Urban Link Travel Time Estimation Using Large-scale Taxi Data with Partial Information

Xianyuan Zhan
Satish V. Ukkusuri

Civil Engineering, Purdue University

Outline

- Introduction
- Study Region
- Link Travel Time Estimation Model
- Base Model
- Probabilistic Model
- Numerical Results
- Conclusion
- Questions/Comments

PURDUE
 U N I V ER S I T Y

Introduction

- New York City has the largest market for taxis in North America:
- 12,779 yellow medallion (2006)
- Industrial revenue $\$ 1.82$ billion (2005)
- Serving 240 million passengers per year
- 71% of all Manhattan residents' trips
- GPS devices are installed in each taxicab

- Taxi data recorded by New York Taxi and Limousine Commission (NYTLC)
- Massive amount of data!
- 450,000 to 550,000 daily trip records
- More than 180 milliion taxi trips a year
- Providing a lot of opportunities!

Introduction

\square Taxi trips in NYC

Trip Origin

Purdue
 U N I V E R S I T Y

Introduction

Estimating urban link travel times

- Traditional approaches:
- Loop detector data
- Automatic Vehicle Identification tags
- Video camera data
- Remote microwave traffic sensors
- Why taxicab data?

- Novel large-scale data sources
- Ideal probes monitoring traffic condition
- Large coverage
- Do not need fixed sensors
- Cheap!

PURDUE

Introduction

\square The data

- NYTLC records taxi GPS trajectory data, but not public
- Only trip basis data available
- Contains only OD coordinate, trip travel time and distance, etc.
- Path information not available
- Large-scale data with partial informationThe problem
- Given large-scale taxi OD trip data, estimate urban link travel times
- Sub-problems to solve:
- Map data to the network
- Path inference
- Estimate link travel time based on OD data

Study Region

- $1370 \times 1600 \mathrm{~m}$ rectangle area in Midtown Manhattan
- Data records fall within the region are subtracted

Purdue
 U N I V E R S I T Y

Study Region

\square Test network

- Network contains:
- 193 nodes
- 381 directed links

PuRDUE

Study Region

\square Number of observations in the study region

- Day 1: Weekday (2010/03/15, Monday)
- Day 2: Weekend (2010/03/20, Saturday)

Histogram for day 1

Histogram for day 6

PURDUE

Base Model

Base link travel time estimation model

- Hourly average link travel time estimations
- Direct optimization approach
- Overall framework: four phases

Link Travel Time Estimation

Estimate link travel times by solving an optimization problem

* Zhan, X., Hasan, S., Ukkusuri, S. V., \& Kamga, C. (2013). Urban link travel time estimation using large-scale taxi data with partial information. Transportation Research Part C: Emerging Technologies, 33, 37-49.

Base Model

\square Data mapping

- Mapping points to nearest links in the network
- Mapped point (blue) are used
- Identify intermediate origin/ destination nodes
- α_{1}, α_{2} are defined as distance proportions from mapped points to the intermediate origin/destination node

PuRDUE

Base Model

\square Construct reasonable path sets

- Number of possible paths could be huge!
- Need to shrink the size of possible path set
- Use trip distance to eliminate unreasonable paths
- K-shortest path algorithm ${ }^{*}(\mathrm{k}=20)$ is used to generate initial path sets
- Filter out unreasonable paths (threshold: weekday $15 \% \sim 25 \%$, weekend 50%)

[^0]
Base Model

\square Route choice model

- Assumption:
- Each driver wants to minimize both trip time and distance to make more trips thus make more revenue
- A MNL model based on utility maximization scheme

$$
P_{m}(\vec{t}, d, \theta)=\frac{e^{-\theta C_{m}\left(\vec{t}, d_{m}\right)}}{\sum_{j \in R_{i}} e^{-\theta C_{j}\left(\vec{t}, d_{j}\right)}}
$$

- Path cost measured as a function of trip travel time and distance

$$
\begin{array}{r}
C_{m}\left(\vec{t}, d_{m}\right)=\beta_{1} \cdot g_{m}(\vec{t})+\beta_{2} \cdot d_{m} \\
g_{m}(\vec{t})=\alpha_{1} t_{O}+\alpha_{2} t_{D}+\sum_{l \in L} \delta_{m l} t_{l}
\end{array}
$$

