Robust Monopoly Pricing: The Case of Regret*

Dirk Bergemann ${ }^{\dagger} \quad$ Karl Schlag ${ }^{\ddagger}$

First Version: May 2003
This Version: November 2004
Preliminary and Incomplete

Abstract

We consider a robust version of the classic problem of optimal monopoly pricing with incomplete information. The robust version of the problem is distinct in two aspects: (i) the seller minimizes regret rather than maximizes revenue, and (ii) the seller only knows that the true distribution of the valuations is in a neighborhood of a given model distribution.

The robust pricing policy is characterized as the solution to a minimax problem for the case of small and large uncertainty faced by the seller. The robust pricing policy is determined in the case of small uncertainty by the curvature of the static profit function. The robust price diverges at less than a linear rate from the optimal price for the model distribution, whereas regret increases linearly in the uncertainty.

Keywords: Monopoly, Optimal Pricing, Regret, Robustness
Jel Classification: C79, D82

[^0]
Contents

1 Introduction 3
1.1 Motivation 3
1.2 Related Literature 5
2 Model 6
2.1 Regret 6
2.2 Neighborhoods 8
3 Large Uncertainty 10
4 Small Uncertainty 15
4.1 Near Certainty 16
4.2 Small Uncertainty 18
4.3 Example: Linear Density 24
4.3.1 Low Price 25
4.3.2 Uniform Prior 25
4.3.3 High Price 26
5 Interim Regret 26
5.1 Saddle Point 27
5.2 Large Uncertainty 29
5.3 Small Uncertainty 29
5.3.1 Near Certainty 29
5.3.2 Interim Regret with Small Uncertainty 31
6 Variations 38
6.1 Prohorov Neighborhoods 38
6.2 Revenue 38
6.3 Value at Risk 38
7 Conclusion 38

1 Introduction

1.1 Motivation

In this paper we investigate a robust version of the classic problem of a monopolist selling a product under incomplete information. We introduce robustness by enriching the canonical model in two key aspects.

First, instead of a given true distribution regarding the valuations of the buyers, in our set-up the seller only knows that the true distribution will be in a neighborhood of a given model distribution. The enlargement of the set of possible priors is meant to represent the uncertainty about the nature of the true distribution. As such, it represents the possibility that the model of the seller is misspecified.

Second, the objective function of the seller is formulated as a regret minimization problem rather than a revenue maximization problem. For a given neighborhood of possible distributions around a model distribution, we characterize the pricing policy which minimizes maximal regret. We refer to the resulting pricing policy as the robust policy.

The main objective of the paper is to describe how the robust policies depend on the model distribution and the size of the uncertainty as represented by the size of the neighborhood. As part of the analysis, we also determine how the regret varies with the amount of uncertainty faced by the seller. Naturally, the specification of the neighborhood matters in the determination of the robust pricing policy. For the most part, we shall adopt the notion of a contaminated neighborhood in which the true distribution is represented as a convex combination of the model distribution and an arbitrary distribution. The size of the neighborhoods is then represented by the weight permitted on the arbitrary distribution. A common variant to the contamination model are neighborhoods described the Prohorov norm, which we shall discuss in various parts of the paper as well.

We choose to pursue the robust analysis with the notion of regret rather than revenue as the regret objective delivers interesting insights into the decision problem by the seller even in the presence of complete uncertainty. In contrast, with revenue as an objective function and nature unconstrained in its choice of distributions over the valuations, the trivial solution is that adversarial nature will place probability one on the lowest possible realization. Presumably for this reason, a common evaluation criterion in theoretical computer science for the performance of an auction is the ratio between realized revenue and
maximal feasible revenue (which is equal to the realized value). In this literature, a good mechanism is a mechanism which maximizes the ratio over all realizations and the resulting mechanism is called α-competitive if the largest attainable ratio is α (see Neeman (1999) for a competitive analysis of the second price auction). Yet the notion of competitive ratio lacks in decision theoretic foundations and it is difficult to link the competitive ration to a related Bayesian decision problem. For these reasons, we suggest regret as a criterion which delivers interesting insights in the presence of complete uncertainty and has some desirable decision theoretic foundations. The idea of a minimax regret rule was advocated by Savage (1954) and appears to have originated in Wald (1950), for a more critical stance regarding minimax regret see Chernoff (1954) and Savage (1970). Apart from the emphasis on regret rather than revenue, we can therefore think of the seller as ambiguity averse in the sense of Gilboa \& Schmeidler (1989). As regret compares the realized revenue with maximal revenue for every possible realization it is in general impossible to find a zero regret policy. In a sense it represent a too difficult benchmark for the monopolist as even in the best possible situation, he will only know the true distribution but never the realized valuation. For this reason, we consider in the second half of the paper a weaker notion of regret, referred to as interim regret. Under interim regret the decision maker only compares the expected realized revenue with maximal expected revenue the seller could obtain if he were to know the true distribution of valuations.

With large uncertainty, the solution to the regret and the interim regret problem coincide exactly. When we consider local uncertainty, this coincidence ceases to exists. The robust pricing policy is then determined by the location of the maximal exposure risk relative to the optimal price before robustness considerations. As the seller acts to minimize regret, the optimal price will therefore locally move in the direction of the exposure. This logic will attach a prominent role to the midpoint of the interval.

The robust pricing policy diverges from optimal price for the model distribution in a systematic way. The response of the robust price to an increase in the seize of uncertainty is however less than linear while the regret is increasing linearly in the size of the neighborhood. This indicates that the difference between robust and optimal price for the model distribution is only small for small neighborhoods. The cost of robustifying the optimal are therefore comparatively small.

The reminder of the paper is organized as follows. In Section 2 we present the model,
the notion of regret and the neighborhoods. In Section 3 we characterize the robust pricing policy with large uncertainty. In this case, the neighborhood is unrestricted. In Section 4, we characterize the robust policy in the presence of small uncertainty represented by a small neighborhood. Here, an important benchmark will be the case of near certainty in which the model distribution is a Dirac function. In Section 5 we shall consider the robust pricing policy when we relax the notion of regret to interim regret. In Section 6, we return to the revenue maximization problem and present the optimal robust pricing policy as the solution to a maximin rather than minimax problem. Section 7 concludes with final remarks and a discussion of open problems.

1.2 Related Literature

The basic framework for robust analysis in statistic in presented in Huber (1981) and Hampel, Ronchetti, Rousseeuw \& Stahel (1986). Linhart \& Radner (1989) analyze minimax regret strategies in a bilateral bargaining framework. In their framework, the valuation of the buyer and the cost function of the seller depend on a choice variable q which may represent quantity or quality. In contrast to the incomplete information environment here, the bulk of the analysis in Linhart \& Radner (1989) is concerned with bilateral trade under complete information. In addition, they largely restrict their analysis to deterministic strategies, even though mixed strategies will typically lead to lower regrets.

Bose, Ozdenoren \& Pape (2004) investigate the nature of the optimal auction in the presence of an ambiguity averse seller as well as ambiguity averse bidders. In contrast, we consider a monopoly pricing problem with either a single buyer or a continuum of buyers. In either case, as the product is produced at a constant marginal cost, there is no competition across the buyers. It follows that the ambiguity aversion (or robustness concern) is of no consequence for the behavior of the buyers. The optimal selling mechanism is a fixed price mechanism and each buyer's belief about the other buyers is immaterial. A recent article by Prasad (2003) presents negative result, an in particular shows that the standard optimal pricing policy of the monopolist is not robust. In the case of an ambiguity averse seller and (two) ambiguity neutral buyers, their main result, Proposition 9, asserts the existence of a selling mechanism which maximizes the minimum expected revenue. (For a related result with a risk averse seller, see Eso \& Futo (1999).) A recent manuscript, Hansen \& Sargent (2004), surveys and establishes new results for robust policies in dynamic and recursive
problem within a macroeconomic context.
In D. Bergemann \& Schlag (2004) we pursue the robust analysis in a more general mechanism design context while focusing on revenue rather than regret. In Selten (1989) first and second price auction are considered under a modified form of regret.

2 Model

2.1 Regret

We consider the optimal pricing problem of a monopolist. In contrast to classical problem where the monopolist seeks to maximize expected revenue for a given prior distribution over valuations, we consider the problem where the monopolist seeks minimize the regret against an adversary who chooses a distribution F over valuation so as to maximize the regret of the seller.

We begin with a classic environment in which the seller faces a single potential buyer who has unit demand for this good. The marginal costs of production are constant and normalized to zero. The buyer values the good at a value v which is private information to the buyer. The buyer purchases the good if and only if his net surplus from the transaction is positive, or $v-p \geq 0$. The valuation v of the buyer is drawn from a probability distribution on $[\underline{v}, 1]$ with $0 \leq \underline{v}<1$. Let \tilde{v} be the associated random variable and let $F_{v}(v)=\operatorname{Pr}(\tilde{v} \leq v)$ be the c.d.f. and let f_{v} denote the corresponding density whenever needed. The expected revenue, or profit, of the monopolist is for a given distribution F_{v} is denoted by:

$$
\pi\left(p, F_{v}\right)=p \operatorname{Pr}(\tilde{v} \geq p)=p \int_{p}^{1} d F_{v}(v)
$$

The objective of the monopolist is to minimize his regret from an optimal selling policy. The regret of the monopolist represents the opportunity loss attributed to the fact that he does not first learn the value of the buyer and then sets his price. More specifically the regret of the monopolist charging price p facing a buyer with value v is defined as the difference between (a) the profit the monopolist could make if he would learn the value v of the buyer before setting his price and (b) the profit he makes without this information. Formally, regret is defined as:

$$
r(p, v) \triangleq v-p \mathbb{I}_{\{v \geq p\}} .
$$

We observe that regret is non-negative and can only vanish if $p=v$. The regret of the monopolist is strictly positive in either of two cases: (i) the value v exceeds the price p, the indicator function is then $\mathbb{I}_{\{v \geq p\}}=1$, and the regret is the difference between possible revenue and actual price or $(i i)$ the value v is below the price p, the indicator function is then $\mathbb{I}_{\{v \geq p\}}=0$, and the regret is foregone surplus due to a too high price. The regret from adopting a mixed strategy pricing policy according to F_{p} when facing a buyer with value drawn according to F_{v} is derived by taking expectations:

$$
r\left(F_{p}, F_{v}\right) \triangleq \mathbb{E}[r(\tilde{p}, \tilde{v})]=\iint r(p, v) d F_{p}(p) d F_{v}(v)=\int v d F_{v}(v)-\int \pi\left(p, F_{v}\right) d F_{p}(p) .
$$

The strategy space of the monopolist is the set of all random pricing policy with support on the positive real line. The random variable associated with the mixed strategy is denoted by \tilde{p}, the c.d.f. by $F_{p} \in \Delta \mathbb{R}_{+}$and the density by f_{p}. In contrast to the classic monopoly problem in which the monopolist wishes to maximizes the expected return

$$
\max _{F_{p}}\left\{\int \pi\left(p, F_{v}\right) d F_{p}(p)\right\}
$$

we seek to find the policy which minimizes over all policies the maximum regret over all distributions over valuations F_{v} :

$$
\inf _{F_{p}} \sup _{F_{v}} r\left(F_{p}, F_{v}\right)=\inf _{F_{p}} \sup _{F_{v}}\left\{\int v d F_{v}(v)-\int \pi\left(p, F_{v}\right) d F_{p}(p)\right\}
$$

where formally we use sup instead of max.
We will relate the above problem to the dual problem in which the monopolist knows the value distribution and nature chooses this to maximize regret, i.e. nature solves

$$
\begin{equation*}
\sup _{F_{v}} \inf _{F_{p}}\left\{\int v d F_{v}(v)-\int \pi\left(p, F_{v}\right) d F_{p}(p)\right\} . \tag{r}
\end{equation*}
$$

and to the solution of the zero sum game in which the monopolist plays a simultaneous move zero sum game against nature where the monopolist aims to minimize regret while nature aims to maximize regret of the monopolist. We refer here to distributions F_{p}^{*} and F_{v}^{*} that solve

$$
r\left(F_{p}^{*}, F_{v}\right) \leq r\left(F_{p}^{*}, F_{v}^{*}\right) \leq r\left(F_{p}, F_{v}^{*}\right)
$$

for all F_{p} and F_{v}.
The above notion of regret is an ex-post criterion as we compare the realized revenue of the monopolist with the revenue he could have realized for every realization of the random
variable \widetilde{v}. This suggests a weaker version of regret (denoted by $\left.R=R\left(F_{p}, F_{v}\right)\right)$ in form of an interim criterion where the regret is the difference between the expected revenue the monopolist could obtain if he knew the true distribution and the expected revenue he actually obtains.

$$
R\left(F_{p}, F_{v}\right)=\sup _{p} \pi\left(p, F_{v}\right)-\int \pi\left(p, F_{v}\right) d F_{p}(p) .
$$

We shall refer to this interim notion of regret as interim regret. ${ }^{1}$ The resulting min max problem is given by:

$$
\begin{equation*}
\inf _{F_{p}} \sup _{F_{v}} R\left(F_{p}, F_{v}\right) . \tag{R}
\end{equation*}
$$

2.2 Neighborhoods

In contrast to the standard model of incomplete information, in our robust version the seller is uncertain about the true distribution over the buyer's valuations. The uncertainty (or ambiguity in the language of Ellsberg (1961)) is represented by a model distribution $F_{0}(v)$ and the requirement that the true distribution $F_{v}(v)$ is in a neighborhood of the model distribution $F_{0}(v)$. The size of the uncertainty can then be quantified by the size of neighborhood around the model distribution. For most of the paper, we shall consider the contamination "neighborhood" $\mathcal{N}_{\varepsilon}\left(F_{0}\right)$ identified by model distribution and the bandwidth ε :

$$
\mathcal{N}_{\varepsilon}\left(F_{0}\right)=\left\{F_{v} \mid F_{v}=(1-\varepsilon) F_{0}+\varepsilon G, G \in \Delta[\underline{v}, 1]\right\} .
$$

The contamination neighborhood therefore permits that with a small probability there is large change in the valuations. We shall refer to the case of $\varepsilon=1$ as the case of large uncertainty. With $\varepsilon=1$, the neighborhood is not anchored by any model distribution F_{0} at all. Similarly, we refer to the case of small ε as the case of small uncertainty. If the model distribution F_{0} is given by a Dirac function δ_{v} (and ε is small), then we refer to it as the case of near certainty, and for arbitrary model distributions F_{0} with a small ε, we refer to it as local uncertainty.

