Annual epidemics and natural selection in host-pathogen systems

Viggo Andreasen Roskilde University

November 26, 2003

Annual epidemics and selection

Annual epidemics

Applications:

- Disease-induced selection (Gillespie, 1975)
- Disease regulation of hosts (May, 1985; Dwyer et al 2000)
- Influenza drift (Andreasen,2003)
- Influenza drift and epidemic size (Boni et al, submitted)
- Pruning of influenza phylogeny (Andreasen & Sasaki, in prep)

Outline

- Annual epidemics
- Annual epidemics as a way to model diseaseinduced selection in diploids
- Annual epidemics in the description of influenza epidemiology
- Virus competition in annual epidemics

Disease-induced selection in diploids Challenges for the modeller:

- \bullet Host lifespan \gg infection period
- Good genetic models for:
 - generation-to-generation
 - slow selection
- Good epidemic models for:
 - transmission dynamics during an epidemic
 - endemic diseases with constant pop size

Idea: assume one epidemic in each host generation

The Gillespie model

• One autosomal locus with two alleles and random mating

Example: resistance is dominant

- AA susceptible to disease
- AB and BB resistant

Fitness of uninfected AA1Fitness of infected AA1-uFitness of AB and BB $1-\sigma$

p = frequency af A-allele q = 1 - p frequency of B-allele

The epidemic season

$$\frac{dS_{AA}}{dt} = -\tau_{AA}\Lambda S_{AA}$$
$$\frac{dI_{AA}}{dt} = \tau_{AA}\Lambda S_{AA} - \mu_{AA}I_{AA}$$
$$\Lambda = \beta_{AA}I_{AA} + \beta_{AB}I_{AB} + \beta_{BB}I_{BB}$$
$$S_{AA}(0) = p^2 N \quad I_{AA}(0) \approx \Lambda \ll 1$$

Fraction infected during the epidemic z

$$z = 1 - e^{-zp^2 \mathcal{R}_0}$$

Effect of disease on fitness of AA: $W_{AA} = 1 - z + (1 - u)z = 1 - uz$.

Long term dynamics

At onset of epidemic season frequency of A is p. After

- epidemic
- other selective factors
- perfect regulation of populatrion size !

Frequency of A at onset of next season:

$$p' = \frac{p^2 W_{AA} + pq W_{AB}}{\bar{W}} = \frac{(1 - uz)p^2 + (1 - \sigma)pq}{(1 - uz)p^2 + (1 - \sigma)q(1 + p)}$$

(Stable) equilibrium at

$$z = \sigma/u$$
 $p = \sqrt{-\log(1-z)/z\mathcal{R}_0}$

Annual epidemics and influenza epidemiology

- Influenza's natural history
- The epidemiology of a drifting virus
- Drift length and epidemic size
- Pruning of flu phylogeny

Earn et al (2002)

Influenza A subtypes

Cox & Fukuda, 1998

Deaths caused by P&I in USA

Ferguson et al 2003

Phylogeny of Influenza A

Fitch et al, 1997

Reinfection after natural infection H3N2 Houston Family Study

 TABLE I. Influenza A (H3N2) Infection* in Children Observed From Birth[†] in the Houston

 Family Study, 1975-81

	No. children	No. infected in season ^b				Total No. (%)	No. (%) reinfected	
Cohort ^a		1975-76	1976–77	1977-78	1980-81	infected	Once	Twice
1975-76	21	8	1	14 ^c	6	20(95)	7(33) ^c	1(5)
1976-77	19		1	9	7	16(84)	1(5) ^d	0
1977-78	15			3	6	9(60)	0 ^d	0
Total	55					45(82)	8(15)	1(2)

Frank & Taber, 1983

Reinfection after natural infection H1N1 Houston Family Study

TABLE V. Influenza A (H1N1) Infection^{*} in Children Observed From Birth[†] in the Houston Family Study, 1975–81

Cohort ^{a,b}	No. children	No. infected				Total No. (%)	
		1977-78	1978– 79	1979-80	1980-81	infected	No. (%) reinfected
1975-76	21	5	8°	0	6	18(86)	1(5)
1976-77	19	2	2	1	5	10(53)	0
1977-78	15	3	0	0	3	6(40)	0
1978-79	16		1	0	3	4(25)	0
All	71				-	38(53)	1(1)

