
Paul Marjoram, Dept. of Preventive Medicine,
Keck School of Medicine, Univ. of Southern

California, Los Angeles.

High-dimensional data-sets
and the problems they cause

What we do for a living

• Given data D,
• Parameter(s) θ,
• Model M.

• Wish to make inference re. f(θ|D).
• f(θ|D)= f(D| θ) π(θ) / P(D)

Prior Normalizing constant
2

The problem

• Data D,
• Parameter(s) θ,
• Model M

3

The problem
• Data D,
• Parameter(s) θ,
• Model M

4

The problem

•
Data D,

• Parameter(s) θ,
• Model M

5

6

7

8

National Geographic: September 5, 2006—Unfortunately for a 13-foot (4-meter) Burmese python
in Florida's Everglades National Park, eating the enemy seems to have caused the voracious
reptile to bust a gut—literally.
Wildlife researchers with the South Florida Natural Resources Center found the dead, headless
python in October 2005 after it apparently tried to digest a 6-foot-long (2-meter-long) American
alligator. The mostly intact dead gator was found sticking out of a hole in the midsection of the
python, and wads of gator skin were found in the snake's gastrointestinal tract. 9

Summary

• Data sets are growing much larger.
• Larger implies more complex.
• Traditional analysis methods may fail or

become computationally intractable.
[f(D|θ)]

• Possible response:
• Construct better theory
• Use simpler (less realistic) models;
• ‘Approximate’ methods.

10

• Part I - Approximating the model

11

• Part II - Approximating the model

12

All models are wrong; some are useful (Box)

• Recurring example: the coalescent

13

time

Present day

Generation n
Generation n-1

time

Present day

Generation n
Generation n-1

Most recent common ancestor (MRCA)

time

Present day

MRCA

A
C
C
T

A
C
C
T

A
C
G
T

A
C
G
T

A
C
C
T

T
C
C
T

A
C
G
T

A
C
C
T

Ancestral methods with no
recombination (haploid data)

A stochastic (Markov) process.
Time between events is exponentially distributed
As we look back in time two events may occur:

 i. Two lines of ancestry will coalesce to form a single line of
ancestry, with prob. (k-1)/(k-1+θ) where there are currently k lines
and θ/2 represents the mutation rate. (Pick a random pair of lines)

 ii. A mutation will occur to a line of ancestry, changing the type of
a gene, with prob. θ/(k-1+θ). (Pick a random line)

The process continues until there is a single line of ancestry: the most
recent common ancestor (MRCA) of the sample.

1 0 0 1 0 1

1 0 0 1 0 0 1 0 1 0 0 1

A graphical representation of a recombination event
that occurs between the 4th and 5th markers.

Inherited markers

Parental chromosomes

time

1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1

Figure 5: Representation of an ancestry for markers subject to recombination

MRCA

We trace the ancestry of a sample of 6 marker sequences, until
we reach the MRCA. Mutational events are marked in green.
(Markers not ancestral to the sample are marked ‘-’)

(1 0 1 0 0)

1 0 1 0 1

- - - 0 10 0 1 - -

- - - 0 1

1 0 1 1 0

Coalescence

Mutation

0 0 1 0 0

1 - - - - - 0 1 0 0

Coalescent with recombination
(diploid data)

As we look back in time three events may occur:

 i. Two lines of ancestry will coalesce to form a single line of ancestry,
with prob. (k-1)/(k-1+θ+ρ) where there are currently k lines and θ/2
represents the mutation rate. (Pick a random pair of lines)

 ii. A mutation will occur to a line of ancestry, changing the type of a
gene, with prob. θ/(k-1+θ+ρ). (Pick a random line)

 iii. A recombination will occur to a line, splitting it into two, with prob.
ρ /(k-1+q+ρ). (Pick a random line)

The process continues until there is a single line of ancestry: the most recent
common ancestor (MRCA) of the sample.

1 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1

Tree for marker 1 Tree for markers 2 & 3 Tree for markers 4 & 5

MRCA (1 0 1 0 0)

1 0 1 0 1

- - - 0 10 0 1 - -

- - - 0 1

1 0 1 1 0

Coalescence

Mutation

0 0 1 0 0

1 - - - - - 0 1 0 0

Points of interest

Not all mutations on the recombination graph
impact the sample.