A related concept of neighborhoods is generated by the Prohorov distance, $\mathcal{P}_{\varepsilon}\left(F_{0}\right)$:

$$
\mathcal{P}_{\varepsilon}\left(F_{0}\right)=\left\{F_{v} \mid F_{v}(A) \leq F_{0}\left(A^{\varepsilon}\right)+\varepsilon, \forall A\right\},
$$

[^1]where the set A^{ε} denotes the closed ε neighborhood of A, or
\[

A^{\varepsilon}=\left\{$$
\begin{array}{l|l}
v \in[\underline{v}, 1] & \inf _{y \in A} d(x, y) \leq \varepsilon
\end{array}
$$\right\} .
\]

In contrast with the contamination neighborhood, the Prohorov metric allows for a small probability of large changes in the valuations as well as large probabilities of small changes in the valuations. The difference between the two notions of neighborhoods is illustrated in the graphics below for a Dirac function at v. The contamination through the distribution G allow F to be any distribution function in the shaded area, but it has to have a mass point at v as the distribution F is formed by convex combination involving the Dirac function δ_{v}.

Insert Figure 1 Here: Contamination Neighborhood

In contrast, the Prohorov neighborhood permits that the probability mass at v is accumulated over the interval $[v-\varepsilon, v+\varepsilon]$ and in consequence a distribution F close to F_{0} can be in the shaded area which forms a bandwidth around the entire graph of the distribution function $F_{0}(v)$ rather than only a bandwidth along its horizontal components.

Insert Figure 2 Here: Prohorov Neighborhood

Conceptually therefore, the Prohorov metric is the most attractive metric to work with. ${ }^{2}$ However, it is not very manageable for actual calculations. In the following we shall employ the Prohorov metric only for very simple models of uncertainty and then mostly to contrast the robust policy with a Prohorov neighborhood to a robust policy with respect to the contamination neighborhood.

With the notion of regret we consider here, there is another reason why the Prohorov metric might not be the natural metric. Consider for the moment pure strategies by the seller and nature. Since the regret displays a discontinuity at $v=p$, two pure strategies by nature which are nearby according to the Prohorov metric, say $v=p-\varepsilon$ and $v=p$ yield very different payoffs to the seller and nature. Yet, with the contamination neighborhood no pure strategy is close to another pure strategy, which also demonstrates that in a specific sense the contaminations neighborhoods are small. ${ }^{3,4}$

[^2]
3 Large Uncertainty

We search for a mixed pricing strategy that minimizes among all mixed pricing strategies the maximum regret among all distributions of buyer valuation. Accordingly, $F_{p}^{*} \in \Delta \mathbb{R}_{+}$ attains minimax regret if

$$
F_{p}^{*} \in \arg \min _{F_{p} \in \Delta \mathbb{R}} \sup _{F_{v} \in \Delta[v, 1]} r\left(F_{p}, F_{v}\right)=\arg \min _{F_{p} \in \Delta \mathbb{R}} \sup _{v \in[\underline{\sim}, 1]} r\left(F_{p}, v\right) .
$$

Notice that although we use the term minimax regret the expressions themselves use supremum instead of maximum as $\int_{p} r(p, v) d F_{p}(p)$ need not be continuous in v. The lowest upper bound that regret can attain is denoted by:

$$
\bar{r} \triangleq \inf _{F_{p} \in \Delta \mathbb{R}} \sup _{v \in[\underline{v}, 1]} r\left(F_{p}, v\right),
$$

where \bar{r} will be referred to as the value of minimax regret. The characterization of the minimax regret will be achieved by finding an equilibrium strategy of the monopolist for a specific zero sum game. The game is between the monopolist and nature where the monopolist aims to minimize regret r and nature aims to maximize regret r. The solution to the dual problem of the adversary is given by F_{v}^{*} which solves:

$$
F_{v}^{*} \in \arg \max _{F_{v} \in \Delta[v, 1]} \inf _{F_{p} \in \Delta \mathbb{R}} r\left(F_{p}, F_{v}\right) .
$$

F_{v}^{*} can be interpreted as the demand that maximizes the regret of a monopolist who knows the demand and maximizes expected payoffs. Accordingly, we sometimes refer to F_{v}^{*} as a worst case demand.

In the case of large uncertainty, we can obtain the optimal strategies by solving an associated saddle point problem. In general, the saddlepoint condition is only a sufficient, but not necessary condition for F_{p}^{*}, F_{v}^{*} to yield minimax regret and worst case demand.

Lemma 1 (Saddlepoint)

If $F_{p}^{*} \in \Delta \mathbb{R}_{+}$and $F_{v}^{*} \in \Delta[\underline{v}, 1]$ satisfy

$$
\begin{equation*}
r\left(F_{p}^{*}, F_{v}\right) \leq r\left(F_{p}^{*}, F_{v}^{*}\right) \leq r\left(F_{p}, F_{v}^{*}\right), \quad \forall F_{p} \in \Delta \mathbb{R}_{+}, \forall F_{v} \in \Delta[\underline{v}, 1] \tag{1}
\end{equation*}
$$

then:
Oechssler \& Riedel (2001) and Oechssler \& Riedel (2002).

1. F_{p}^{*} attains minimax regret,
2. F_{v}^{*} is worst case demand, and
3. minimax regret $\bar{r}=r\left(F_{p}^{*}, F_{v}^{*}\right)$, and $\operatorname{supp}\left(F_{p}^{*}\right) \subseteq \arg \max _{p} \pi\left(p, F_{v}^{*}\right)$.

Proof. F_{p}^{*} attains minimax regret and $F_{v}^{*} \in \arg \max _{F_{v} \in \Delta[v, 1]} \inf _{F_{p} \in \Delta \mathbb{R}_{+}} r\left(F_{p}, F_{v}\right)$ as

$$
\begin{aligned}
r\left(F_{p}^{*}, F_{v}^{*}\right) & =\max _{F_{v}} r\left(F_{p}^{*}, F_{v}\right) \geq \inf _{F_{p}} \sup _{F_{v}} r\left(F_{p}, F_{v}\right)=\bar{r} \\
& \geq \sup _{F_{v}} \inf _{F_{p}} r\left(F_{p}, F_{v}\right) \geq \min _{F_{p}} r\left(F_{p}, F_{v}^{*}\right)=r\left(F_{p}^{*}, F_{v}^{*}\right)
\end{aligned}
$$

holds given the general fact that inf sup \geq sup inf .
$>$ From the above with linearity of r we obtain $\operatorname{supp}\left(F_{p}^{*}\right) \subset \arg \min _{p} r\left(p, F_{v}^{*}\right)$. Since $r\left(p, F_{v}^{*}\right)=\int v d F_{v}^{*}(v)-\pi\left(p, F_{v}^{*}\right)$ it follows that $\operatorname{supp}\left(F_{p}^{*}\right) \subset \arg \max _{p} \pi\left(p, F_{v}^{*}\right)$.

We observe that the saddlepoint condition (1) is equivalent to

$$
\begin{equation*}
r\left(F_{p}^{*}, v\right) \leq r\left(F_{p}^{*}, F_{v}^{*}\right) \leq r\left(p, F_{v}^{*}\right), \forall p \in \mathbb{R}_{+}, \quad \forall v \in[\underline{v}, 1], \tag{2}
\end{equation*}
$$

which we use in the proof. The saddlepoint result allows us to connect minimax regret behavior to payoff maximizing behavior under a prior as follows. When minimax regret is derived from the equilibrium characterization in (1) then any price chosen by a monopolist who minimizes maximal regret, is at the same time a price which maximizes expected revenues against a particular demand, namely any arbitrary worst case demand. We now use the above lemma to establish optimal strategies for seller and adversary.

The optimal pricing strategy of the monopolist minimizes his regret. The regret arises qualitatively from two, very different exposures. If the valuation of the buyer is very high, then the regret may arise from having offered a price too low relative to the valuation. On the other hand, by having offered a price too high, the buyer risks to have a valuation below the price and the regret of the seller arises from not selling at all. Of course, for low valuations of the buyer, the possible regret is small and the first source of regret is more of a concern. For this reason, the value of the lowest valuation, \underline{v}, plays a particular role in the pricing strategy. A critical value for \underline{v} is given by $\frac{1}{e}(\approx 0.36788)$ and we denote by κ :

$$
\kappa \triangleq \max \left\{\frac{1}{e}, \underline{v}\right\} .
$$

Proposition 1 (Large Uncertainty)

1. The minimax regret strategy F_{p}^{*} is given by a continuous density:

$$
f_{p}^{*}(p)=\frac{1}{p}, \quad \text { for } \quad \kappa \leq p \leq 1
$$

and a lower mass point $\operatorname{Pr}\left(\tilde{p}^{*}=\underline{v}\right)=1+\ln \underline{v}$ if $\kappa=\underline{v}>\frac{1}{e}$.
2. The worst case demand F_{v}^{*} is given by a continuous density

$$
f_{v}^{*}(v)=\frac{\kappa}{v^{2}}, \text { for } \kappa \leq v \leq 1
$$

and an upper mass point $\operatorname{Pr}\left(\tilde{v}^{*}=1\right)=\kappa$.
3. The minimax regret is

$$
\bar{r}=1-\mathbb{E}\left[\tilde{p}^{*}\right]=\left\{\begin{array}{cl}
\frac{1}{e} & \text { if } \underline{v} \leq \frac{1}{e} \\
-\underline{v} \ln \underline{v} & \text { if } \underline{v}>\frac{1}{e}
\end{array} .\right.
$$

Proof. Let \tilde{v}^{*} have c.d.f. $F_{v}^{*} \in \Delta[\kappa, 1]$ with density $\frac{\kappa}{v^{2}}$ and where $\operatorname{Pr}\left(\tilde{v}^{*}=1\right)=\kappa$. Hence $\operatorname{Pr}\left(\tilde{v}^{*} \geq v\right)=\frac{\kappa}{v}$ for $v \in[\kappa, 1]$ and

$$
\begin{aligned}
& r\left(p, F_{v}^{*}\right)=\kappa+\int_{\kappa}^{1} v \frac{\kappa}{v^{2}} d v-p \frac{\kappa}{p}=-\kappa \ln \kappa \text { for } p \in[\kappa, 1] \\
& r\left(p, F_{v}^{*}\right)=\kappa+\int_{\kappa}^{1} v \frac{\kappa}{v^{2}} d v-p>-\kappa \ln \kappa \text { for } 0 \leq p<\kappa \\
& r\left(F_{p}^{*}, v\right)=v-\int_{\kappa}^{v} p \frac{1}{p} d p-\kappa(1+\ln \kappa)=-\kappa \ln \kappa \text { for } v \in[\kappa, 1] \\
& r\left(F_{p}^{*}, v\right)=v<-\kappa \ln \kappa=\frac{1}{e} \text { for } \underline{v}<v<\frac{1}{e}=\kappa .
\end{aligned}
$$

Hence, $\left(F_{p}^{*}, F_{v}^{*}\right)$ satisfies the conditions of Lemma 1. Note that $\bar{r}=r\left(F_{p}^{*}, 1\right)$ so $\bar{r}=1-\mathbb{E}[\tilde{p}]$ which completes the proof.

The proof of Proposition 1 is based on constructing the worst case demand F_{v}^{*}. Under the worst case demand the buyer does not purchase the object with a probability equal to

$$
\int_{\kappa}^{1} \operatorname{Pr}\left(\tilde{v}^{*}<p\right) \frac{1}{p} d p=\kappa-1-\ln \kappa
$$

which is decreasing, convex and ranges from $\frac{1}{e}$ when $\kappa=\frac{1}{e}$ to 0 when $\kappa=1$. The density function f_{p}^{*} of the mixed pricing strategy is illustrated below for $\underline{v} \leq 1 / e$.

Graph of density of the minimax pricing strategy when $\underline{v} \leq \frac{1}{e}$.

The density function f_{v}^{*} of the worst case demand is decreasing more rapidly, by the factor $\frac{\kappa}{v}$, than the density f_{p}^{*} of the pricing rule.

Graph of the density of the worst case demand F^{*} when $\underline{v} \leq \frac{1}{e}$.

The associated distribution function F_{p}^{*} is given by:

Graph of cumulative distribution of mixed pricing strategy when $\underline{v} \leq \frac{1}{e}$.
and for the worst case demand, it is given by F_{v}^{*}, which includes the mass point at $v=1$.

Graph of the cumulative distribution of the worst case demand F^{*} when $\underline{v} \leq \frac{1}{e}$.

Finally we represent the regret of the seller as a function of the lowest possible value \underline{v} :

Value of minimax regret as a function of \underline{v}.

Naturally, the regret is decreasing in the lowest possible value \underline{v} as a higher lower bound \underline{v} reduces the basic uncertainty for the seller. It is however constant for very low \underline{v} as the seller optimal disregards small regrets caused by low realizations of v.

Remark 1 (Deterministic Strategies)

The above analysis allowed seller and adversary to select a random strategy. If the monopolist can only set deterministic prices then it is easily verified that the monopolist will set $p^{*}=\frac{1}{2}$ if $\underline{v}<1 / 2$ and set $p^{*}=\underline{v}$ if $\underline{v} \geq 1 / 2$.

4 Small Uncertainty

In this section we describe the robust policy and some of its properties when the uncertainty is small and ε is close to zero. We start with the case of near certainty, where the model distribution F_{0} is a Dirac function at v_{0}. We then extend the analysis to an arbitrary model distribution F_{0}.