Purdue

Base Model

\square Link travel time estimation

- Minimizing the squared difference between expected $\left(E\left(Y_{i} \mid R_{i}\right)\right)$ and observed $\left(Y_{i}\right)$ path travel times

$$
\begin{aligned}
& E\left(Y_{i} \mid R_{i}\right)=\sum_{m \in R_{i}} g_{m}(\vec{t}) P_{m}(\vec{t}, d, \theta) \\
& \vec{t}=\underset{\vec{t}}{\arg \min } \sum_{i \in D}\left(y_{i}-E\left(Y_{i} \mid R_{i}\right)\right)^{2}
\end{aligned}
$$

- Solve using Levenberg-Marquardt (LM) method
- Parallelized codes developed to estimate the model
- Entire optimization solved within 10 minutes on an intel i7 laptop
- Numerical results show in later section

Purdue

Probabilistic Model

\square Limitations of the base model

- Point estimate of hourly average travel time
- Not incorporating variability of link travel times
- Not utilizing historical data
- Problems of compensation effect
- Less robust
\square Solution: Adopt a probabilistic framework
- Accounting for variability in link travel times
- More robust
- Historical information can be incorporated as priors

Purdue

Probabilistic Model

\square Assumptions:

1. Link travel time: $x_{l} \sim \mathcal{N}\left(\mu_{l}, \sigma_{l}^{2}\right)$
2. Path travel time is the summation of a set of link travel times

$$
P\left(y_{i} \mid k, \boldsymbol{x}\right)=P\left(y_{i} \mid k, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)=N\left(\alpha_{1} \mu_{0}+\alpha_{2} \mu_{D}+\sum_{l \in k} \mu_{l},\left(\alpha_{1} \sigma_{o}\right)^{2}+\left(\alpha_{2} \sigma_{D}\right)^{2}+\sum_{l \in k} \sigma_{l}^{2}\right)
$$

3. Route choice based on the perceived mean link travel times and distance

$$
\pi_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right)=\frac{\exp \left[-C_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right)\right]}{\sum_{s \in R^{i}} \exp \left[-C_{S}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right)\right]}
$$

- where $\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ are the vector of link travel times, their mean and variance

PURDUE

Probabilistic Model

\square Mixture model

- A Mixture model is developed to model the posterior probability of the observed taxi trip travel times given link travel time parameters $\boldsymbol{\mu}, \boldsymbol{\Sigma}$

$$
H(\boldsymbol{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{D})=\prod_{i=1}^{n} \sum_{k \in R^{i}} \pi_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right) P\left(y_{i} \mid k, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)
$$

- Introducing z_{k}^{i} as the latent variable indicating if path k is used by observation i

Plate notation

PURDUE

Probabilistic Model

Bayesian Mixture model

- Incorporating historical information:
- Prior on $\boldsymbol{\mu}$:
$H(\boldsymbol{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{D})=\prod_{i=1}^{n} \sum_{k \in R^{i}} \pi_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right) P\left(y_{i} \mid k, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \cdot \prod_{j \in L} p\left(\mu_{j}\right)$

- Priors on $\boldsymbol{\mu}$ and variance $\boldsymbol{\Sigma}$
$H(\boldsymbol{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{D})=\prod_{i=1}^{n} \sum_{k \in R^{i}} \pi_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right) P\left(y_{i} \mid k, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \cdot \prod_{j \in L} p\left(\mu_{j}\right) p\left(\sigma_{j}^{2}\right)$

Purdue

Probabilistic Model

\square Solution approach

- An EM algorithm is proposed for estimation
- A iterative procedure of two steps:
- E-step:

$$
\mathbb{E}\left(z_{k}^{i}\right)=\frac{\sum_{z_{k}^{i}} z_{k}^{i}\left[\pi_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right) P\left(y_{i} \mid k, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)\right]^{z_{k}^{i}}}{\sum_{z_{k}^{i}} \sum_{s \in R^{i}}\left[\pi_{s}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right) P\left(y_{i} \mid s, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)\right]^{z_{s}^{i}}}=\gamma\left(z_{k}^{i}\right)
$$

