identity by descent.
- We have revealed a striking difference between the Wright-Fisher and Moran models.
- Genealogical interpretation? We speculate that the times to the most recent common ancestors at unlinked loci are more correlated in the Moran model than in the WF model.
- It is tempting to suspect that other quantities of interest to population genomics may be fundamentally different in the two models, especially when many loci are considered.

Introduction	Random Mating	Graphical Framework	Results	Other Works
Outline				
1 Intro	duction			
• R	andom match p	robability		
• C	old hit			
2 Mod	els of Random I	Vating		
• R	ecurrence equa	tions		
3 Grap	phical Framewor	k		
• M	atch graphs			
• 0	perations on gra	aphs		
• To	pological order	ing and graph enum	eration	
4 Resi	ults			
• A	ccuracy of the p	roduct rule		
• W	/right-Fisher vs.	Moran		
• E:	xcluding siblings	3		
5 Othe	er Works			
• Pe	erfect Monogam	y Model		
SI	ubdivided popul	ations		< ≧ ▶ ≧ ∽ < (~ 29/37

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works	
Perfect Monogamy Model					

Using our graphical framework, we can consider other models of mating scheme.

Perfect Monogamy

Two gametes cannot be half sibs.

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Perfect Monogamy M	lodel			

Using our graphical framework, we can consider other models of mating scheme.

Perfect Monogamy

Two gametes cannot be half sibs.

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Perfect Monogamy Model				

Biparental diploid model

The perfect monogamy haploid model just described is equivalent to a biparental diploid model.

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works
Perfect Monogamy Model				

Biparental diploid model

The perfect monogamy haploid model just described is equivalent to a biparental diploid model.

32/37

Introduc	ction 00000	Rando	om Mating	Graphical Fran	mework	Results 00000	Other Works
Perfect	Monog	amy Model					
			Perfe	ect monoga	amy MP		
			Prom	iscuous ma	ating MP		
				Ļ	ı		
	L	$1 imes 10^{-4}$	$2 imes 10^{-4}$	$3 imes 10^{-4}$	$1 imes 10^{-3}$	$1 imes 10^{-2}$	$1 imes 10^{-1}$
	2	1.000	1.001	1.002	1.026	1.723	1.995
	3	1.001	1.008	1.024	1.556	3.914	3.992
	4	1.006	1.049	1.188	5.184	7.828	7.977
	5	1.019	1.259	2.240	12.248	15.573	15.929
	6	1.062	2.246	6.994	24.018	30.930	31.768
	7	1.192	6.122	19.341	45.882	61.286	63.210
	8	1.580	17.218	40.575	87.134	120.899	125.190
	9	2.699	39.413	74.664	164.510	236.485	245.708

Summary of results

- The effect of monogamy increases with the number of loci.
- For a given number of loci, the effect of monogamy increases with the mutation rate.

Introduction	Random Mating	Graphical Framework	Results	Other Works	
Perfect Monogamy Model					

Upper bounds on the effect of monogamy for L loci

Consider the Wright-Fisher model with $\mu_i = \mu$ for all loci *i*.

Proposition $\lim_{\mu\uparrow 1} \frac{L\text{-locus MP under perfect monogamy}}{L\text{-locus MP under promiscuous mating}} = 2^{L-1} + O\left(\frac{1}{N_{\text{WF}}}\right).$

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works ○○○○●○○
Subdivided populations				

Subdivided populations

It is possible to incorporate population structure in the graphical framework.

Key idea

Use vertex-colored graphs. Different colors for different subpopulations.

(Joint work with Anna Malaspinas and Monty Slatkin.)

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works ○○○○○●○
Familial search				

Recent California policy on familial search

- California recently implemented a policy for using partial DNA matches to identify potential close relatives of the individual who left a crime-scene sample.
- In addition to the 13-locus CODIS profiles, the policy also calls for using Y-linked markers to provide further evidence of relatedness.
- We just submitted a paper on the population genetics consequences of the policy. Specifically, we have an estimate on the number and ethnic distribution of false leads.

(Joint work with Erin Murphy and Monty Slatkin.)

Introduction	Random Mating	Graphical Framework	Results 00000	Other Works ○○○○○○●
Familial search				

Thank you for your attention.

Acknowledgments

UC Berkeley

Monty Slatkin (Integrative Biology) Erin Murphy (School of Law) Anand Bhaskar (Computer Science) Anna Malaspinas (Integrative Biology)

Research supported in part by NIH, NSF, Alfred P. Sloan Research Fellowship, and Packard Fellowship for Science and Engineering