In this variation, F_{p}^{*} attains minimax regret if $F_{p}^{*} \in \arg \min _{F_{p} \in \Delta \mathbb{R}_{+}} \sup _{F_{v} \in \mathcal{N}_{\varepsilon}\left(F_{0}\right)} r\left(F_{p}, F_{v}\right)$. The saddle point condition (1) is adjusted to yield

$$
\begin{equation*}
r\left(F_{p}^{*}, F_{v}\right) \leq r\left(F_{p}^{*}, F_{v}^{*}\right) \leq r\left(F_{p}, F_{v}^{*}\right) \text { for all } F_{p} \in \Delta \mathbb{R}_{+} \text {and } F_{v} \in \mathcal{N}_{\varepsilon}\left(F_{0}\right) \tag{3}
\end{equation*}
$$

which is equivalent to

$$
r\left(F_{p}^{*}, v\right) \leq r\left(F_{p}^{*}, G^{*}\right) \text { for all } v \in[0,1] \text { and } \pi\left(F_{p}^{*}, F_{v}^{*}\right)=\max _{p \in[0,1]} \pi\left(p, F_{v}^{*}\right)
$$

We observe that this equivalence builds on the fact that $r\left(F_{p}, F_{v}\right)=(1-\varepsilon) r\left(F_{p}, F_{0}\right)+$ $\varepsilon r\left(F_{p}, G\right)$.

4.1 Near Certainty

In the following assume that buyer values v are drawn from $(1-\varepsilon) v_{0}+\varepsilon \tilde{v}$ where $\varepsilon \in(0,1)$ and $v_{0} \in[0,1]$ are known while the distribution of \tilde{v} is unknown. Let

$$
F_{v}(v) \triangleq(1-\varepsilon) \mathbb{I}_{\left\{v \geq v_{0}\right\}}+\varepsilon G .
$$

The regret of choosing price p is then given by

$$
\begin{aligned}
r\left(p, F_{v}\right) & =(1-\varepsilon) r\left(p, v_{0}\right)+\varepsilon r\left(p, F_{v}\right) \\
& =(1-\varepsilon) v_{0}+\varepsilon \int_{\underline{v}}^{1} v d F_{v}(v)-(1-\varepsilon) \pi\left(p, v_{0}\right)-\varepsilon \mathbb{E}[\pi(p, \tilde{v})] .
\end{aligned}
$$

The following proposition characterizes minimax regret behavior for $v_{0}>0$.

Proposition 2 (Near Certainty)

The following pair $\left(F_{p}^{*}, F_{v}^{*}\right)$ attains minimax regret and represents worst case demand.

1. If $\varepsilon<v_{0} \leq \frac{1}{2}$, then $\operatorname{Pr}\left(\tilde{p}^{*}=v_{0}\right)=\operatorname{Pr}\left(\tilde{v}^{*}=1\right)=1$, and $\bar{r}=\varepsilon\left(1-v_{0}\right)$.
2. If $\varepsilon<1-e^{-2+\frac{1}{v_{0}}}$ and $\frac{1}{2}<v_{0} \leq 1$, then
(a) the minimax regret strategy is given by a continuous density

$$
f_{p}^{*}(p)=\frac{1}{p}, \quad \text { for } p \in\left[(1-\varepsilon) v_{0}, v_{0}\right)
$$

and an upper mass point $\operatorname{Pr}\left(\tilde{p}^{*}=v_{0}\right)=1+\ln (1-\varepsilon)$;
(b) the worst case demand $F_{v}^{*}(v)$ is given by a continuous density

$$
f_{v}^{*}(v)=\frac{(1-\varepsilon) v_{0}}{\varepsilon v^{2}}, \quad \text { for } v \in\left[(1-\varepsilon) v_{0}, v_{0}\right)
$$

and an upper mass point $\operatorname{Pr}\left(\tilde{v}^{*}=v_{0}\right)=1-\varepsilon$;
(c) $\mathbb{E}[\tilde{p}]=(1+\varepsilon+\ln (1-\varepsilon)) v_{0}$ and $\bar{r}=-(1-\varepsilon) v_{0} \ln (1-\varepsilon)$;
(d) $\mathbb{E}[\tilde{p}]$ is strictly decreasing in ε with $\left.\frac{d}{d \varepsilon} \mathbb{E}[\tilde{p}]\right|_{\varepsilon=0}=0$??and $\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=v_{0}$. ??

Proof. (1.) $r\left(F_{p}^{*}, F_{v}^{*}\right)=\varepsilon\left(1-v_{0}\right)$ follows immediately. We next show that: $F_{p}^{*} \in$ $\arg \min r\left(F_{p}, F_{v}^{*}\right)$. The only alternative candidate is to set $p=1$ which yields $r\left(1, F_{v^{*}}\right)=$ $(1-\varepsilon) v_{0}$. Note that $\varepsilon\left(1-v_{0}\right)<(1-\varepsilon) v_{0}$ if $\varepsilon<v_{0}$ so claim is proven. We then show that: $1 \in \arg \max _{v} r\left(v_{0}, v\right)$. As $v_{0} \leq \frac{1}{2}$ it follows that F_{v}^{*} is a maximizer.
(2.) Note that

$$
F_{v}^{*}(v)=\left\{\begin{array}{ccc}
0, & \text { if } & v \in\left[0,(1-\varepsilon) v_{0}\right] \\
1-\frac{(1-\varepsilon) v_{0}}{v}, & \text { if } & v \in\left((1-\varepsilon) v_{0}, v_{0}\right), \\
1, & \text { if } & v \in\left[v_{0}, 1\right]
\end{array}\right.
$$

We first show that: $F_{p}^{*} \in \arg \max _{F_{p} \in \Delta \mathbb{R}_{+}} \pi\left(F_{p}, F_{v^{*}}\right)$. If $p \in\left[(1-\varepsilon) v_{0}, v_{0}\right]$ then $\pi\left(p, F_{v^{*}}\right)=$ $p\left(1-F_{v}^{*}(p)\right)=(1-\varepsilon) v_{0}$. If $p<(1-\varepsilon) v_{0}$ or $p>v_{0}$ then clearly $\pi\left(p, F_{v^{*}}\right)<(1-\varepsilon) v_{0}$.Next we show that: $G^{*} \in \arg \max _{G \in \Delta[0,1]} r\left(F_{p}^{*}, G\right)$. If $(1-\varepsilon) v_{0}<v<v_{0}$ then

$$
r\left(F_{p}^{*}, v\right)=v-\int_{(1-\varepsilon) v_{0}}^{v} p \frac{1}{p} d p=(1-\varepsilon) v_{0}
$$

If $v \geq v_{0}$ then

$$
r\left(F_{p}^{*}, v\right)=v-\mathbb{E}[\tilde{p}]=v-(1+\varepsilon+\ln (1-\varepsilon)) v_{0}
$$

as

$$
\mathbb{E}[\tilde{p}]=\int_{(1-\varepsilon) v_{0}}^{v_{0}} p \frac{1}{p} d p+(1+\ln (1-\varepsilon)) v_{0}=(1+\varepsilon+\ln (1-\varepsilon)) v_{0} .
$$

If $v<(1-\varepsilon) v_{0}$ then $r\left(F_{p}^{*}, v\right)=v$. Comparing we find that $(1-\varepsilon) v_{0}<1-\varepsilon v_{0}-$ $(1+\ln (1-\varepsilon)) v_{0}$ iff $\varepsilon<1-e^{-2+\frac{1}{v_{0}}}$. Finally,

$$
\begin{aligned}
r\left(F_{p}^{*}, F_{v}^{*}\right) & =(1-\varepsilon) r\left(F_{p}^{*}, v_{0}\right)+\varepsilon r\left(F_{p}^{*},(1-\varepsilon) v_{0}\right) \\
& =(1-\varepsilon)\left(v_{0}-\mathbb{E}[\tilde{p}]\right)+\varepsilon(1-\varepsilon) v_{0} \\
& =-(1-\varepsilon) v_{0} \ln (1-\varepsilon),
\end{aligned}
$$

which concludes the proof.
For small v_{0} (case 1) we find $\frac{d}{d \varepsilon} \bar{r}=1-v_{0}$ and for large v_{0} (case 2) we find $\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=v_{0}$. Thus uncertainty has the largest impact on maximal regret for extreme values of v_{0}.

Remark 2 In the special case of $v_{0}=0$, not covered by Proposition 2, the equilibrium solution is exactly identical to the solution under large uncertainty. More precisely, if $v_{0}=0$ then

$$
r\left(p,(1-\varepsilon) \mathbb{I}_{\{v \geq 0\}}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right)=\varepsilon\left(v^{\prime}-p \mathbb{I}_{\left\{p \leq v^{\prime}\right\}}\right)
$$

and it follows immediately that the solution from the case of large uncertainty attains minimax regret. So F_{p}^{*} is given by a continuous density $f_{p}^{*}(p)=\frac{1}{p}$ for $\frac{1}{e} \leq p \leq 1$. The worst case demand in turn is given by the convex combination of the Dirac function at 0 and the solution F_{v}^{*} from Proposition 1, or $(1-\varepsilon) \delta_{0}+\varepsilon F_{v}^{*}$ (in slight abuse of notation).

Remark 3 (Deterministic Strategies)

If the monopolist is confined to choose among deterministic prices it is easily verified that $p^{*}=v_{0}$ if $\varepsilon<\frac{1}{2}$. ?? In this case, $\bar{r}_{D}:=\min _{p} \sup _{F_{v}} r\left(p, F_{v}\right)=\varepsilon \max \left\{v_{0}, 1-v_{0}\right\}$ so locally near $\varepsilon=0$ we find a similar performance as under mixed pricing.??

4.2 Small Uncertainty

Consider now the setting where values are distributed according to $(1-\varepsilon) F_{0}+\varepsilon G$ where $\varepsilon \in(0,1)$ and F_{0} are known but $G \in \Delta[0,1]$ is unknown. Let \tilde{v}_{0} denote the random variable associated to F_{0}.

Proposition 3 (Small Uncertainty (I))

Assume that $\left\{p_{0}\right\}=\arg \max \pi\left(p, F_{0}\right)$ with $p_{0}<\frac{1}{2}$, f_{0} continuously differentiable in a neighborhood of p_{0} and $\pi\left(p, F_{0}\right)$ as a function of p is continuous on $[0,1]$ and strictly concave in a neighborhood of p_{0}. Then

1. there exists $\bar{\varepsilon}>0$ such that for each $\varepsilon \in(0, \bar{\varepsilon})$ there exists $p^{*} \in\left(0, \frac{1}{2}\right)$ such that p^{*} attains minimax regret and $(1-\varepsilon) \mathbb{I}_{\left\{v \geq v_{0}\right\}}+\varepsilon \mathbb{I}_{\{v \geq 1\}}$ is a worst case demand.
2. ?? $\frac{d}{d \bar{\varepsilon}} p^{*}(0)=-\frac{1}{\pi^{\prime \prime}\left(p_{0}, F_{0}\right)}>0$ [the statement " $\bar{\varepsilon}$ can be chosen such that $\lim _{\varepsilon \rightarrow \bar{\varepsilon}} p^{*}(\varepsilon)=$ $\frac{1}{2}$ in which case p^{*} is strictly increasing in $\varepsilon^{\prime \prime}$ comes from an earlier proposition in which we assumed that $\pi\left(p, F_{0}\right)$ is strictly concave on $[0,1]$ or at least on $\left[p_{0}, \frac{1}{2}\right]$ see sentence added after proof.] and $\frac{d}{d \varepsilon} \bar{r}_{\varepsilon=0}=1-p_{0}+\pi\left(p_{0}, F_{0}\right)-\int v f_{0}(v) d v>0$. $\left|\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}>0$ sounded too boring]??

Proof. Assume that $F_{v}^{*}=\mathbb{I}_{\{v \geq 1\}}$. Let $\delta \in\left(0, \frac{1}{2}-p_{0}\right)$ be such that f is differentiable and $\pi\left(p, F_{v}^{*}\right)=(1-\varepsilon) p\left(1-F_{0}(p)\right)+\varepsilon p$ is strictly concave for all $p \in B=\left(p_{0}-\delta, p_{0}+\delta\right)$. Note that such a δ exists.

We first construct $\bar{\varepsilon}>0$ and $p^{*}(\varepsilon)<\frac{1}{2}$ for $\varepsilon<\bar{\varepsilon}$ such that $p^{*} \in \arg \max _{p} \pi\left(p, F_{v}^{*}\right)=$ $\arg \min _{p} r\left(p, F_{v}^{*}\right)$ and derive some properties of p^{*}. Since $\pi\left(p, F_{0}\right)$ is continuous we obtain that $\arg \max _{p} \pi\left(p, F_{v}^{*}\right)$ is upper hemi-continuous in ε. So there exists $\bar{\varepsilon}>0$ such
$\arg \max _{p} \pi\left(p, F_{v}^{*}\right) \cap B \neq \emptyset$ for all $\varepsilon<\bar{\varepsilon}$. For $\varepsilon<\bar{\varepsilon}$ choose $p^{*} \in \arg \max _{p} \pi\left(p, F_{v}^{*}\right) \cap B$. With this we obtain $p^{*}<\frac{1}{2}$ and p^{*} solves the first order conditions

$$
(1-\varepsilon)\left(1-F_{0}\left(p^{*}\right)-p^{*} f_{0}\left(p^{*}\right)\right)+\varepsilon=0 .
$$

Differentiating with respect to ε we obtain:

$$
-\left(1-F_{0}\left(p^{*}\right)-p^{*} f_{0}\left(p^{*}\right)\right)+1+(1-\varepsilon)\left(-2 f_{0}\left(p^{*}\right)-p^{*} f_{0}^{\prime}\left(p^{*}\right)\right) \frac{d}{d \varepsilon} p^{*}=0
$$

so

$$
\frac{d}{d \varepsilon} p^{*}=\frac{F_{0}\left(p^{*}\right)+p^{*} f_{0}\left(p^{*}\right)}{(1-\varepsilon)\left(2 f_{0}\left(p^{*}\right)+p^{*} f_{0}^{\prime}\left(p^{*}\right)\right)}>0
$$

with

$$
\frac{d}{d \varepsilon} p^{*}(0)=\frac{1}{2 f_{0}\left(p^{*}\right)+p^{*} f_{0}^{\prime}\left(p^{*}\right)}>0
$$

Given that $p^{*}<\frac{1}{2}$ for $\varepsilon<\bar{\varepsilon}$ it follows that $\{1\}=\arg \max r\left(p^{*}, v\right)$. Applying the saddle point condition it follows that p^{*} attains minimax value regret.