Frank & Taber, 1983

Reinfection of vaccinees

Pease, 1987 after Gill & Murphy 1976

Cross-immunity in vitro

	Isolated	Between 1968	3 and 1986				
	Antibody units that inhibit hemagglutination						
Virus	HK/8/68	E/42/72	PC/1/73	Vic/3/75	Tex/1/77		
A/Hong Kong/8/68	<u>320</u>	320	0	0	0		
A/England/42/72	80	<u>320</u>	80	40	0		
A/Port Chalmers/1/73	80	160	<u>320</u>	80	40		
A/Victoria/3/75	80	[·] 160	320	<u>640</u>	160		
A/Texas/1/77	0	40	160	160	1280		
A/Bangkok/1/79	320	80	320	320	1280		
A/Philippines/2/82	0	0	0	0	80		
A/Mississippi/1/85	0	0	80	40	160		
A/Leningrad/360/86	0	0	0	0	80		

Levine, 1992

Epidemiology of a drifting virus discrete version of model by Pease 1987

- In each season one new strain appears
- Prior to each season the strain drifts a fixed amount
- If possible an epidemic occurs
- Epidemic burns out before season is over
- Susceptibility and infectivity depends of number of seasons since last infection
- *SIR*-type dynamics
- No vital dymanics

Annual model for flu drift

- S_i : # of hosts who have not been infected in this season and whoes most recent infection occurred *i* seasons ago
- I_i : # of hosts who are currently infected and whoes most recent infection occurred *i* seasons ago
- S_n, I_n *n* or more seasons ago
- At start of season $\sum S_i(0) = 1$ $\sum I_i(0) \ll 1$

During epidemic

$$\begin{aligned} \dot{S}_i &= -\tau_i \Lambda S_i \\ \dot{I}_i &= \tau_i \Lambda S_i - \nu I_i \\ \Lambda &= \beta \sum \sigma_i I_i \end{aligned}$$

Outcome of epidemic $\phi = \frac{S_n(\infty)}{S_n(0)}$

$$\mathcal{R}_e = \frac{\beta}{\nu} \sum \sigma_i \tau_i S_i(0)$$

If $\mathcal{R}_e > 1$ then $0 < \phi < 1$ solves $0 = \log \phi + \beta / \nu \sum \sigma_i S_i(0)(1 - \phi^{\tau_i})$ and $\phi^{\tau_i} = S_i(\infty) / S_i(0)$ If $\mathcal{R}_e < 1$ No epidemic $\phi = 1$

Annual epidemics and selection

Year-to-year dynamics (onset \rightarrow onset)

$$F: \begin{pmatrix} S_1 \\ S_2 \\ \vdots \\ S_{n-1} \end{pmatrix} \mapsto \begin{pmatrix} \sum (1-\phi^{\tau_i})S_i \\ \phi^{\tau_1}S_1 \\ \vdots \\ \phi^{\tau_{n-2}}S_{n-2} \end{pmatrix}$$

$$\begin{split} S_n &= 1 - \sum S_i \text{ is redundant} \\ \Gamma &= \{ S \mid \sum S_i \leq 1, \quad s_i \geq 0 \} \qquad F : \Gamma \to \Gamma \\ \text{Cases } n &= 2, 3, \quad \tau_i = 1, \\ \text{i.e. infectivity reduction only; } \Rightarrow \phi \text{-eqn simplifies} \\ 0 &= \log \phi + q(1 - \phi) \qquad q = \mathcal{R}_0 \sum \sigma_i S_i(0) \end{split}$$

Dynamics for Annual flu epidemics, n = 2

Andreasen 2003

Bifurcation diagram for annual flu epidemics, n = 3

Andreasen 2003

Attractor in annual flu model, n = 3

Andreasen 2003

Conclusions flu-drift model

- Focus on host immune structure
- Explicit rule for introduction of susceptible
- Recognizes seasonality and pronounced epidemics
- Epidemic levels as observed in nature
- Not a word on time within season
- Not a word about persistence or causes of drift

Aminoacid substitutions in HA1 (H3N2) Fitch et al, 1997

Drift speed and epidemic size Boni et al submitted

- Seasonal dynamics as before; infectivity reduction
- X-immunity decays with "distance" $\sigma = 1 - \exp(-d)$
- Distance is additive over years
- Distance grows linearly with size of epidemic I, $d=\kappa+\lambda I$

- $S = \sum \sigma_i S_i$ weighted susceptibility
- Outcome of epidemic in terms of S $f(S) = 1 - \kappa \phi^{\lambda} (1 - \phi S)$ where ϕ prob of not being infected

Dynamics of size-dependent drift

Boni et al ms

Invasion and persistence of drifting virus

Boni et al ms

Virus selection in annual epidemics

- In haploids competition \approx selection
- Assume two virus types I and Y
- Epidemics within a season

$$\dot{S} = -\beta_I I S - \beta_Y Y S$$
$$\dot{I} = \beta_I I S - \nu_I I$$
$$\dot{Y} = \beta_Y Y S - \nu_Y Y$$

 \bullet Only the viral type with the highest \mathcal{R}_0 will produce an epidemic

Saunders, 1981