Not all recombinations impact the sample.

The space of possible graph topologies is
(very!) infinite (c.f. the finite space of possible
coalescent tree topologies).

Ancestral Processes with
Recombination

Key observation: Each locus still follows a
coalescent

Explicitly allows for the non-independence of
multiple loci and use all data simultaneously.

Recombination makes life much more difficult.
Can wait a long time for the MRCA.

Can the coalescent produce human
data?

“Calibrating a coalescent simulation of
human genome sequence variation”
Schaffner, et al. Genome Research,
15:1576-1583, 2005.

Approximating the model:

Fast “Coalescent”
Simulation

Goal

• A faster way of producing coalescent data
for chromosomal-length regions (cf. existing
methods such as Hudson’s ms)

Why? – natural progression

slow quick

Why? – natural progression

slow quick

slow quick

slow quick

slow quick

slow quick

slow quick

slow quick

Why? - Growth of genome-wide
data

• e.g. SNP-chips

• New analysis methodologies being developed. Need to
test them somehow.
– Usual strategy: simulate test data
– Problem: traditional (coalescent) models too slow.

• Simulation-based analysis methods (Rejection algorithms,
Importance Sampling, ‘no likelihoods’ MCMC - see part II)

Generating test data

• Real data + perturbation
– e.g. bootstrap resampling

• Model + simulation
– e.g. coalescent

Real data + perturbation

• Advantage – ‘model’ is correct.
– Don’t know how the data got there, but it used

the correct model.

• Disadvantage – subsequent perturbation
adds noise. What do we end up with?

Model + simulation

• Advantage – Know what you are getting

• Disadvantage – May take a long while to get
it + how accurate is the model?

Model-based approach

• Traditionally, many groups have used
coalescent models

• Such models are slow for chromosomal-
length regions

Full coalescent models are slow for
chromosomal-length regions

Run-times (secs) for ms (3 GB RAM)
Sample size Length (Mb) ms

1000 2 7.2
5 62.6

10 473.6
20 6459.6
50 -

100 -
200 -

Human chromosomes range from 50-200 Mbs

Run-times (secs) for ms (3 GB
RAM)

Sample size Length (Mb) ms
4000 2 10.6

5 -
10 -
20 -
50 -

100 -
200 -

Find a faster way….How?

• Use an approximation to the coalescent

• Advantage - it will be faster

• Disadvantage – it’s an approximation (to an
approximation)

Chromosome

Wiuf and Hein “along the
chromosome” algorithm

Chromosome

Wiuf and Hein “Along the

Chromosome

Wiuf and Hein “Along the
Chromosome” algorithm

Chromosome

Wiuf and Hein “Along the
Chromosome” algorithm

Comments

• Builds subset of ARG
• Slower than ms (larger subset)

– Includes many recombinations in non-ancestral
material

• Suggests a simplification

Types of recombination
1. Ancestral material
2. Non-ancestral material
3. Non-ancestral material
4. Non-ancestral material
5. Non-ancestral material

ms Wiuf Hein

 ancestral material

 non-ancestral material

Sequential Markov Coalescent
(McVean and Cardin 2005)
(Marjoram and Wall 2006)

Chromosome

Chromosome

Chromosome

Chromosome

Chromosome

Chromosome

Outline of formal statement

• L(x): length of tree at x є [0,1]
• Simulate y~Exp(L(x)ρ/2)
• If x+y<1

– Start next tree at x+y by adding a recombination at a
point chosen uniformly over the current tree

– Add new line using usual coalescent prior
– Delete old line

• Else
– Stop

Run-times (secs) for ms (3 GB
RAM)

Sample size Length (Mb) ms SMC

1000 2 7.2 0.9

5 62.6 2.1

10 473.6 4.3

20 6459.6 8.3

50 - 20.9

100 - 41.6

200 - 83.9

Run-times (secs) for ms (3 GB
RAM)

Sample size Length (Mb) ms SMC

4000 2 10.6 4.0

5 - 10.4

10 - 22.2

20 - 40.7

50 - 105.8

100 - 201.5

200 - 406.1

Types of recombination
ms Wiuf Hein SMC

 ancestral material

 non-ancestral material

Generalizations

• Now includes:
– Variation in population size
– Population structure
– Gene conversion
– Everything that ms does

• MACS (Chen et al. 2009)

• Agreement between MACS and ms is very
good.