We obtain $\bar{r}=(1-\varepsilon)\left(\int v f_{0}(v) d v-p^{*}\left(1-F_{0}\left(p^{*}\right)\right)\right)+\varepsilon\left(1-p^{*}\right)$ where

$$
\left.\frac{\partial}{\partial \varepsilon} \bar{r}\right|_{\varepsilon=0}=-\left(\int v f_{0}(v) d v-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)\right)+1-p_{0}>0
$$

[??i do not understand why this is added: "so together with the fact that $\frac{d}{d \varepsilon} p^{*}(0)>0$ we obtain $\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}>0 . "$ nor do i see formally why " $1-p_{0} F_{0}\left(p_{0}\right)-\int v f_{0}(v) d v>0 "$.]
??In the special case where $\pi\left(p, F_{0}\right)$ is strictly concave on $\left[p_{0}, \frac{1}{2}\right]$ the proof above shows that $\bar{\varepsilon}$ can be chosen such that $\lim _{\varepsilon \rightarrow \bar{\varepsilon}} p^{*}(\varepsilon)=\frac{1}{2}$ in which case p^{*} is strictly increasing in ε for $\varepsilon<\bar{\varepsilon}$. [add like this or as formal remark?]??
??Notice that if the monopolist fails to adjust to uncertainty and chooses p_{0} then maximal regret equals $(1-\varepsilon)\left(\int v f_{0}(v) d v-\pi\left(p_{0}, F_{0}\right)\right)+\varepsilon\left(1-p_{0}\right)$, in particular $\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \sup _{F_{v}} r\left(p_{0}, F_{v}\right)=$ $\left.\frac{\partial}{\partial \varepsilon} \bar{r}\right|_{\varepsilon=0}$. [should this be added?]??

Next we consider the case where the best response price under certainty is above $\frac{1}{2}$.

Proposition 4 (Small Uncertainty (II))

Assume that $\pi\left(p, F_{0}\right)$ is strictly concave in p, F_{0} is without mass points, $p_{0}>\frac{1}{2}$ given $\left\{p_{0}\right\}=\arg \max _{p} \pi\left(p, F_{0}\right)$ and that ε is sufficiently small. The following pair $\left(F_{p}^{*}, F_{v}^{*}\right)$ attains minimax regret and represents worst case demand:

1. (a) the minimax regret strategy is given by a continuous density

$$
f_{p}^{*}(p)=\frac{1}{p}, \quad \text { for } p \in\left[a, p_{0}\right) \text {, }
$$

and an upper mass point $\operatorname{Pr}\left(\tilde{p}^{*}=v_{0}\right)=1+\ln \frac{a}{p_{0}}$;
(b) the worst case demand $F_{v}^{*}(v)$ is given by

$$
F_{v}^{*}(v)=\left\{\begin{array}{cl}
(1-\varepsilon) F_{0}(v), & \text { if } v \in[0, a], \\
1-\frac{(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)}{v}, & \text { if } v \in\left(a, p_{0}\right), \\
(1-\varepsilon) F_{0}(v)+\varepsilon, & \text { if } v \in\left[p_{0}, 1\right]
\end{array}\right.
$$

where $a<p_{0}$ is the unique solution to $(1-\varepsilon) \pi\left(a, F_{0}\right)+a \varepsilon=(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)$.

Proof. We first observe that strict concavity of $\pi\left(p, F_{0}\right)$ makes a well defined. Note that

$$
G^{*}(v)=\left\{\begin{array}{cc}
0 & \text { if } v \in[0, a] \\
\frac{1}{\varepsilon}\left(1-(1-\varepsilon) F_{0}(v)-\frac{(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)}{v}\right) & \text { if } v \in\left(a, p_{0}\right) \\
1 & \text { if } v \in\left[p_{0}, 1\right]
\end{array}\right.
$$

for $v \in\left[a, p_{0}\right]$ so G^{*} has no mass points. Then it is easily verified that both F_{v}^{*} and G are well defined c.d.f.

First we show that $G^{*} \in \arg \max r\left(F_{p}^{*}, G\right)$ if ε is sufficiently small. We find

$$
\mathbb{E}[\tilde{p}]=\int_{a}^{p_{0}} p \frac{1}{p} d p+\left(1+\ln \frac{a}{p_{0}}\right) p_{0}=2 p_{0}-a+p_{0} \ln \frac{a}{p_{0}},
$$

so if $v \in\left(a, p_{0}\right)$ then

$$
r\left(F_{p}^{*}, v\right)=v-\int_{a}^{v} p \frac{1}{p} d p=a .
$$

If $v \geq p_{0}$, then

$$
r\left(F_{p}^{*}, v\right)=v-\mathbb{E}[\tilde{p}]=v-\left(2 p_{0}-a+p_{0} \ln \frac{a}{p_{0}}\right)
$$

and if $v \leq a$ then $r\left(F_{p}^{*}, v\right)=v$. So $\left[a, p_{0}\right)=\arg \max _{v} r\left(F_{p}^{*}, v\right)$ if

$$
1-\left(2 p_{0}-a+p_{0} \ln \frac{a}{p_{0}}\right)<a,
$$

where the latter holds if and only $a>p_{0} e^{-2+\frac{1}{p_{0}}}$. Notice that $a>p_{0} e^{-2+\frac{1}{p_{0}}}$ holds when $\frac{1}{2}<a<p_{0}$ which is true if ε is sufficiently small as $a \rightarrow p_{0}$ as $\varepsilon \rightarrow 0$. Hence our first claim is proven.

Now we show that $F_{p}^{*} \in \arg \max _{F_{p}} \pi\left(F_{p}, F_{v}^{*}\right)$ if ε is sufficiently small. It follows immediately from our definition of F_{v}^{*} that

$$
\pi\left(p, F_{v}^{*}\right)=p\left(1-F_{v}^{*}(p)\right)=(1-\varepsilon) \pi\left(p_{0}, F_{0}\right) \quad \text { for } p \in\left[a, p_{0}\right] .
$$

For $p>p_{0}$ we obtain $\pi\left(p, F_{v}^{*}\right)=(1-\varepsilon) \pi\left(p, F_{0}\right)<(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)=\pi\left(p_{0}, F_{v}^{*}\right)$. Finally for $p<a$ we obtain $\pi\left(p, F_{v}^{*}\right)=(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p<\pi\left(a, F_{v}^{*}\right)$. This proves our second claim.

The proof reveals that the condition on ε being sufficiently small is that we need ??a> $p_{0} e^{-2+\frac{1}{p_{0}}}$ [typo eliminated]??.

Proposition 5 (Increasing Uncertainty with High Price)

With the maintained assumptions of the Proposition 4, the expected price is strictly decreasing in ε, [?? replaced $\left.\frac{\partial^{2}}{(\partial p)^{2}} \pi\left(p, F_{0}\right)\right|_{p=p_{0}}$ by $\pi^{\prime \prime}\left(p_{0}, F_{0}\right)$ (this notation already used above)]

$$
\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \mathbb{E}[\tilde{p}]=\frac{1}{\pi^{\prime \prime}\left(p_{0}, F_{0}\right)}<0
$$

$\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} a=-\infty$ and ?? $\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \bar{r}=-\int_{0}^{1} v f_{0}(v) d v+p_{0}+\pi\left(p_{0}, F_{0}\right)$. [same as in deterministic case below]??

Proof. $>$ From the proof of Proposition 4, we find $\mathbb{E}[\tilde{p}]=2 p_{0}-a+p_{0} \ln \frac{a}{p_{0}}$. Since

$$
(1-\varepsilon) \frac{1}{a}\left(\pi\left(a, F_{0}\right)-\pi\left(p_{0}, F_{0}\right)\right)+\varepsilon=0,
$$

we have

$$
\varepsilon=1-\frac{1}{1+\frac{1}{a}\left(\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)\right)} .
$$

We note that:

$$
\frac{d}{d a} \varepsilon(a)=\frac{1}{\left(1+\frac{1}{a}\left(\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)\right)\right)^{2}} \frac{1}{a^{2}}\left(a^{2} f_{0}(a)-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)\right) .
$$

Since $\pi\left(p, F_{0}\right)$ is strictly concave we have that $1-F_{0}(a)-a f_{0}(a)>0\left(\right.$ as $\left.a<p_{0}\right)$ so

$$
a^{2} f_{0}(a)-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)<a\left(1-F_{0}(a)\right)-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)<0
$$

and hence $\frac{d}{d a} \varepsilon(a)<0$. In particular,

$$
\frac{d}{d a} \varepsilon\left(p_{0}\right)=\frac{1}{p_{0}^{2}}\left(p_{0}^{2} f_{0}\left(p_{0}\right)-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)\right)=-\frac{1}{p_{0}}\left(1-F_{0}\left(p_{0}\right)-p_{0} f_{0}\left(p_{0}\right)\right)=0 .
$$

Using the chain rule we find

$$
\begin{aligned}
\frac{d}{d \varepsilon} \mathbb{E}[\tilde{p}] & =\frac{\partial}{\partial a} \mathbb{E}[\tilde{p}] / \frac{d}{d a} \varepsilon(a)=\left(-1+\frac{p_{0}}{a}\right) \frac{a^{2}\left(1+\frac{1}{a}\left(p_{0}\left(1-F_{0}\left(p_{0}\right)\right)-\pi\left(a, F_{0}\right)\right)\right)^{2}}{\left(a^{2} f_{0}(a)-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)\right)} \\
& =-\frac{a-p_{0}}{a^{2} f_{0}(a)-p_{0}^{2} f_{0}\left(p_{0}\right)} a\left(1+\frac{1}{a}\left(p_{0}^{2} f_{0}\left(p_{0}\right)-\pi\left(a, F_{0}\right)\right)\right)^{2}
\end{aligned}
$$

and hence

$$
\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \mathbb{E}[\tilde{p}]=-p_{0} \frac{1}{\left.\frac{d}{d a} a^{2} f_{0}(a)\right|_{a=p_{0}}}=-\frac{1}{2 f_{0}\left(p_{0}\right)+p_{0} f_{0}^{\prime}\left(p_{0}\right)}<0 .
$$

The proof of Proposition 4 shows that

$$
\begin{aligned}
\bar{r} & =(1-\varepsilon) \int_{[0, a] \cup\left[p_{0}, 1\right]} v f_{0}(v) d v+\int_{a}^{p_{0}} v \frac{(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)}{v^{2}} d v-a\left((1-\varepsilon)\left(1-F_{0}(a)\right)+\varepsilon\right) \\
& =(1-\varepsilon) \int_{[0, a] \cup\left[p_{0}, 1\right]} v f_{0}(v) d v+(1-\varepsilon) \pi\left(p_{0}, F_{0}\right) \ln \frac{p_{0}}{a}-a\left(1-(1-\varepsilon) F_{0}(a)\right)
\end{aligned}
$$

so we obtain

$$
\begin{aligned}
\frac{\partial}{\partial \varepsilon} \bar{r} & =-\int_{[0, a] \cup\left[p_{0}, 1\right]} v f_{0}(v) d v-\pi\left(p_{0}, F_{0}\right) \ln \frac{p_{0}}{a}-a F_{0}(a) \\
& \rightarrow-\int_{0}^{1} v f_{0}(v) d v-p_{0} F_{0}\left(p_{0}\right) \text { as } \varepsilon \rightarrow 0 \\
\frac{\partial}{\partial a} \bar{r} & =(1-\varepsilon) a f_{0}(a)-(1-\varepsilon) \pi\left(p_{0}, F_{0}\right) \frac{1}{a}-\left(1-(1-\varepsilon) F_{0}(a)\right)+(1-\varepsilon) a f_{0}(a) \\
& =2(1-\varepsilon) a f_{0}(a)+(1-\varepsilon) F_{0}(a)-(1-\varepsilon) \pi\left(p_{0}, F_{0}\right) \frac{1}{a}-1 \\
& =\frac{1}{a}\left(2(1-\varepsilon) a^{2} f_{0}(a)-(1-\varepsilon)\left(\pi\left(p_{0}, F_{0}\right)+\pi\left(a, F_{0}\right)\right)-\varepsilon\right) \\
& \rightarrow 2 p_{0} f_{0}\left(p_{0}\right)+2 F_{0}\left(p_{0}\right)-2=0 \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{\frac{\partial}{\partial a} \bar{r}}{\frac{d}{d a} \varepsilon(a)} & =\frac{1}{a}\left(2(1-\varepsilon) a^{2} f_{0}(a)-(1-\varepsilon)\left(\pi\left(p_{0}, F_{0}\right)+\pi\left(a, F_{0}\right)\right)-\varepsilon\right) \frac{a^{2}\left(1+\frac{1}{a}\left(\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)\right)\right)^{2}}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)} \\
& =a\left(1+\frac{1}{a}\left(\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)\right)\right)^{2} \frac{(1-\varepsilon)\left(2 a^{2} f_{0}(a)-\left(\pi\left(p_{0}, F_{0}\right)+\pi\left(a, F_{0}\right)\right)\right)-\varepsilon}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)} \\
& \rightarrow 2 p_{0}
\end{aligned}
$$

as

$$
\frac{(1-\varepsilon)\left(2 a^{2} f_{0}(a)-\left(\pi\left(p_{0}, F_{0}\right)+\pi\left(a, F_{0}\right)\right)\right)-\varepsilon}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)} \approx 2+\frac{\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)}-\frac{\varepsilon}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)}
$$

and

$$
\frac{\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)} \approx \frac{-\pi^{\prime}\left(p_{0}, F_{0}\right)}{2 p_{0} f_{0}\left(p_{0}\right)+p_{0}^{2} f_{0}^{\prime}\left(p_{0}\right)}=0
$$

given $\frac{d}{d p}\left(1-F_{0}-p f_{0}\right)=-2 f_{0}-p f_{0}^{\prime}<0$ and as

$$
\frac{\varepsilon}{a^{2} f_{0}(a)-\pi\left(p_{0}, F_{0}\right)} \approx \frac{\varepsilon^{\prime}\left(p_{0}\right)}{2 p_{0} f_{0}\left(p_{0}\right)+p_{0}^{2} f_{0}^{\prime}\left(p_{0}\right)}=0
$$

Summarizing we find

$$
\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=-\int_{0}^{1} v f_{0}(v) d v-p_{0} F_{0}\left(p_{0}\right)+2 p_{0}=-\int_{0}^{1} v f_{0}(v) d v+p_{0}+\pi\left(p_{0}, F_{0}\right)
$$

The analysis of the regret strategies in the presence of small uncertainty assigns a prominent ??role?? to optimal price without uncertainty being equal to $\frac{1}{2}$. The special role of $p^{0}=\frac{1}{2}$ can be easily accounted for. Clearly, with small uncertainty the optimal regret policy will not divert too much from the policy without uncertainty and in consequence the expected price $\mathbb{E}\left[p^{*}\right]$ will stay close to p^{0}. For the adversary, the question is then for which realizations the small regret can be maximized. If the price p^{0} is large than $\frac{1}{2}$, then the regret is maximized by realizing values just below p^{0} as the seller would then fail to make any sales. As $p^{0} \rightarrow \frac{1}{2}$, the maximal regret which can be achieved with valuations v below p^{0} is converging to $\frac{1}{2}$. On the other hand, if $p^{0}<\frac{1}{2}$, then the maximal regret can be achieved by realization of $v=1$ as the regret which emerges from here is the foregone revenue which is equal to $v-p^{0}$, and for $v=1$ and $p^{0} \rightarrow \frac{1}{2}$, the maximal regret converges to $\frac{1}{2}$, and hence $p^{0}=\frac{1}{2}$, is the critical value in the determination of the optimal strategy of the adversary.

