Hausdorff Distance under Translation for Points, Disks, and Balls

Yusu Wang
Joint work with
P. K. Agarwal, S. Har-Peled, and M. Sharir

BioGeometry

Center for Geometric and Biological Computing Duke University

Surface Matching: Find the best transformation s.t. two surfaces are most similar.

Motivation: Computer vision, CAD, graphics, robotics and molecular biology.

Molecular Shape Matching

~ Proteins w/ similar shapes likely have similar functionalities
~ Protein-protein or protein-ligand docking
Representation of surfaces:
in points, union of balls, weighted points

Transformation space:
(ranslational space in \mathbb{R}^{2} or \mathbb{R}^{3}

Overview

Similarity measure: variants of Hausdorff distance.
设 Hausdorff distance between unions of balls
i Collision-free Hausdorff between sets of weighted points

* Average Hausdorff between sets of points (approximate)

约 Other approximation algorithms

Hausdorff between unions

- $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}, A_{i}=D\left(a_{i}, r_{i}\right)$
; $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}, B_{j}=D\left(b_{j}, \rho_{j}\right)$
令 $U_{A}=\bigcup_{i} A_{i}, U_{B}=\bigcup_{j} B_{j}$.

\% Directional Hausdorff:

$$
\mathrm{h}_{U}(\mathcal{A}, \mathcal{B})=\max _{p \in U_{A}} \min _{q \in U_{B}} d(p, q)
$$

\% Hausdorff:

$$
\mathrm{H}_{U}(\mathcal{A}, \mathcal{B})=\max \left\{\mathrm{h}_{U}(\mathcal{A}, \mathcal{B}), \mathrm{h}_{U}(\mathcal{B}, \mathcal{A})\right\}
$$

i Goal:

$$
\sigma_{U}(\mathcal{A}, \mathcal{B})=\inf _{t \in \mathbb{R}^{2}} \mathrm{H}_{U}(\mathcal{A}+t, \mathcal{B})
$$

Framework

次 Decision problem: Given $\lambda \geq 0, \exists t \in \mathbb{R}^{2}$ s.t. $\mathrm{h}_{U}(\mathcal{A}+t, \mathcal{B}) \leq \lambda$?

U_{B}
D_{λ}
$U_{B}^{\lambda}=U_{B} \oplus D_{\lambda}$

- $V_{i} \subseteq \mathbb{R}^{d}$: placements t 's of A_{i} s.t. $\mathrm{h}_{U}\left(A_{i}+t, \mathcal{B}\right) \leq \lambda$
; $V(\mathcal{A}, \mathcal{B})=\bigcap_{1 \leq i \leq m} V_{i}$
is Goal: Is $V(\mathcal{A}, \mathcal{B})$ empty?

Structure of V_{i}

~ One pair of disks $A_{i}=D\left(a_{i}, r_{i}\right)$ and $B_{j}=D\left(b_{j}, \rho_{j}\right)$
; Placements s.t. $\mathrm{H}_{U}\left(A_{i}+t, B_{j}\right) \leq \lambda$
क) $D_{i j}=D\left(b_{j}-a_{i}, \rho_{j}+\lambda-r_{i}\right)$

Structure of V_{i}

该 Same procedure A_{i} and U_{B}
~ Q_{i} : vertex set for $U_{B}^{\lambda}, \Gamma_{i}$: arc set for U_{B}^{λ}

c Complexity of $V_{i}: O(n)$ in \mathbb{R}^{2}

Complexity of $V(\mathcal{A}, \mathcal{B})$

\& $V(\mathcal{A}, \mathcal{B})=\bigcap_{i} V_{i}$, for $1 \leq i \leq m$.

Lemma. Complexity of $V(\mathcal{A}, \mathcal{B}): O\left(m^{2} n\right)$ in \mathbb{R}^{2}.
Proof: A vertex can be from:
设 Some $V_{i}-O(n m)$;
设 Intersection of an arc from V_{i} and one from V_{k}

* $O(n)$ vertices for one pair
* $O\left(m^{2}\right)$ pairs of $\left(V_{i}, V_{k}\right)$
* $O\left(m^{2} n\right)$ overall

$\partial V_{i} \cap \partial V_{k}$

For ∂V_{i} : consider two types of disks:
~ convex arcs bounded by:

$$
D_{i}=\left\{D_{i j}, 1 \leq j \leq n\right\}
$$

* concave arcs bounded by:

$$
\Delta_{i}=\left\{D\left(q, r_{i}\right), q \in Q_{i}\right\}
$$

Claim. $\partial V_{i} \cap \partial V_{k} \subseteq \partial \bigcup\left(D_{i} \cup \Delta_{i} \cup D_{k} \cup \Delta_{k}\right)$.