• When you can use ms, you should do so.

• For long regions, MACS provides a very
close approximation to an exact answer that
is otherwise unobtainable

• Part II - Approximating the analysis

62

‘Vanilla’ Rejection method
1.Generate θ from prior π.
2.Accept θ with probability P(D|θ). [Acceptance rate]
3.Return to 1.

• Set of accepted θ’s forms empirical estimate of
f(θ|D)

• If upper bound, c, for P(D|θ) is known replace 2.
with

2’. Accept θ with probability P(D|θ)/c.

• In general, P(D|θ) cannot be computed, so…63

Alternate rejection method

1.Generate θ from π.
2.Simulate D’ using θ.
3.Accept θ if D’=D.
4.Return to 1.

• (Likelihood estimation - Diggle and
Gratton, J.R.S.S. B, 46:193-227, 1984.)

Prob. may be v. small
Method then very inefficient

64

Rejection method - (approximate
Bayesian computation)

• Suppose we have a good summary statistic S.
1.Generate θ from π.
2.Simulate D’ using θ, and calculate S’.
3.Accept θ if S’=S.
4.Return to 1.

• Result: f(θ|S) [rather than f(θ|D)].

• Best case scenario: S is sufficient
65

• We know what are getting: f(θ| S)

• If no sufficient statistic(s) S:

–How to choose S?
–How close is f(θ| S) to f(θ|D)?
–Lack of theoretical groundwork/guidance

66

Efficiency (c.f. Importance
sampling)

67

MCMC - Metropolis-Hastings

1. If at θ, propose move to θ’ according to
‘transition kernel’ q(θ → θ’)
2. Calculate

3. Move to θ’ with prob. h, else remain at θ
4. Return to 1.
Result: f(θ|D) ((Metropolis et al. 1953, Hastings
1970)

68

h = min
{

1,
P (D | θ′)π(θ′)q(θ′ → θ)
P (D | θ)π(θ)q(θ → θ′)

}

MCMC ‘without likelihoods’
1. If at θ, propose move to θ’ according to ‘transition
kernel’ q(θ → θ’)
2. Generate data D’ using θ’
3. If D’=D go to 4; else stay at θ and go to 1
4. Calculate

5. Move to θ’ with prob. h, else remain at θ
6. Return to 1.
Result: f(θ|D) 69

h = min
{

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

}

MCMC ‘without likelihoods’
1. If at θ, propose move to θ’ according to ‘transition
kernel’ q(θ → θ’)
2. Generate data D’ using θ’, calculate S’
3. If S’=S go to 4.; else stay at θ and go to 1
4. Calculate

5. Move to θ’ with prob. h, else remain at θ
6. Return to 1.
Result: f(θ|S) 70

h = min
{

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

}

How to choose statistics (Paul Joyce)

• Can’t just include ‘any and all’ statistics
(efficiency), so...

• Idea motivated by the concept of sufficient
statistics.

• If S1 is sufficient for θ, then:
• P(θ|S1)=P(θ|D);
• P(θ|S1,S2)=P(θ|S1) for any S2 (but will be

less efficient – lower acceptance rate)
71

72

“Add statistics until score for next statistic drops below Δ”

Procedure

• Suppose a data-set D and a set of possible
statistics S1,...,SM

• For i=1,...,N (N, very large):
– Sample θi from prior π()
– Simulate data Di

– Calculate S1,i,S2,i,...,SM,i

• Start with no statistics in the rejection
method

73

Algorithm (applied to rejection method)

• Existing posterior, Fk-1, using S1, S2, ... ,
Sk-1

• Calculate posterior, Fk, after edition of
randomly chosen currently unused stat Sk