- M-step: Let $\tau_{l}=\sigma_{l}^{2}, \boldsymbol{\tau}=\boldsymbol{\Sigma}$,

$$
\begin{gathered}
Q(\boldsymbol{\mu}, \boldsymbol{\tau})=\mathbb{E}_{\boldsymbol{z}}[\ln P(\boldsymbol{y}, \mathbf{z} \mid \boldsymbol{\mu}, \boldsymbol{\tau})]=\sum_{i=1}^{n} \sum_{k \in R^{i}} \gamma\left(z_{k}^{i}\right)\left[\ln \pi_{k}^{i}\left(\boldsymbol{\mu}, \boldsymbol{\beta}, d_{i}\right)+\ln P\left(y_{i} \mid k, \boldsymbol{\mu}, \boldsymbol{\tau}\right)\right] \\
\left(\boldsymbol{\mu}^{n e w}, \boldsymbol{\tau}^{\text {new }}\right)=\underset{\boldsymbol{\mu}, \boldsymbol{\tau}}{\arg \max } Q(\boldsymbol{\mu}, \boldsymbol{\tau})
\end{gathered}
$$

PURDUE

Probabilistic Model

\square Solving for large-scale data and large networks

- The M-step involves a large-scale optimization problem
- Our goal:
- Solve for large-scale data input
- Solve for large network
- Short term link travel time estimation (say 15min)
- Solution: parallelize the computation!
- Alternating Direction Method of Multiplier (ADMM) to decouple the problem into smaller sub-problems
- Solve decomposed sub-problems in parallel
- Deals with large size of network and data
- Faster model estimation

PURDUE

Numerical Results

\square Model results for base model

- Validation metrics
- Root mean square error

$$
\text { RMSE }=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(T_{i}^{P r}-T_{i}^{O b}\right)^{2}}
$$

- Mean absolute percentage error

$$
\text { MAPE }=\frac{1}{n} \sum_{i=1}^{n}\left|\frac{T_{i}^{P r}-T_{i}^{O b}}{T_{i}^{O b}}\right| \times 100 \%
$$

Numerical Results

\square Model results for base model

- Test data: 3/15/2010 ~ 3/21/2010

Day	Error	$9: 00-10: 00$	$13: 00-14: 00$	$19: 00-20: 00$	$21: 00-22: 00$
		2.614	1.981	1.937	1.372
		29.51%	24.22%	26.27%	21.87%
Tuesday		2.461	2.302	1.827	1.437
		29.63%	25.59%	23.33%	22.20%
Wednesday	RMSE (min)	3.827^{*}	3.216^{*}	2.18	1.691
	MAPE	$41.32 \%^{*}$	$34.97 \%^{*}$	28.73%	24.40%
Thursday	RMSE (min)	2.468	2.699	2.49	1.382
	MAPE	27.28%	27.92%	28.54%	21.05%
Friday	RMSE (min)	2.26	2.179	1.692	1.334
	MAPE	27.76%	27.04%	25.17%	22.26%
Saturday	RMSE (min)	1.034	1.69	1.839	1.584
	MAPE	16.84%	24.58%	27.14%	21.61%
Sunday	RMSE (min)	2.041	1.518	1.395	1.16
	MAPE	25.44%	23.70%	22.72%	19.87%

[^1]
Numerical Results

Conclusion

- Two new models are proposed to estimate urban link travel times
- Utilizing data with only partial information
- Efficiently estimation using base model with reasonable accuracy
- Mixture models are proposed to get more robust and accurate estimations
- Applicable to trajectory data, can provide more accurate estimations
\square Future work
- Test the mixture models for larger network
- Efficient implementation using distributed computing technique
- Result validation

Purdue

Q\&A

Thank you!

Questions / Comments ?

Purdue

[^0]: * Y. Yen, Finding the K shortest loopless paths in a network, Management Science 17:712-716, 1971.

[^1]: * Traffic disturbance caused by Patrick's Day Parade.