Corollary 1 (Deterministic Pricing with High Price)

Under the assumptions of Proposition 4, if the monopolist can only set a deterministic price then p^{*} solves $\pi^{\prime}\left(p^{*}, F_{0}\right)=\frac{\varepsilon}{1-\varepsilon}$ where $p^{*} \in\left(a, p_{0}\right)$, [?? expression for $\pi^{\prime \prime}$ corrected again]

$$
\left.\frac{d}{d \varepsilon} p^{*}\right|_{\varepsilon=0}=\frac{1}{\pi^{\prime \prime}\left(p_{0}, F_{0}\right)}<0
$$

and $\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=-\int_{0}^{1} v f_{0}(v) d v+p_{0}+\pi\left(p_{0}, F_{0}\right)$ [??slightly changed expression to match the one above].

Proof. If ε is sufficiently small then p^{*} will be close to p_{0}, in particular $p^{*}>\frac{1}{2}$. For $p>\frac{1}{2}$ we obtain

$$
\sup _{F_{v}} r\left(p, F_{v}\right)=(1-\varepsilon)\left(\int_{0}^{1} v f_{0}(v) d v-p\left(1-F_{0}(p)\right)\right)+\varepsilon p,
$$

where $\frac{d}{d p} \sup _{F_{v}} r\left(p, F_{v}\right)=-(1-\varepsilon) \pi^{\prime}\left(p, F_{0}\right)+\varepsilon$ and where

$$
\frac{d^{2}}{(d p)^{2}} \sup _{F_{v}} r\left(p, F_{v}\right)=-(1-\varepsilon) \pi^{\prime \prime}\left(p, F_{0}\right)
$$

So if p is sufficiently close to p_{0} then $\frac{d^{2}}{(d p)^{2}} \sup _{F_{v}} r\left(p, F_{v}\right)<0$. So $\pi^{\prime}\left(p^{*}, F_{0}\right)=\frac{\varepsilon}{1-\varepsilon}$ which implies $p^{*}<p_{0}$ and $\lim _{\varepsilon \rightarrow 0} p^{*}=p_{0}$. We then recall that

$$
(1-\varepsilon) \frac{1}{a}\left(\pi\left(a, F_{0}\right)-\pi\left(p_{0}, F_{0}\right)\right)+\varepsilon=0
$$

and so

$$
\frac{\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)}{a}=\frac{\varepsilon}{1-\varepsilon}=\pi^{\prime}\left(p^{*}, F_{0}\right) .
$$

If $p^{*} \leq a$ then

$$
\frac{\varepsilon}{1-\varepsilon}=\pi^{\prime}\left(p^{*}, F_{0}\right) \geq \pi^{\prime}\left(a, F_{0}\right)>\frac{\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)}{p_{0}-a}>\frac{\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)}{a}=\frac{\varepsilon}{1-\varepsilon},
$$

if $p_{0}<2 a$ which is true if ε is sufficiently small.
It follows that

$$
\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=-\left(\int_{0}^{1} v f_{0}(v) d v-p_{0}\left(1-F_{0}\left(p_{0}\right)\right)\right)+p_{0}=p_{0}\left(2-F_{0}\left(p_{0}\right)\right)-\int_{0}^{1} v f_{0}(v) d v
$$

which completes the proof.
We finally observe that the choice of p_{0} yields

$$
\sup _{F_{v}} r\left(p_{0}, F_{v}\right)=(1-\varepsilon) \int_{0}^{1} v f_{0}(v) d v+\varepsilon p_{0}-(1-\varepsilon) p_{0}\left(1-F_{0}\left(p_{0}\right)\right)
$$

and hence $\left.\frac{d}{d \varepsilon} \sup _{F_{v}} r\left(p_{0}, F_{v}\right)\right|_{\varepsilon=0}=\left.\frac{d}{d \varepsilon} \bar{r}_{D}\right|_{\varepsilon=0}$ where \bar{r}_{D} is the minimax value of regret among the deterministic prices.

4.3 Example: Linear Density

To illustrate the above results consider F_{0} with linear and decreasing density f_{0} on $[0,1]$ so $f_{0}(v)=1+\left(\frac{1}{2}-v\right) b$ and $F_{0}(v)=\frac{1}{2} v(2+b-b v)$ with $-2 \leq b \leq 2$. Then

$$
p_{0}=\frac{1}{3 b}\left(2+b-\sqrt{\left(4-2 b+b^{2}\right)}\right)
$$

maximizes expected profit when $\varepsilon=0$. It follows that p_{0} is strictly decreasing in b with $p_{0}=\frac{1}{3} \sqrt{3} \approx 0.58$??if $b=-2$??, $p_{0}=\frac{1}{2}$ if $b=0$ and $p_{0}=\frac{1}{3}$ if $b=2$.

4.3.1 Low Price

Consider first the case of $b>0$ which implies that $p_{0}<\frac{1}{2}$. ??Then

$$
p^{*}(\varepsilon)=\frac{1}{3 b(1-\varepsilon)}\left((2+b)(1-\varepsilon)-\sqrt{(1-\varepsilon)\left(-6 b+(2+b)^{2}(1-\varepsilon)\right)}\right)
$$

maximizes $(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p$ where $p^{*}<\varepsilon$ if and only if $\varepsilon<\frac{b}{8+b}$. Given our results above this means that $\bar{\varepsilon}$ can be set equal to $\frac{b}{8+b}$ to obtain for all $\varepsilon<\bar{\varepsilon}$ that p^{*} attains minimax ex-post regret and?? which yields

$$
\bar{r}=(1-\varepsilon)\left(\frac{1}{2}-\frac{1}{12} b-p^{*}\left(1-\frac{1}{2} p^{*}\left(2+b-b p^{*}\right)\right)\right)+\varepsilon\left(1-p^{*}\right) .
$$

Notice that $p^{*}(\varepsilon)$ is strictly increasing in ε with $p^{*}(\varepsilon)=\frac{1}{2}$ when $\varepsilon=\frac{b}{8+b}$ and that $\frac{d}{d \varepsilon} p^{*}(0)=$ $\frac{1}{\sqrt{4-2 b+b^{2}}} \in\left[\frac{1}{2}, \frac{1}{\sqrt{3}}\right]$. In particular $\frac{d}{d \varepsilon} p^{*}(0)$ is single peaked at $b=1$. Graphing above expressions we find $\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}$ is strictly increasing from $\frac{1}{4}$ to $\frac{13}{27} \approx 0.48$.

4.3.2 Uniform Prior

Next consider the case of $b=0$ which is the case of a uniform density. ?? $\left[p_{0}=\frac{1}{2}\right.$ dropped]?? As the best response to this distribution equals $1 / 2$ we cannot apply our previous propositions.

Corollary 2 (Uniform Density)

Let F_{0} be the uniform distribution. Assume that $\varepsilon \leq \frac{1-e+e^{2}}{1+e^{2}} \approx 0.68$. The following pair $\left(F_{p}^{*}, F_{v}^{*}\right)$ attains minimax regret and represents worst case demand. Let $v_{2}>\frac{1}{2}$ solve $\varepsilon=$ $1-\frac{1}{v_{2}} \frac{e^{-2+\frac{1}{v_{2}}}}{1+e^{2\left(-2+\frac{1}{v_{2}}\right)}}$, let $v_{1}=v_{2} \exp \left(-2+\frac{1}{v_{2}}\right)$ and

$$
\begin{aligned}
& f_{p}^{*}(p)=\left\{\frac{1}{p} \text { for } p \in\left[v_{1}, v_{2}\right]\right. \\
& \operatorname{Pr}\left(\tilde{p}^{*}=v_{2}\right)=\frac{1-v_{2}}{v_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& g^{*}(v)=\left\{\frac{v_{1}\left(1-v_{1}(1-\varepsilon)\right)}{v^{2} \varepsilon}+1-\frac{1}{\varepsilon} \text { for } v \in\left[v_{1}, v_{2}\right]\right. \\
& \operatorname{Pr}\left(\tilde{v}^{*}=1\right)=1+\frac{v_{1}\left(1-(1-\varepsilon) v_{1}\right)-v_{2}\left(1-(1-\varepsilon) v_{2}\right)}{\varepsilon v_{2}}
\end{aligned}
$$

where $g^{*}\left(v_{2}\right)=0, v_{2}$ is strictly increasing in ε from $\frac{1}{2}$ to $1, v_{1}$ is strictly decreasing in ε from $\frac{1}{2}$ to $\frac{1}{e}$ and $\mathbb{E}\left(\tilde{p}^{*}\right)=1-v_{1}$ is strictly increasing in ε with $\left.\frac{d}{d \varepsilon} \mathbb{E}\left(\tilde{p}^{*}\right)\right|_{\varepsilon=0}=\frac{1}{2}$??, with $\left.\bar{r}\right|_{\varepsilon=0}=\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=\frac{1}{4}$.??

Proof. Note that

$$
F_{v}^{*}=\left\{\begin{array}{cc}
(1-\varepsilon) v & \text { if } v \in\left[0, v_{1}\right] \\
1-\frac{v_{1}\left(1-v_{1}(1-\varepsilon)\right)}{v} & \text { if } v \in\left(v_{1}, v_{2}\right) \\
1-\frac{v_{1}\left(1-v_{1}(1-\varepsilon)\right)}{v_{2}}+(1-\varepsilon)\left(v-v_{2}\right) & \text { if } v \in\left[v_{2}, 1\right) \\
1 & \text { if } v=1
\end{array}\right.
$$

and the details are straightforward to check.

Remark 4 (Deterministic Strategies)

If the monopolist is confined to choose deterministic price under the uniform prior then $p^{*}=\frac{1}{2}$ and ? ? $\bar{r}_{D}=\frac{1}{4}(1+\varepsilon)\left[\bar{r}_{D}\right.$ instead of \bar{r}, expression for \bar{r}_{D} had a mistake $]$?? for all ε.

4.3.3 High Price

Finally consider the case where $b<0$ so that $p_{0}>\frac{1}{2}$. Using our previous general result on mixed pricing we find

$$
\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \mathbb{E}[\tilde{p}]=-\frac{1}{2\left(1+\left(\frac{1}{2}-p_{0}\right) b\right)-b p_{0}}=\frac{1}{-2-b+3 b p_{0}},
$$

is strictly decreasing in b ranging from $-\frac{1}{6} \sqrt{3} \approx-0.29$ to $-\frac{1}{2}$ and ??that

$$
\left.\frac{d}{d \varepsilon} \bar{r}\right|_{\varepsilon=0}=p_{0}\left(2-\frac{1}{2} p_{0}\left(2+b-b p_{0}\right)\right)+\frac{1}{12} b-\frac{1}{2},
$$

which is strictly decreasing in b and ranges from approximately 0.3 to $\frac{1}{4}$.??
??As mentioned above, our proposition requires that $a>p_{0} e^{-2+\frac{1}{p_{0}}}$. This can be used to graphic the upper bound for ε as a function of b :
[we do not have to add this as it does have a negative touch as it shows how small ε has to be in order for our theorems to be true]??

5 Interim Regret

Earlier we defined interim regret by:

$$
R\left(F_{p}, F_{v}\right)=\sup _{p} \pi\left(p, F_{v}\right)-\int \pi\left(p, F_{v}\right) d F_{p}(p)
$$

where F_{p}^{*} attains minimax interim regret if

$$
F_{p^{*}} \in \arg \min _{F_{p} \in \Delta \mathbb{R}^{+}} \sup _{F_{v} \in \mathcal{N}_{\varepsilon}\left(F_{0}\right)} R\left(F_{p}, F_{v}\right)
$$

where $\bar{R}=\min _{F_{p} \in \Delta \mathbb{R}^{+}} \sup _{F_{v} \in \mathcal{N}_{\varepsilon}\left(F_{0}\right)} R\left(F_{p}, F_{v}\right)$ is the value of minimax interim regret. Comparing this to value regret $r\left(F_{p}, F_{v}\right)$ we obtain immediately $R\left(F_{p}, F_{v}\right) \leq r\left(F_{p}, F_{v}\right)$.