• If ||Fk-Fk-1|| “sufficiently large” add Sk

• Else do not include SK

• If SK added, try to remove S1,...,Sk-1

• Repeat until no statistic can be added
• Stochastic noise is an issue

74

Example 1: Ewens Sampling
formula

• Describes distribution of types in ‘infinite
sites’ model

• Mutation parameter θ
• Number of types, S, is sufficient for θ
• Use sample size N=50

75

Statistics:
• S1: S (the number of types)
• S2: p (a random number ~ U[0,25])
• Use 5 million data sets and employ algorithm
• Analyze 100 datasets

76

More statistics:
• S1: S (the number of types)
• S2: p (a random number ~ U[0,25])
• S3: 50x Homozygosity
• S4: 25x frequency of commonest type
• S5: Number of singleton types

77

Example 3: coalescent, estimate ρ
• C1: #mutations
• C2: U[0,25]
• C3: mean # pairwise differences
• C4: 25x mean pairwise LD between ‘nearby’ loci
• C5: #haplotypes
• C6: #copies of commonest haplotype
• C7: #singleton haplotypes

78

Approach 2 - Genetic algorithms

• A population of ‘algorithms’
• Each algorithm has a ‘fitness’
• Evolve through discrete generations
• Algorithms reproduce according to their fitness
• Subject to mutation and recombination

79

Trivial example

• Algorithm = vector of 8 binary numbers
• Fitness = # of 1s

– e.g. 00010010 --> fitness=2
– e.g. 11010110 --> fitness=6

• Mutation: point mutation (flip a bit)
• Recombination: choose a breakpoint

and concatenate two parents
– 110100100 + 000010111
– > 110010111

80

Results - time to find fittest
algorithm

• Using vectors of length 20, population
size=100, p(mutate)=0.001/bit

• Mutation only: 609 generations

81

Results - time to find fittest
algorithm

• Using vectors of length 20, population
size=100, p(mutate)=0.001/bit

• Mutation only: 609 generations

• Mutation + recombination (prob=0.7): 75
generations

82

Back to rejection methods

• Want to pick arbitrary linear combination of
summary statistics (S1,....,Sn) that captures
the information about θ

• Algorithm is now a vector of coefficients
– e.g.

1.3 -5 0.01 16 -0.2
S1 S2 S3 S4 S5

83

• Create 100 test data sets D1,...,D100 sampling
from prior θ

• Create pool of 5M (say) data sets, sampling θ
from prior, to use as simulated data in
rejection method

• For each algorithm, j, run rejection method for
each Di, calculate mean of posterior for θi

• Fitness is 1/(mean square error)
• Evolve for 50 generations
• Test final fittest GA on new set of 100 data

sets. 84

Estimating Normal variance

85

Estimating mutation rate

86

Estimating recombination rate

87

General comments

88

• Approximate methods allow analysis in situations where exact
analysis is intractable

• Choice of summary statistics is problematic

• Two methods, both choose statistics sensibly on test examples,
the genetic algorithm also chooses weights

• There remains a worrying absence of theory to tell you how
well you are doing [i.e. how close is P(θ|S) to P(θ|D)?]

•Refs (Part I):
•Recombination as a point process along sequences, Wiuf and
Hein, Theor. Pop. Biol. 55:28-259, 1999.
•Approximating the coalescent with recombination, McVean and
Cardin, Phil. Trans. R. Soc. B 360:1387–1393, (2005).
•Fast “Coalescent” Simulation. Marjoram and Wall. BMC Genetics,
7:16, 2006.
•Fast and flexible simulation of DNA sequence data, Chen,
Marjoram Wall, Genome Research, 19:136-142, 2009
•MACS algorithm available at http://hsc.usc.edu/~garykche

•Refs (Part II):
• Approximately sufficient statistics and Bayesian computation.
Joyce & Marjoram. Stat Appl Genet Mol Biol. 2008; 7:Article26.
2008

http://hsc.usc.edu/~garykche
http://hsc.usc.edu/~garykche

Collaborators

• Jeff Wall, Gary Chen
• Simon Tavaré, Paul Joyce, Hsuan Jung

90

END

91

Other notes

• Generalizes to multiple variables
• Evolving the test data

– keep the ‘hardest’ - sorting algorithms
– keep the ‘easiest’ - noisy data?

