Energy Efficient Content Distribution in an ISP network

Jean-Claude BERMOND

Sophia Antipolis, France

Energy Efficient Content Distribution

Work presented at Globecom 2013

Giroire, Modrzejewski, Coati, Sophia Antipolis, France

Tahiri

Chiaraviglio CNIT and University la Sapienza, Rome, Italy.

Le Rouzic Orange/France Telecom, Lannion, France

Bonetto Politecnico di Torino, Italy

Musumeci CNIT and Politecnico di Milano, Italy

Gonzalez, Guerrero Universidad Carlos III, Madrid, Spain

Huge increase in Traffic

Year-to-year peak increases around 40%

Limited financial resources to accomodate growth

Year-to-year price falls around 35%

Environmental pressure

2 to 10% of global energy consumption

Crucial trend: Traffic is video.

Video streaming already over 50% [CISCO Forecast] 86% by 2016

Different models to distribute (redondant) content

Copies of the same content transmitted in parallel

Multicast — good for live TV

Peer to Peer — control and robustness?

Ubiquitous caching — cost effective?

CDN — saves long-haul

Problem

We consider a network operator.

- The network operator distributes
 - Traffic of content providers
 - Its own traffic (money is in the content, less in the transport)

• 70% of traffic comes from the peering link

Content

Problem

 Problem: How to distribute this content in order to be energy efficient?

Questions:

- Where to place caching facilities?
- Where to place storage facilities for the operator's own content?

Contributions and Related Work

Lots of work on distributing content and caching, e.g. :

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs and R. L. Branard. Networking named content. ACM CoNEXT 2009.

[2] D. Perino, M. Varvello. A reality check for content centric networking. ACM SIGCOMM 2011.

[3]I. Baev, R. Rajaraman and C. Swamy. Approximation algorithms for data placement problems. SIAM Journal on Computing, 2008.

Here,

- Different question: How much can we save energy in an optimal content distribution when controling both transport and storage?
- Realistic scenario, provided by Orange/France Telecom
- Efficient analytical model for optimal dimensioning

Diffusion of content is done via a logical tree

A video is sent to one user

A video is sent to several users: not efficient use of energy

Placement of storage facilities

Placement of storage facilities: energy is saved

Not worth for non popular videos

A Zipfian $(k^{-\beta})$ power law:

A Zipfian $(k^{-\beta})$ power law:

PSY - GANGNAM STYLE (강남스타일) M/V

by **officialpsy** - 1 year ago - 1,791,659,290 views
PSY - **Gangnam Style** (강남스타일) ▷ NOW available on iTunes:
http://Smarturl.it/psygangnam ▷ Official PSY Online Store US ...
OFFICIAL HD

A Zipfian $(k^{-\beta})$ power law:

PSY - GANGNAM STYLE (강남스타일) M/V

by officialpsy * 1 year ago * 1,791,659,290 views PSY - Gangnam Style (강남스타일) ▷ NOW available on iTunes: http://Smarturl.it/psygangnam > Official PSY Online Store US ...

OFFICIAL HD

Justin Bieber - Baby ft. Ludacris

by JustinBieberVEVO * 3 years ago * 911,492,299 views Music video by Justin Bieber performing Baby feat. Ludacris. #VEVOCertified on April 25, 2010.

OFFICIAL

A Zipfian $(k^{-\beta})$ power law:

PSY - GANGNAM STYLE (강남스타일) M/V

by **officialpsy** * 1 year ago * 1,791,659,290 views PSY - **Gangnam Style** (강남스타일) ▷ NOW available on iTunes: http://Smarturl.it/psygangnam ▷ Official PSY Online Store US ... OFFICIAL HD

Justin Bieber - Baby ft. Ludacris

by JustinBieberVEVO • 3 years ago • 911,492,299 views

Music video by Justin Bieber performing Baby feat. Ludacris.

#VEVOCertified on April 25, 2010.