5.1 Saddle Point

Notice that a saddle point characterization in terms of R as obtained under value regret is not available. To see this, assume that $\left(F_{p}^{*}, F_{v}^{*}\right)$ solves $R\left(F_{p}^{*}, F_{v}\right) \leq R\left(F_{p}^{*}, F_{v}^{*}\right) \leq$ $R\left(F_{p}, F_{v}^{*}\right)$ for all $F_{p} \in \Delta[0,1]$ and all $F_{v} \in U_{\varepsilon}\left(F_{0}\right)$. Note that $\arg \min _{F_{p}} R\left(F_{p}, F_{v}^{*}\right)=$ $\arg \max _{F_{p}} \pi\left(F_{p}, F_{v}^{*}\right) \supseteq \arg \max _{p} \pi\left(p, F_{v}^{*}\right)$ which means that $R\left(F_{p}^{*}, F_{v}^{*}\right)=0$ and consequently $R\left(F_{p}^{*}, F_{v}\right)=0$ for all $F_{v} \in U_{\varepsilon}\left(F_{0}\right)$ should the saddle point condition hold. However it is immediate that this is not true and hence we obtain a contradiction.

The way to obtain a saddle point characterization is to use the following trick of using the linearization of $R\left(F_{p}, F_{v}\right)=R\left(F_{p},(1-\varepsilon) F_{0}+\varepsilon G\right)$ in terms of G instead. Let $R_{L}\left(F_{p}, F_{v}\right)$ be defined by taking expected values using $R\left(p,(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right)$, i.e. $R_{L}\left(F_{p}, F_{v}\right)=$ $\iint R\left(p,(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right) d G\left(v^{\prime}\right) d F_{p}(p)$ so

$$
\begin{aligned}
R_{L}\left(p, F_{v}\right) & =\int \sup _{p^{\prime} \in[0,1]} \pi\left(p^{\prime},(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right) d G\left(v^{\prime}\right)-\pi\left(p, F_{v}\right) \\
R_{L}\left(F_{p}, F_{v}\right) & =\int \sup _{p^{\prime} \in[0,1]} \pi\left(p^{\prime},(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right) d G\left(v^{\prime}\right)-\int \pi\left(p, F_{v}\right) d F_{p}(p)
\end{aligned}
$$

To simplify notation we will write $\delta_{\varepsilon, v^{\prime}}=(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}$. Note that $R_{L}\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right)=$ $R\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right)$ but that $R_{L}\left(p, F_{v}\right)$ and $R\left(p, F_{v}\right)$ need not coincide.

The reason why we can work with R_{L} instead of R is as follows. We will show that R is quasiconvex in G which means that it $R\left(F_{p}, \cdot\right)$ attains its maxima on the set $\left\{\delta_{\varepsilon, v^{\prime}}: v^{\prime} \in[0,1]\right\} . R_{L}\left(F_{p}, \cdot\right)$ is linear so it also attains its maxima on the set of Dirac measures. So in order to calculate min sup we obtain that R and R_{L} yield the same solution. It however turns out that R_{L} often does have a saddle point.

The following lemma shows that we can calculate minimax distributional regret by establishing the saddle point for R_{L} instead of for R.

Lemma 2 (Auxiliary Saddlepoint)

If $\left(F_{p}^{*}, F_{v}^{*}\right) \in \Delta[0,1] \times U_{\varepsilon}\left(F_{0}\right)$ solves

$$
R_{L}\left(F_{p}^{*}, F_{v}\right) \leq R_{L}\left(F_{p}^{*}, F_{v}^{*}\right) \leq R_{L}\left(F_{p}, F_{v}^{*}\right), \quad \forall F_{p} \in \Delta[0,1], \forall F_{v} \in U_{\varepsilon}\left(F_{0}\right)
$$

which is equivalent to

$$
R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v}\right) \leq R_{L}\left(F_{p}^{*}, F_{v}^{*}\right) \text { for all } v \in[0,1],
$$

and

$$
\pi\left(p, F_{v}^{*}\right) \leq \pi\left(F_{p}^{*}, F_{v}^{*}\right) \text { for all } p \in[0,1],
$$

and then F_{p}^{*} attains minimax distributional regret and $R_{L}\left(F_{p}^{*}, F_{v}^{*}\right)=\min _{F_{p} \in \Delta[0,1]} \sup _{F_{v} \in U_{\varepsilon}\left(F_{0}\right)} R\left(F_{p}, F_{v}\right)$.
Proof. For any given F_{p} we claim that $\sup _{F_{v} \in U_{\varepsilon}\left(F_{0}\right)} R\left(F_{p}, F_{v}\right)=\sup _{v^{\prime} \in[0,1]} R\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right)$.
So we have to show that

$$
\begin{aligned}
& \sup _{F_{v} \in U_{\varepsilon}\left(F_{0}\right)}\left(\sup _{p^{\prime} \geq 0}\left(p^{\prime} \operatorname{Pr}\left(\tilde{v} \geq p^{\prime}\right)\right)-\int p \operatorname{Pr}(\tilde{v} \geq p) d F_{p}(p)\right) \\
= & \sup _{F_{v} \in\left\{\delta_{\varepsilon, v^{\prime}}: v^{\prime} \in[0,1]\right\}}\left(\sup _{p^{\prime} \geq 0}\left(p^{\prime} \operatorname{Pr}\left(\tilde{v} \geq p^{\prime}\right)\right)-\int p \operatorname{Pr}(\tilde{v} \geq p) d F_{p}(p)\right)
\end{aligned}
$$

The above equality however follows from the fact that

$$
h\left(F_{v}\right)=\left(\sup _{p^{\prime} \geq 0}\left(p^{\prime} \operatorname{Pr}\left(\tilde{v} \geq p^{\prime}\right)\right)-\int p \operatorname{Pr}(\tilde{v} \geq p) d F_{p}(p)\right)
$$

is quasi-convex in F_{v} for any given F_{p} and hence h attains its suprema in the set $\left\{\delta_{\varepsilon, v^{\prime}}: v^{\prime} \in[0,1]\right\}$.
Using the fact that $R_{L}\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right)=R\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right)$ we obtain that

$$
\arg \min _{F_{p} \in \Delta \mathbb{R}^{+}} \sup _{F_{v} \in U_{\varepsilon}\left(F_{0}\right)} R\left(F_{p}, F_{v}\right)=\arg \min _{F_{p} \in \Delta \mathbb{R}^{+}} \sup _{v^{\prime} \in[0,1]} R_{L}\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right) .
$$

Given that $\left(F_{p}^{*}, F_{v}^{*}\right)$ is a saddle point with respect to R_{L} we know that

$$
F_{p}^{*} \in \arg \min _{F_{p} \in \Delta \mathbb{R}^{+}} \sup _{v^{\prime} \in[0,1]} R_{L}\left(F_{p}, \delta_{\varepsilon, v^{\prime}}\right)
$$

and by the above identity it follows that F_{p}^{*} attains minimax distributional regret.

Corollary 3

If a saddle point $\left(F_{p}^{*}, F_{v}^{*}\right)$ as described in Lemma 2 exists then neither F_{p}^{*} nor G^{*} are Dirac measures.

Proof. Assume that $F_{p}^{*}=\mathbb{I}_{\{p \geq \bar{p}\}}$ for some \bar{p}. Since \bar{p} is a best response to F_{v}^{*} we obtain that if then $R_{L}\left(\bar{p}, F_{v}^{*}\right)=0$ and hence $\bar{R}=0$. However it is easy to show that $\bar{R}>0$.

Assume that $G^{*}=\mathbb{I}_{\{v \geq \bar{v}\}}$ for some \bar{v}. As $R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, \bar{v}}\right)=R\left(F_{p}^{*}, \delta_{\varepsilon, \bar{v}}\right)$ this would mean that $\left(F_{p}^{*}, F_{v}^{*}\right)$ is a saddle point when replacing R_{L} by R. However, as we explained at the beginning of this section this is not possible.

In order to derive a saddle point under R_{L} we still have to deal with

$$
\sup _{p^{\prime}} \pi\left(p^{\prime},(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right) .
$$

Here is a trick. Look for a saddle point where $v^{\prime} \in C\left(G^{*}\right)$ implies:

$$
v^{\prime} \in \arg \sup _{p^{\prime}} \pi\left(p^{\prime},(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right) .
$$

This means that the profit maximizing price is precisely equal to the value set by nature with probability ε. If this is possible then use the fact that

$$
R_{L}\left(p, \delta_{\varepsilon, v^{\prime}}\right)=\pi\left(v^{\prime}, \delta_{\varepsilon, v^{\prime}}\right)-\pi\left(p, \delta_{\varepsilon, v^{\prime}}\right)
$$

which is a much simpler expression. This trick is used in the results below.

5.2 Large Uncertainty

If $\varepsilon=1$ then $R\left(F_{p}, v^{\prime}\right)=r\left(F_{p}, v^{\prime}\right)$ and hence $R_{L}\left(F_{p}, F_{v}\right)=r\left(F_{p}, F_{v}\right)$ which means that minimax value regret and minimax distributional regret coincide.

5.3 Small Uncertainty

5.3.1 Near Certainty

Proposition 6 (Interim Regret with Near Certainty)

Let F_{p}^{*} have density $f_{p}^{*}(p)=\frac{1}{\varepsilon p}$ on $\left[e^{-\varepsilon} v_{0}, v_{0}\right]$. If $\varepsilon \leq v_{0}$ then F_{p}^{*} attains minimax distributional regret where $\mathbb{E}(\tilde{p})=v_{0} \frac{1-e^{-\varepsilon}}{\varepsilon}$ is strictly decreasing in ε, $\left.\frac{d}{d \varepsilon} \mathbb{E}(\tilde{p})\right|_{\varepsilon=0}=-\frac{1}{2} v_{0}$ and $\bar{R}=\left(\varepsilon-1+e^{-\varepsilon}\right) \frac{v_{0}}{\varepsilon}$ with $\left.\frac{d}{d \varepsilon} \bar{R}\right|_{\varepsilon=0}=\frac{v_{0}}{2}$.

Proof. We will show that $\left(F_{p}^{*}, F_{v}^{*}\right)$ is a saddle point where F_{v}^{*} is such that $G^{*}(v)=$ $\frac{1}{\varepsilon}\left(1-\frac{1}{v} e^{-\varepsilon} v_{0}\right)$ (and hence $\left.g^{*}(v)=\frac{1}{\varepsilon v^{2}} e^{-\varepsilon} v_{0}\right)$ for $v \in\left[e^{-\varepsilon} v_{0}, v_{0}\right)$ and $G^{*}\left(v_{0}\right)=1$ so G^{*} has
point mass $1-\frac{1}{\varepsilon}\left(1-e^{-\varepsilon}\right)$ at $v=v_{0}$. So

$$
F_{v}^{*}(v)=\left\{\begin{array}{cc}
0 & \text { if } v \in\left[0, e^{-\varepsilon} v_{0}\right] \\
1-\frac{1}{v} e^{-\varepsilon} v_{0} & \text { if } v \in\left(e^{-\varepsilon} v_{0}, v_{0}\right) \\
1 & \text { if } v \in\left[v_{0}, 1\right]
\end{array}\right.
$$

and hence

$$
f_{v}^{*}(v)=\left\{\begin{array}{cc}
0 & \text { if } v \in\left[0, e^{-\varepsilon} v_{0}\right] \\
\frac{1}{v^{2}} e^{-\varepsilon} v_{0} & \text { if } v \in\left(e^{-\varepsilon} v_{0}, v_{0}\right) \\
0 & \text { if } v \in\left[v_{0}, 1\right]
\end{array} \quad \text { and } \operatorname{Pr}\left(\tilde{v}=v_{0}\right)=e^{-\varepsilon}\right.
$$

Note that $(1-\varepsilon) \pi\left(v_{0}, F_{0}\right)<(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p$ for all $p \in\left(e^{-\varepsilon} v_{0}, v_{0}\right)$ as $(1-\varepsilon) v_{0}<p$ is implied by the fact that $1-\varepsilon \leq e^{-\varepsilon}$. So for $p \in\left[e^{-\varepsilon} v_{0}, v_{0}\right]$ we obtain

$$
\pi\left(p, F_{v}^{*}\right)=p\left(e^{-\varepsilon}+\int_{p}^{v_{0}} \frac{1}{v^{2}} e^{-\varepsilon} v_{0} d v\right)=e^{-\varepsilon} v_{0}
$$

and for $v \in\left[e^{-\varepsilon} v_{0}, v_{0}\right]$ we find that ??[minor typo in equation below eliminated]

$$
R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v}\right)=v-(1-\varepsilon) \int_{e^{-\varepsilon} v_{0}}^{v_{0}} p \frac{1}{\varepsilon p} d p-\varepsilon \int_{e^{-\varepsilon} v_{0}}^{v} p \frac{1}{\varepsilon p} d p=\left(\varepsilon-1+e^{-\varepsilon}\right) \frac{v_{0}}{\varepsilon} . ? ?
$$

We also need that $R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, 1}\right) \leq R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v_{0}}\right)$ and hence ??[minor typo in equation below eliminated]

$$
\sup _{p \in[0,1]}\left(p\left((1-\varepsilon) \mathbb{I}_{\left\{p \leq v_{0}\right\}}+\varepsilon \mathbb{I}_{\{p \leq 1\}}\right)\right)=v_{0} ? ?
$$

which holds if $v_{0} \geq \varepsilon$. The rest of the conditions are easily verified.
Let us briefly compare the above to our results under value regret. The interesting case is where $v_{0}>\frac{1}{2}$. Here we obtain for $\varepsilon<1-e^{-2+\frac{1}{v_{0}}}$ given that $1-e^{-2+\frac{1}{v_{0}}}<v_{0}$ that $\frac{1-e^{-\varepsilon}}{\varepsilon} v_{0}<(1+\varepsilon+\ln (1-\varepsilon)) v_{0}$ if $\varepsilon<0.52839$. This means that for small uncertainty expected price is lower under distributional regret than under value regret. Only if v_{0} and ε are sufficiently large then the opposite can hold, more specifically, if $v_{0}>0.81$ and $0.53<\varepsilon<1-e^{-2+\frac{1}{v_{0}}}$ then the expected price under distributional regret is larger than it is under value regret.