Algorithm

Lemma. $V(\mathcal{A}, \mathcal{B})$ can be computed in time $O\left(m^{2} n \log (n+m)\right)$ in \mathbb{R}^{2}.
\% Divide and conquer
\& Sweep-line approach to merge
Theorem. $\sigma_{U}(\mathcal{A}, \mathcal{B})$ can be computed in $O\left(m n(n+m) \log ^{3}(n+m)\right)$.
设 Parametric search technique.

Computing $V(\mathcal{A}, \mathcal{B})$ in \mathbb{R}^{3}

Bad news: $\tilde{O}\left(n^{7}\right)$ in $\mathbb{R} 3!!$
\& Open problem: Complexity of $V_{i}: O\left(n^{4}\right)$

* what is complexity of medial axis for union of balls

Remark: $\tilde{O}\left(n m(n+m)^{2}\right)$ under assumptions for molecules:

设 Atoms of similar (constant) size
\% Atoms are constant distance away
) λ is some constant

Weighted Points

मे $d\left(A_{i}, B_{j}\right)=d\left(a_{i}, b_{j}\right)-r_{i}-\rho_{j}$
该 \mathcal{F} : the set of free placements of \mathcal{A}

* $x \in \mathbb{R}^{d}$ free: $\mathcal{A}+x$ avoids interior of \mathcal{B}

Goal: Optimal collision-free Hausdorff under translations:

$$
\mathrm{H}(\mathcal{A}, \mathcal{B} ; \mathcal{F})=\min _{x \in \mathcal{F}} \mathrm{H}(\mathcal{A}+x, \mathcal{B})
$$

Framework

ch F_{i} : set of placements of A_{i} that are not free
约 Similar framework as before

* distance condition $\left(V_{i}\right)$ and collision-free condition $\left(F_{i}\right)$

$$
\text { * } V(\mathcal{A}, \mathcal{B})=\bigcap\left(V_{i} \backslash F_{i}\right)
$$

o Take $A_{i}=\left(a_{i}, r_{i}\right)$ and $B_{j}=\left(b_{j}, \rho_{j}\right)$

Results

设 Follow similar framework as before:

Theorem. $\mathrm{H}(\mathcal{A}, \mathcal{B} ; \mathcal{F})$ can be computed
(i) \mathbb{R}^{2} : in time $O\left(m n(n+m) \log ^{3}(n+m)\right)$;
(ii) \mathbb{R}^{3} : in time $O\left(m^{2} n^{2}(m+n) \log ^{3}(n+m)\right)$.

Remark:
i. Bounds approximately same as Hausdorff between point sets

Partial Matching

Motivation of $d\left(A_{i}, B_{j}\right)$: docking problem, partial matching

Partial matching: Given $\lambda \geq 0$, find $x \in \mathcal{F}$ s.t.

$$
\left|\left\{A_{i} \mid \mathrm{H}\left(A_{i}+x, \mathcal{B}\right) \leq \lambda\right\}\right|
$$

is maximized.

Theorem. Such a translation x can be computed
(i) \mathbb{R}^{2} : in time $O\left(m^{2} n \log (n+m)\right)$;
(ii) \mathbb{R}^{3} : in time $O\left(m^{3} n^{2} \log (n+m)\right)$.

Open problem:
设 How to approximate partial matching efficiently?

Open Problems

\% Rigid motions
~ Efficient approximation algorithms

* approximate partial matching under rigid motion

THE END!

THANKS !

Related Work

Point sets：

约 Exact matching（rigid motion）：$O(n \log n)$ in $\mathbb{R}^{2}, O\left(n^{d-2} \log n\right)$ in $d \geq 3$

认 Bottleneck（in $\left.\mathbb{R}^{2}\right): O\left(n^{1.5} \log n\right)$ for fixed point sets，$O\left(n^{5} \log n\right)$ translations，$O\left(n^{8}\right)$ rigid motion
\＆Hausdorff（translations，$\left.L_{2}\right): \tilde{O}\left(n^{3}\right)$ in $\mathbb{R}^{2}, \tilde{O}\left(n^{\lceil 3 d / 2\rceil+1}\right)$ in \mathbb{R}^{d}
次 Hausdorff（rigid motions）：$\tilde{O}\left(n^{6}\right)$ in \mathbb{R}^{2}
Other objects：
设 Line segments（in $\left.\mathbb{R}^{2}\right): ~ O\left(n^{2}\right)$ for fixed sets，$\tilde{O}\left(n^{4}\right)$ translations，$\tilde{O}\left(n^{6}\right)$ rigid motions