OFFICIAL

Jennifer Lopez - On The Floor ft. Pitbull

by JenniferLopezVEVO * 2 years ago * 697,438,658 views

Music video by **Jennifer Lopez** performing **On The Floor** feat. Pitbull. © 2011 Island Records #VEVOCertified on April 15, 2012.

OFFICIAL HD

A Zipfian $(k^{-\beta})$ power law:

PSY - GANGNAM STYLE (강남스타일) M/V

by **officialpsy** * 1 year ago * 1,791,659,290 views PSY - **Gangnam Style** (강남스타일) ▷ NOW available on iTunes: http://Smarturl.it/psygangnam ▷ Official PSY Online Store US ...

OFFICIAL HD

Justin Bieber - Baby ft. Ludacris

by JustinBieberVEVO * 3 years ago * 911,492,299 views

Music video by **Justin Bieber** performing **Baby** feat. Ludacris. #VEVOCertified on April 25, 2010.

OFFICIAL

Jennifer Lopez - On The Floor ft. Pitbull

by JenniferLopezVEVO * 2 years ago * 697,438,658 views

Music video by **Jennifer Lopez** performing **On The Floor** feat. Pitbull. © 2011 Island Records #VEVOCertified on April 15, 2012.

OFFICIAL HD

...what would give us $\beta = 0.9$

A Zipfian $(k^{-\beta})$ power law:

PSY - GANGNAM STYLE (강남스타일) M/V

by **officialpsy** • 1 year ago • 1,791,659,290 views PSY - **Gangnam Style** (강남스타일) ▷ NOW available on iTunes: http://Smarturl.it/psygangnam ▷ Official PSY Online Store US ...

OFFICIAL HD

Justin Bieber - Baby ft. Ludacris

by JustinBieberVEVO • 3 years ago • 911,492,299 views

Music video by **Justin Bleber** performing **Baby** feat. Ludacris. #VEVOCertified on April 25, 2010.

OFFICIAL

Jennifer Lopez - On The Floor ft. Pitbull

by JenniferLopezVEVO * 2 years ago * 697,438,658 views

Music video by **Jennifer Lopez** performing **On The Floor** feat. Pitbull. © 2011 Island Records #VEVOCertified on April 15, 2012.

OFFICIAL HD

 β values in the literature in [0.56, 1.5], mostly in [0.6, 0.8].

Power Models

Power Models

Efficient Analytical Model

We assume:

- Network represented by a level-regular tree
- Homogeneous user population
- Linear power model, known devices for levels
- Zipfian popularity model

Efficient Analytical Model

For one class of videos: find the best level to cache it

• For efficiency: Compute the interval of popularity of videos cached at each level.

Results

Metric		FT (2020)	Moroccan (2012)
Energy savings Yearly monetary savings [k€] Bandwidth savings		8.7% 769 18.2%	11.0% 122 30.2%
Collection Size [PB]		1800	72 0
Cacile Size [GD]	core metro access DSLAM	32546 35878 2041	23510 5581 46

Results - Sentivity

Small changes in β – huge changes in results

Results - Sentivity

Changes in total throughput, small changes in results

Take-aways

- Around 10% savings
- Importance of model parameters:
 - Knowing popularity distribution is crucial
 - Optimizing cost of storage more important than I/O
- Optimal is feasible:
 - No changes in core networks
 - DSLAM augmented by a small flash module routers by single servers

Future Work

- Study other architectures:
 - with multiple peering points,
 - other tree degree distributions.
 - with Operator's datacenter.
- Here: optimal gain. Test caching on real traffic traces.
- Economic studies: Content providers are reluctant to allow caching of their content (contract, incentive...)

Future Work

- Study other architectures:
 - with multiple peering points,
 - other tree degree distributions.
 - with Operator's datacenter.
- Here: optimal gain. Test caching on real traffic traces.
- Economic studies: Content providers are reluctant to allow caching of their content (contract, incentive...)

THANKS!!!