Corollary 4 (Deterministic Strategies)

If $\varepsilon<v_{0}$ and if the monopolist is confined to choosing among deterministic prices then $p^{*}=\frac{1}{1+\varepsilon} v_{0}$ attains minimax distribution regret where $p^{*}(\varepsilon)$ is strictly decreasing in ε, $\left.\frac{d}{d \varepsilon} p^{*}\right|_{\varepsilon=0}=-v_{0}$ and ?? $\bar{R}_{D}=\frac{\varepsilon}{1+\varepsilon} v_{0}$ so $\left.\frac{d}{d \varepsilon} \bar{R}_{D}\right|_{\varepsilon=0}=v_{0}$ where $\bar{R}_{D}=\min _{p} \sup _{F_{v}} R\left(p, F_{v}\right)$.??

Proof. If $p>v_{0}$ then $\sup _{v^{\prime} \in[0,1]} R\left(p, \delta_{\varepsilon, v^{\prime}}\right) \geq v_{0}$. If $(1-\varepsilon) v_{0}<p \leq v_{0}$ and $\varepsilon<v_{0}$ then $\sup _{v^{\prime} \in[0,1]} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=\max \left\{v_{0}-p, p-(1-\varepsilon) p\right\}=\max \left\{v_{0}-p, \varepsilon p\right\}$. If $p \leq(1-\varepsilon) v_{0}$ then $\sup _{v^{\prime} \in[0,1]} R\left(p, \delta_{\varepsilon, v^{\prime}}\right) \geq v_{0}-p \geq \varepsilon v_{0}$.

Note that $\frac{1-e^{-\varepsilon}}{\varepsilon}>\frac{1}{1+\varepsilon}>e^{-\varepsilon}$ which means that price under deterministic solution is lower than expected price under mixed strategy solution while still within the support of mixed strategy solution.
??More interestingly, note that we find that $\left.\frac{d}{d \varepsilon} \bar{R}\right|_{\varepsilon=0}=\frac{v_{0}}{2}<v_{0}=\left.\frac{d}{d \varepsilon} \bar{R}_{D}\right|_{\varepsilon=0}$. So unlike in the case of ex-post regret we find for interim regret that even for very small values of noise there is a distinct advantage to mixing over choosing a pure pricing strategy.??

5.3.2 Interim Regret with Small Uncertainty

An important condition for our proof to work is that $v \in \arg \sup _{p} \pi\left(p, \delta_{\varepsilon, v}\right)$ for all v in the support of G^{*}. Assuming this we set up the saddle point conditions. Let $[a, c]$ be the support of G^{*}. For $f_{p}^{*}(p)$ makes nature indifferent so for $v \in[a, c]$ we obtain
$\frac{d}{d v}\left(\pi\left(v, \delta_{\varepsilon, v}\right)-\int \pi\left(p, \delta_{\varepsilon, v}\right) f_{p}^{*}(p) d p\right)=\frac{d}{d v}\left((1-\varepsilon) \pi\left(v, F_{0}\right)+\varepsilon v-\varepsilon \int_{a}^{v} p f_{p}^{*}(p) d p\right)=0$
so

$$
\varepsilon v f_{p}^{*}(v)=(1-\varepsilon) \pi^{\prime}\left(v, F_{0}\right)+\varepsilon
$$

which implies that

$$
f_{p}^{*}(p)=\frac{1-\varepsilon}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p} \text { for } p \in[a, c] .
$$

The mixed strategy of nature with c.d.f. F_{v}^{*} makes the individual indifferent so $p \in(a, c)$ implies

$$
\frac{d}{d p} \pi\left(p, F_{v}^{*}\right)=0
$$

which implies $F_{v}^{*}(v)=1-\frac{\gamma}{v}$ for $v \in[a, c]$ where $\gamma>0$ is an appropriate constant. Since $G^{*}(a)=0$ we obtain $F_{v}^{*}(a)=(1-\varepsilon) F_{0}(a)$ so

$$
F_{v}^{*}(v)=1-\frac{\left(1-(1-\varepsilon) F_{0}(a)\right) a}{v}=1-\frac{(1-\varepsilon) \pi\left(a, F_{0}\right)+\varepsilon a}{v} \text { for } v \in[a, c] .
$$

So

$$
\begin{aligned}
G^{*}(v) & =\frac{1}{\varepsilon}\left(1-\frac{\left(1-(1-\varepsilon) F_{0}(a)\right) a}{v}-(1-\varepsilon) F_{0}(v)\right) \\
& =1+\frac{(1-\varepsilon)\left(\pi\left(v, F_{0}\right)-\pi\left(a, F_{0}\right)\right)}{\varepsilon v}-\frac{a}{v}
\end{aligned}
$$

and

$$
g^{*}(v)=\frac{(1-\varepsilon)\left(v \pi^{\prime}\left(v, F_{0}\right)-\pi\left(v, F_{0}\right)+\pi\left(a, F_{0}\right)\right)+\varepsilon a}{\varepsilon v^{2}} .
$$

F_{p}^{*} will have support $[a, c]$ with a point mass at c while G^{*} will have support $[a, c]$ with a point mass at $v=1$. We impose two conditions on a and c. First we choose $g^{*}(c)=0$. This ensures that the monopolist will set a point mass at $p=c$ and hence does not have an incentive to deviate to lower prices and thus to capture the density of G^{*} that is close to c. The second condition is given by the indifference of nature between choosing $v=1$ and v slightly below c. Denote the maximizer of $(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p$ by z so $\pi^{\prime}\left(z, F_{0}\right)=-\frac{\varepsilon}{1-\varepsilon}$ where $z>p_{0}$ if ε is sufficiently small. Then $\max _{p} \pi\left(p, \delta_{\varepsilon, 1}\right)=(1-\varepsilon) \pi\left(z, F_{0}\right)+\varepsilon z$ is larger than $\max _{p} \pi\left(p, \delta_{\varepsilon, c}\right)=(1-\varepsilon) \pi\left(c, F_{0}\right)+\varepsilon c$. But when $v=1$ then the monopolist obtains as compared to when v is slightly below c an additional profit of $\varepsilon c \operatorname{Pr}\left(\tilde{p}^{*}=c\right)$. So
$\lim _{v \rightarrow<c} R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v}\right)=R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, 1}\right)$ if $(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(c, F_{0}\right)\right)+\varepsilon(z-c)=\varepsilon c\left(1-\int_{a}^{c} f_{p}^{*}(p) d p\right)$.
It actually turns out that $c<z$ so $R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, 1}\right)=R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, z}\right)$ and nature can either put a point mass at $v=1$ or the same mass anywhere on $[z, 1]$.

Proposition 7 (Interim Regret with Small Uncertainty)

If ε is sufficiently small then:

1. (a) the minimax regret strategy is given by a continuous density

$$
f_{p}^{*}(p)=\frac{1-\varepsilon}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}, \quad \text { for } p \in[a, c) \text {, }
$$

and an upper mass point $\operatorname{Pr}\left(\tilde{p}^{*}=c\right)=\frac{1-\varepsilon}{\varepsilon c}\left(\pi\left(z, F_{0}\right)-\pi\left(c, F_{0}\right)\right)+\frac{z-c}{c}$;
(b) the worst case demand $F_{v}^{*}(v)$ is given by a continuous density

$$
f_{v}^{*}(v)=\frac{(1-\varepsilon)\left(v \pi^{\prime}\left(v, F_{0}\right)-\pi\left(v, F_{0}\right)+\pi\left(a, F_{0}\right)\right)+\varepsilon a}{\varepsilon v^{2}}, \quad \text { for } v \in[a, c) \text {, }
$$

and an upper mass point $\operatorname{Pr}\left(\tilde{v}^{*}=1\right)=-\frac{(1-\varepsilon) \pi^{\prime}\left(c, F_{0}\right)}{\varepsilon}$.
Proof. The proof is built up of six major steps.
(1) Solve for a, c such that $a<p_{0}<c<z$ and:

$$
\begin{aligned}
(1-\varepsilon)\left(c \pi^{\prime}\left(c, F_{0}\right)-\pi\left(c, F_{0}\right)+\pi\left(a, F_{0}\right)\right)+\varepsilon a & =\emptyset 4) \\
(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(c, F_{0}\right)\right)+\varepsilon(z-c)-\varepsilon c\left(1-\int_{a}^{c}\left(\frac{1-\varepsilon}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p\right) & =\emptyset 5)
\end{aligned}
$$

(1a) Notice first that if $a=p_{0}$ then $c=p_{0}$ and $\varepsilon=0$ solve (4) and (5). It would be nice to invoke the implicit function theorem to show that there are solutions $a(\varepsilon)$ and $c(\varepsilon)$ when ε is close to 0 . However, it turns out that $a^{\prime}(0) \rightarrow-\infty$ which prevents us of following this path. Instead we invoke the implicit function theorem to show that there exist solutions c and ε as functions of a if a is in a sufficiently small neighborhood of p_{0}. Later we show that $\varepsilon(a)$ is invertible.

Let $h_{1}=h_{1}(a, c, \varepsilon)$ and $h_{2}=h_{2}(a, c, \varepsilon)$ denote the left hand sides of (4) and (5) respectively. Then
$\frac{d}{d c} h_{1}=(1-\varepsilon) c \pi^{\prime \prime}\left(c, F_{0}\right)$
$\frac{d}{d \varepsilon} h_{1}=-\left(c \pi^{\prime}\left(c, F_{0}\right)-\pi\left(c, F_{0}\right)+\pi\left(a, F_{0}\right)\right)+a$
$\frac{d}{d c} h_{2}=-(1-\varepsilon) \pi^{\prime}\left(c, F_{0}\right)-\varepsilon-\varepsilon\left(1-\int_{a}^{c}\left(\frac{1-\varepsilon}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p\right)+\varepsilon c\left(\frac{1-\varepsilon}{\varepsilon c} \pi^{\prime}\left(c, F_{0}\right)+\frac{1}{c}\right)$
and

$$
\begin{aligned}
\frac{d}{d \varepsilon} h_{2} & =-\left(\pi\left(z, F_{0}\right)-\pi\left(c, F_{0}\right)\right)+(z-c)-c\left(1-\int_{a}^{c}\left(\frac{1-\varepsilon}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p\right)-c \int_{a}^{c}\left(\frac{1}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)\right) d p \\
& =-\left(\pi\left(z, F_{0}\right)-\pi\left(c, F_{0}\right)\right)+z-2 c+c \int_{a}^{c}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p
\end{aligned}
$$

The relevant matrix is $M=M_{a, c, \varepsilon}:=D_{c, \varepsilon} h$ where

$$
M_{p_{0}, p_{0}, 0}=\left[\begin{array}{cc}
p_{0} \pi^{\prime \prime}\left(p_{0}, F_{0}\right) & p_{0} \\
0 & -p_{0}
\end{array}\right] .
$$

Since $\operatorname{det} M_{p_{0}, p_{0}, 0}=-p_{0}^{2} \pi^{\prime \prime}\left(p_{0}, F_{0}\right)>0$ the implicit function theorem states for a in a neighborhood of p_{0} that there exist differentiable $c(a)$ and $\varepsilon(a)$ that solve the equations (4) and (5).
(1b) We now have to show for $a<p_{0}$ that $\varepsilon>0$ and $p_{0}<c<z$. We know that $M_{p_{0}, p_{0}, 0}\left(c^{\prime}\left(p_{0}\right), \varepsilon^{\prime}\left(p_{0}\right)\right)^{T}=-D_{a} h\left(p_{0}, p_{0}, 0\right)$ and calculate

$$
\begin{aligned}
\frac{d}{d a} h_{1} & =(1-\varepsilon) \pi^{\prime}\left(a, F_{0}\right)+\varepsilon \\
\frac{d}{d a} h_{2} & =-\varepsilon c\left(\frac{1-\varepsilon}{\varepsilon a} \pi^{\prime}\left(a, F_{0}\right)+\frac{1}{a}\right)
\end{aligned}
$$

to find that $-D_{a} h\left(p_{0}, p_{0}, 0\right)=0$ and hence $c^{\prime}\left(p_{0}\right)=\varepsilon^{\prime}\left(p_{0}\right)=0$. More generally

$$
M_{a, c, \varepsilon}=\left[\begin{array}{cc}
(1-\varepsilon) c \pi^{\prime \prime}\left(c, F_{0}\right) & -\left(c \pi^{\prime}\left(c, F_{0}\right)-\pi\left(c, F_{0}\right)+\pi\left(a, F_{0}\right)\right)+a \\
-\varepsilon+\varepsilon \int_{a}^{c}\left(\frac{1-\varepsilon}{\varepsilon p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p & -\left(\pi\left(z, F_{0}\right)-\pi\left(c, F_{0}\right)\right)+z-2 c+c \int_{a}^{c}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p
\end{array}\right]
$$

and

$$
-D_{a} h=\binom{-(1-\varepsilon) \pi^{\prime}\left(a, F_{0}\right)-\varepsilon}{\frac{c}{a}\left((1-\varepsilon) \pi^{\prime}\left(a, F_{0}\right)+\varepsilon\right)}
$$

with $M_{a, c(a), \varepsilon(a)}\left(c^{\prime}(a), \varepsilon^{\prime}(a)\right)^{T}=-\left.D_{a} h\right|_{a, c(a), \varepsilon(a)}$ if a is in a neighborhood of p_{0}. Since $c^{\prime}\left(p_{0}\right)=\varepsilon^{\prime}\left(p_{0}\right)=0$ we use first order approximations and replace c by p_{0} and ε by 0 in the expressions for M and $-D_{a} h$ to obtain:

$$
\left[\begin{array}{cc}
p_{0} \pi^{\prime \prime}\left(p_{0}, F_{0}\right) & \pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)+a \\
0 & -p_{0}+p_{0} \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p
\end{array}\right]\binom{c^{\prime}(a)}{\varepsilon^{\prime}(a)} \approx\binom{-\pi^{\prime}\left(a, F_{0}\right)}{\frac{p_{0}}{a} \pi^{\prime}\left(a, F_{0}\right)}
$$

