# Hausdorff Distance under Translation for Points, Disks, and Balls

Yusu Wang

Joint work with P. K. Agarwal, S. Har-Peled, and M. Sharir

.BioGeometry

Center for Geometric and Biological Computing Duke University

BioGeometry

**Surface Matching:** Find the best *transformation* s.t. two *surfaces* are most *similar*.

**Motivation:** Computer vision, CAD, graphics, robotics and molecular biology.



## Molecular Shape Matching

★ Proteins w/ similar shapes likely have similar functionalities

★ Protein-protein or protein-ligand docking

### **Representation of surfaces:**

 $\star$  points, union of balls, weighted points





#### **Transformation space:**

★ translational space in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ 

Similarity measure: variants of Hausdorff distance.

- ★ Hausdorff distance between unions of balls
- ★ Collision-free Hausdorff between sets of weighted points
- ★ Average Hausdorff between sets of points (approximate)
- $\star$  Other approximation algorithms

### Hausdorff between unions -

$$\star \mathcal{A} = \{A_1, \dots, A_m\}, A_i = D(a_i, r_i)$$
  
$$\star \mathcal{B} = \{B_1, \dots, B_n\}, B_j = D(b_j, \rho_j)$$
  
$$\star U_A = \bigcup_i A_i, U_B = \bigcup_j B_j.$$



**★** Directional Hausdorff:

$$h_U(\mathcal{A}, \mathcal{B}) = \max_{p \in U_A} \min_{q \in U_B} d(p, q),$$

**★** Hausdorff:

$$H_U(\mathcal{A}, \mathcal{B}) = \max\{h_U(\mathcal{A}, \mathcal{B}), h_U(\mathcal{B}, \mathcal{A})\},\$$

★ Goal:

$$\sigma_U(\mathcal{A}, \mathcal{B}) = \inf_{t \in \mathbb{R}^2} H_U(\mathcal{A} + t, \mathcal{B}).$$

.<u>BioGeometry</u>



### - Structure of $V_i$ -

- ★ One pair of disks  $A_i = D(a_i, r_i)$  and  $B_j = D(b_j, \rho_j)$
- ★ Placements s.t.  $H_U(A_i + t, B_j) \leq \lambda$
- $\bigstar D_{ij} = D(b_j a_i, \rho_j + \lambda r_i)$





– Complexity of  $V(\mathcal{A}, \mathcal{B})$  -

$$\bigstar V(\mathcal{A}, \mathcal{B}) = \bigcap_i V_i, \text{ for } 1 \le i \le m.$$

**Lemma.** Complexity of  $V(\mathcal{A}, \mathcal{B})$ :  $O(m^2n)$  in  $\mathbb{R}^2$ .

**Proof:** A vertex can be from:

- ★ Some  $V_i O(nm)$ ;
- ★ Intersection of an arc from  $V_i$  and one from  $V_k$ 
  - $\ll O(n)$  vertices for one pair
  - $\bigotimes O(m^2)$  pairs of  $(V_i, V_k)$
  - $\bigotimes O(m^2n)$  overall



**For**  $\partial V_i$ : consider two types of disks:

 $\star$  convex arcs bounded by:

 $\partial V_i \cap \partial V_k$  -

$$D_i = \{D_{ij}, 1 \le j \le n\}$$

 $\star$  concave arcs bounded by:

 $\Delta_i = \{D(q,r_i), q \in Q_i\}$ 



**Claim.**  $\partial V_i \cap \partial V_k \subseteq \partial \bigcup (D_i \cup \Delta_i \cup D_k \cup \Delta_k).$ 







<u>BioGeometry</u>

**Lemma.**  $V(\mathcal{A}, \mathcal{B})$  can be computed in time  $O(m^2 n \log(n+m))$  in  $\mathbb{R}^2$ .

 $\star$  Divide and conquer

**Algorithm** 

 $\star$  Sweep-line approach to merge

**Theorem.**  $\sigma_U(\mathcal{A}, \mathcal{B})$  can be computed in  $O(mn(n+m)\log^3(n+m))$ .

 $\star$  Parametric search technique.

# – Computing $V(\mathcal{A},\mathcal{B})$ in $\mathbb{R}^3$ .

**Bad news:**  $\tilde{O}(n^7)$  in  $\mathbb{R}3$  !!

★ Open problem: Complexity of  $V_i$ :  $O(n^4)$ 

⋧ what is complexity of medial axis for union of balls

**Remark:**  $\tilde{O}(nm(n+m)^2)$  under assumptions for molecules:

- $\star$  Atoms of similar (constant) size
- $\star$  Atoms are constant distance away
- $\star$   $\lambda$  is some constant



BioGeometr



.BioGeometry

### - Framework -

- ★  $F_i$ : set of placements of  $A_i$  that are not free
- $\star$  Similar framework as before

 $\aleph$  distance condition (V<sub>i</sub>) and collision-free condition (F<sub>i</sub>)

 $\And V(\mathcal{A},\mathcal{B}) = \bigcap (V_i \setminus F_i)$ 

★ Take 
$$A_i = (a_i, r_i)$$
 and  $B_j = (b_j, \rho_j)$ 



- Results

 $\star$  Follow similar framework as before:

**Theorem.**  $H(\mathcal{A}, \mathcal{B}; \mathcal{F})$  can be computed

- (i)  $\mathbb{R}^2$ : in time  $O(mn(n+m)\log^3(n+m))$ ;
- (ii)  $\mathbb{R}^3$ : in time  $O(m^2n^2(m+n)\log^3(n+m))$ .

#### Remark:

 $\star$  Bounds approximately same as Hausdorff between point sets

## - Partial Matching

Motivation of  $d(A_i, B_j)$ : docking problem, partial matching

**Partial matching:** Given  $\lambda \ge 0$ , find  $x \in \mathcal{F}$  s.t.

 $| \{A_i \mid \mathcal{H}(A_i + x, \mathcal{B}) \leq \lambda\} |$ 

is maximized.

Theorem. Such a translation x can be computed
(i) ℝ<sup>2</sup>: in time O(m<sup>2</sup>n log(n + m));
(ii) ℝ<sup>3</sup>: in time O(m<sup>3</sup>n<sup>2</sup> log(n + m)).

#### **Open problem:**

 $\star$  How to approximate partial matching efficiently?

## - Open Problems -

#### $\star$ Rigid motions

### ★ Efficient approximation algorithms

approximate partial matching under rigid motion





# – Related Work

#### **Point sets:**

- ★ Exact matching (rigid motion):  $O(n \log n)$  in  $\mathbb{R}^2$ ,  $O(n^{d-2} \log n)$  in  $d \ge 3$
- ★ Bottleneck (in  $\mathbb{R}^2$ ):  $O(n^{1.5} \log n)$  for fixed point sets,  $O(n^5 \log n)$  translations,  $O(n^8)$  rigid motion
- ★ Hausdorff (translations,  $L_2$ ):  $\tilde{O}(n^3)$  in  $\mathbb{R}^2$ ,  $\tilde{O}(n^{\lceil 3d/2 \rceil + 1})$  in  $\mathbb{R}^d$
- ★ Hausdorff (rigid motions):  $\tilde{O}(n^6)$  in  $\mathbb{R}^2$

#### **Other objects:**

★ Line segments (in  $\mathbb{R}^2$ ):  $O(n^2)$  for fixed sets,  $\tilde{O}(n^4)$  translations,  $\tilde{O}(n^6)$  rigid motions

BioGeometr