• There is little theory
• Applications are seat-of-the-pants/

heuristic/intuitive

92

Pair-wise algorithms: history,
n=16

• Let m = number of pairwise comparisons
made

• 1962 - Bose and Nelson: m=65. Conjectured
to be optimal.

• 1964 - Batcher, and Floyd & Knuth: m=63.
Believed to be optimal.

• 1969 - Shapiro: m=62. Too smart to
conjecture optimality......

• 1969 - Green: m=60. Remains the best
solution.

93

http://www.cs.brandeis.edu/~hugues/graphics/green.gif

http://www.cs.brandeis.edu/~hugues/graphics/green.gif

Green’s 60 step sorter

94

http://www.cs.brandeis.edu/~hugues/graphics/green.gif
http://www.cs.brandeis.edu/~hugues/graphics/green.gif

Genetic Algorithm
• Individuals encoded as ordered list of

pairwise comparisons:

5, 3, 6, 1, 2, 4.

(1,4) (2,3) (3,6) (2,5) (3,5) (4,5)

95

Fitness

• Need a definition of fitness:
• For a given algorithm on a given sequence,

count the number of pairs of adjacent
numbers that are incorrectly ordered, Np.

• f =1/(Np+ε)?
• Calculate a mean of f over a large number of

test sequences of unordered numbers.

96

Result

• Population size = 512-1000000 individuals
• 5000 generations
• Best algorithm: length = 65

97

Pair-wise algorithms: history,
n=16

• Let m = number of pairwise comparisons
made

• 1962 - Bose and Nelson: m=65. Conjectured
to be optimal.

• 1964 - Batcher, and Floyd & Knuth: m=63,
(see previous slide). Believed to be optimal.

• 1969 - Shapiro: m=62. Too smart to
conjecture optimality......

• 1969 - Green: m=60.

98

Back to the drawing board....

• Ideas from host-parasite evolution
• View sorting algorithms as ‘hosts’
• View the test data sets of unordered

numbers as ‘parasites’

99

Example 2: coalescent, estimate θ
• C1: #mutations
• C2: U[0,25]
• C3: mean # pairwise differences
• C4: 25x mean pairwise LD between ‘nearby’ loci
• C5: #haplotypes
• C6: #copies of commonest haplotype
• C7: #singleton haplotypes

100

Coalescent - mutation rate
• S0 = Number of types (nearly sufficient)
• S1 = A random number (U[0,20])
• 50000 data sets

• After 10 generations of 20 algorithms:
– fittest alg. is 79.0S0 + 0.03S1

101

Coalescent mutation rate - more
stats [SNP data]

• S0 = Number of segregating sites (nearly sufficient)
• S1 = A random number (U[0,20])
• S2 = Number of ‘pairwise differences’
• S3 = Mean pairwise linkage disequilibrium
• S4 = Number of haplotypes

• fittest algorithm:
– 0.8S0 + 0.06S1 + 6.0S2 + 0.5S3 + 28.0S4

• 5th fittest (very similar fitness)
– 9.2S0 + 0.07S1 + 0.2S2 + 0.3S3 + 0.3S4

102

Same problem but with more
data (250K vs. 50K)

• S0 = Number of segregating sites (nearly sufficient)
• S1 = A random number (U[0,20])
• S2 = Number of ‘pairwise differences’
• S3 = Mean pairwise linkage disequilibrium
• S4 = Number of haplotypes

• fittest algorithm:
– 34.1S0 + 0.2S1 + 0.6S2 + 0.0S3 + 95.8S4

103

• Define parasites that contain 10-20 test lists
of numbers

• Have sorters and parasites evolve on a 2d
grid

• Test an algorithm’s fitness using the
nearest parasite

• Parasite fitness = % of lists that were not
sorted correctly

• Evolve the parasites!
• Best solution: 61 comparisons.

104

Estimating Normal variance

105