Thus,

$$
\varepsilon^{\prime}(a) \approx-\frac{\pi^{\prime}\left(a, F_{0}\right)}{a-a \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p}<0
$$

and

$$
\begin{aligned}
p_{0} \pi^{\prime \prime}\left(p_{0}, F_{0}\right) c^{\prime}(a) & \approx-\pi^{\prime}\left(a, F_{0}\right)+\left(\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)+a\right) \frac{\pi^{\prime}\left(a, F_{0}\right)}{a-a \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p} \\
& =\pi^{\prime}\left(a, F_{0}\right)\left(-1+\frac{\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)+a}{a-a \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p}\right) \\
& =\pi^{\prime}\left(a, F_{0}\right)\left(\frac{a \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p+\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)}{a-a \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p}\right)>0
\end{aligned}
$$

as

$$
\begin{aligned}
\frac{d}{d a} & \left(a \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p+\pi\left(p_{0}, F_{0}\right)-\pi\left(a, F_{0}\right)\right) \\
= & \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p-a\left(-\frac{1}{a} \pi^{\prime}\left(a, F_{0}\right)+\frac{1}{a}\right)-\pi^{\prime}\left(a, F_{0}\right) \\
= & \int_{a}^{p_{0}}\left(-\frac{1}{p} \pi^{\prime}\left(p, F_{0}\right)+\frac{1}{p}\right) d p-1 \rightarrow-1 \text { as } a \rightarrow p_{0} .
\end{aligned}
$$

Consequently, $a<p_{0}$ implies $\varepsilon>0$ and $c>p_{0}$. Moreover, $\varepsilon(a)$ is invertible. Since $h_{1}(a, z, \varepsilon)=(1-\varepsilon)\left(\pi\left(a, F_{0}\right)-\pi\left(z, F_{0}\right)\right)+\varepsilon(a-z)<0$ and since $\frac{d}{d c} h_{1}<0$ we obtain that $c<z$.
(2) F_{p}^{*} is well defined:
(2a) Since $c<z$ we have $(1-\varepsilon) \pi^{\prime}\left(p, F_{0}\right)+\varepsilon>0$ for $p \in[a, z]$ and hence $f_{p}^{*}(p)>0$ for $p \in[a, z]$
(2b) $\operatorname{Pr}\left(F_{p}^{*}=c\right)>0$ by definition of z.
(3) G is well defined:
(3a) Since $g^{*}(c)=0$ by definition of a and c and since

$$
\frac{d}{d v}\left((1-\varepsilon)\left(v \pi^{\prime}\left(v, F_{0}\right)-\pi\left(v, F_{0}\right)+\pi\left(a, F_{0}\right)\right)+\varepsilon a\right)=(1-\varepsilon) v \pi^{\prime \prime}\left(v, F_{0}\right)<0
$$

it follows that $g^{*}(v) \geq 0$ for $v \in[a, c]$.
(3b) $1-G^{*}(c)=\frac{a}{c}-\frac{(1-\varepsilon)\left(\pi\left(c, F_{0}\right)-\pi\left(a, F_{0}\right)\right)}{\varepsilon c}=-\frac{(1-\varepsilon) \pi^{\prime}\left(c, F_{0}\right)}{\varepsilon}>0$ as $c>p_{0}$.
(4) To show $v^{\prime} \in \arg \max _{p^{\prime}} \pi\left(p^{\prime},(1-\varepsilon) F_{0}+\varepsilon \mathbb{I}_{\left\{v \geq v^{\prime}\right\}}\right)$ for all $v^{\prime} \in[a, c]$. For $p \in[a, c]$ we have that $\left((1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p\right)$ is concave and is maximized at $p=z$. Since $c<z$ we need to verify that $\left((1-\varepsilon) \pi\left(a, F_{0}\right)+\varepsilon a\right)>(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)$ which is true for small ε as $\frac{d}{d \varepsilon}\left((1-\varepsilon) \pi\left(a, F_{0}\right)+\varepsilon a-(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)\right)=a-\pi\left(a, F_{0}\right)+\left((1-\varepsilon) \pi^{\prime}\left(a, F_{0}\right)+\varepsilon\right) a^{\prime}(\varepsilon)+\pi\left(p_{0}, F_{0}\right) \rightarrow p_{0}$ as $\varepsilon \rightarrow 0$.
(5) Incentives of monopolist:
(5a) to show that $\pi\left(c, F_{v}^{*}\right) \geq \pi\left(p, F_{v}^{*}\right)$ for all $p>c$.By construction, $\pi\left(c, F_{v}^{*}\right)=$ $(1-\varepsilon) \pi\left(a, F_{0}\right)+\varepsilon a$ and:

$$
\pi\left(p, F_{v}^{*}\right)=(1-\varepsilon) \pi\left(p, F_{0}\right)-\varepsilon \frac{(1-\varepsilon) \pi^{\prime}\left(c, F_{0}\right)}{\varepsilon} p=(1-\varepsilon)\left(\pi\left(p, F_{0}\right)-p \pi^{\prime}\left(c, F_{0}\right)\right)
$$

so

$$
\pi\left(c, F_{v}^{*}\right)-\pi\left(p, F_{v}^{*}\right)=\varepsilon a+(1-\varepsilon)\left(\pi\left(a, F_{0}\right)-\pi\left(p, F_{0}\right)+p \pi^{\prime}\left(p, F_{0}\right)\right),
$$

which is decreasing in p in a neighborhood U of p_{0} that is independent of ε.
Note that if ε is sufficiently small then $\pi\left(c, F_{v}^{*}\right)>\pi\left(p, F_{v}^{*}\right)$ if $p \notin U$.
(5b) by construction of f_{v}^{*} we have that $\pi\left(p, F_{v}^{*}\right)$ is constant for all $p \in[a, c]$.
(5c) clearly $\pi\left(c, F_{v}^{*}\right)>\pi\left(p, F_{v}^{*}\right)$ for $p<a$.
(6) Incentives of nature:
(6a) by construction $\lim _{v \rightarrow<c} R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v}\right)=R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, 1}\right)$
(6b) by construction of f_{p}^{*} we have $R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v}\right)$ is constant on (a, c)
(6c) clearly $R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, v}\right)<R_{L}\left(F_{p}^{*}, \delta_{\varepsilon, a}\right)$ if $v<a$. This completes the proof..

Remark 5 (Comparative Statics)

$\$$ It remains to establish the properties of $\frac{d}{d \varepsilon} E\left(\tilde{p}^{*}\right)$ and $\frac{d}{d \varepsilon} \bar{R}$. [??let us keep a symbol such as $\$$ at places where we have to still make some calculations]

Proposition 8 (Determinstic Strategies)

If the seller is restricted to setting a deterministic price and if ε is sufficiently small then there exists a unique $\hat{p}=\hat{p}(\varepsilon)$ that solves

$$
\varepsilon \hat{p}=(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(\hat{p}, F_{0}\right)\right)+\varepsilon(z-\hat{p})
$$

and where \hat{p} attains minimax interims regret, $\hat{p}(0)=p_{0}, \hat{p}$ is decreasing in $\varepsilon, \lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \hat{p}(\varepsilon)=$ $-\infty, \bar{R}=\varepsilon \hat{p}$ and ?? $\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \bar{R}=p_{0}$.??

Proof. Consider only p in a neighborhood U of p_{0} such that $\pi\left(p, F_{0}\right)$ is concave. Let

$$
\varepsilon \hat{p}=(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(\hat{p}, F_{0}\right)\right)+\varepsilon(z-\hat{p})
$$

and

$$
(1-\varepsilon) \pi\left(\bar{p}, F_{0}\right)+\varepsilon \bar{p}=(1-\varepsilon) \pi\left(p_{0}, F_{0}\right),
$$

so $\bar{p}=\frac{1}{2(1-\varepsilon)}(1-\sqrt{\varepsilon(2-\varepsilon)})$ and $\hat{p}=\frac{1}{2} \frac{1+\varepsilon-\sqrt{2 \varepsilon+\varepsilon^{2}}}{1-\varepsilon}$ in the uniform case. We show that $\bar{p}<\hat{p}<p_{0}$. Let

$$
h(\varepsilon, p)=(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(p, F_{0}\right)\right)+\varepsilon(z-p)-\varepsilon p .
$$

Then $\frac{\partial}{\partial p} h=-(1-\varepsilon) \pi^{\prime}\left(p, F_{0}\right)-2 \varepsilon<0$ for $p<z$ and
$h(\varepsilon, \bar{p})=(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(p_{0}, F_{0}\right)\right)+\varepsilon(z-\bar{p})>(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(p_{0}, F_{0}\right)\right)+\varepsilon\left(z-p_{0}\right)>0$,
as $\bar{p}<p_{0}$ clearly holds, and
$\frac{\partial}{\partial \varepsilon} h=(1-\varepsilon) \pi^{\prime}\left(z, F_{0}\right) z^{\prime}(\varepsilon)-\left(\pi\left(z, F_{0}\right)-\pi\left(p, F_{0}\right)\right)+z-2 p=\frac{\varepsilon}{(1-\varepsilon)^{2} \pi^{\prime \prime}\left(z, F_{0}\right)}-\left(\pi\left(z, F_{0}\right)-\pi\left(p, F_{0}\right)\right)+z-2 p$
as $\pi^{\prime}\left(z, F_{0}\right)=-\frac{\varepsilon}{1-\varepsilon}$ implies $\pi^{\prime \prime}\left(z, F_{0}\right) z^{\prime}(\varepsilon)=-\frac{1}{(1-\varepsilon)^{2}}$. Hence we have

$$
\hat{p}^{\prime}(\varepsilon)=-\frac{-\frac{\varepsilon}{(1-\varepsilon)^{2} \pi^{\prime \prime}\left(z, F_{0}\right)}+\pi\left(z, F_{0}\right)-\pi\left(\hat{p}, F_{0}\right)-z+2 \hat{p}}{(1-\varepsilon) \pi^{\prime}\left(\hat{p}, F_{0}\right)+2 \varepsilon}<0
$$

and $\hat{p}(0)=p_{0}$.
The only candidates for v^{\prime} that solve $\sup _{v \in[0,1]} R\left(p, \delta_{\varepsilon, v}\right)$ are $v^{\prime}=1$ and v^{\prime} slightly below p. Note that
$R\left(p, \delta_{\varepsilon, 1}\right)=\max _{p^{\prime}}\left\{\left((1-\varepsilon) \pi\left(p^{\prime}, F_{0}\right)+\varepsilon p^{\prime}\right)\right\}-\left((1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p\right)=(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(p, F_{0}\right)\right)+\varepsilon(z-p)$.

If $p>z$ then

$$
\sup _{v^{\prime}} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(p, F_{0}\right)\right)+\varepsilon z
$$

which is increasing for $p \in U$. Assume $p<z$. Then

$$
\lim _{v^{\prime} \rightarrow<p} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=\max \left\{(1-\varepsilon) \pi\left(p_{0}, F_{0}\right),(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p\right\}-(1-\varepsilon) \pi\left(p, F_{0}\right) .
$$

where $(1-\varepsilon) \pi\left(p_{0}, F_{0}\right)>(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p$ holds if and only if $p<\bar{p}$. Assume that $p \leq \bar{p}$. So $\lim _{v^{\prime} \rightarrow<p} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=(1-\varepsilon)\left(\pi\left(p_{0}, F_{0}\right)-\pi\left(p, F_{0}\right)\right)$. Since both $\lim _{v^{\prime} \rightarrow<p} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)$ and $R\left(p, \delta_{\varepsilon, 1}\right)$ are decreasing in p we find that minimax regret price will not be strictly less than \bar{p}.

Now assume $p>\bar{p}$. Then

$$
\lim _{v^{\prime} \rightarrow p} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=(1-\varepsilon) \pi\left(p, F_{0}\right)+\varepsilon p-(1-\varepsilon) \pi\left(p, F_{0}\right)=\varepsilon p
$$

where $\varepsilon p<(1-\varepsilon)\left(\pi\left(z, F_{0}\right)-\pi\left(p, F_{0}\right)\right)+\varepsilon(z-p)$ and hence $\lim _{v^{\prime} \rightarrow<p} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)<R\left(p, \delta_{\varepsilon, 1}\right)$ if and only if $p<\hat{p}$. So if $\bar{p}<p<\hat{p}$ then $\sup _{v^{\prime}} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=R\left(p, \delta_{\varepsilon, 1}\right)$ which is decreasing in p.

Finally, if $\hat{p} \leq p<z$ then $\sup _{v^{\prime}} R\left(p, \delta_{\varepsilon, v^{\prime}}\right)=\varepsilon p$ which is increasing in p. From the above it follows that \hat{p} attains minimax interims regret among the deterministic pricing strategies where $\hat{p}=\hat{p}(\varepsilon)$ is strictly decreasing and $\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \hat{p}(\varepsilon)=-\infty$. Note that $\bar{R}=\varepsilon \hat{p}$.

Finally,

$$
\frac{d}{d \varepsilon} \bar{R}=\hat{p}-\varepsilon \frac{-\frac{\varepsilon}{(1-\varepsilon)^{2} \pi^{\prime \prime}\left(z, F_{0}\right)}+\pi\left(z, F_{0}\right)-\pi\left(\hat{p}, F_{0}\right)-z+2 \hat{p}}{(1-\varepsilon) \pi^{\prime}\left(\hat{p}, F_{0}\right)+2 \varepsilon}
$$

Since $\lim _{\varepsilon \rightarrow 0} \frac{\pi^{\prime}\left(\hat{p}, F_{0}\right)}{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \frac{d}{d \varepsilon} \pi^{\prime}\left(\hat{p}, F_{0}\right)=\infty$ we obtain $\frac{d}{d \varepsilon} \bar{R} \rightarrow p_{0}$.
Remark 6 Notice that if the monopolist does not adjust and simply chooses p_{0} then $\sup _{v} R\left(p_{0}, \delta_{\varepsilon, v}\right)=$ εp_{0}. It remains to establish how \hat{p} compares to a.

6 Variations

6.1 Prohorov Neighborhoods

6.2 Revenue

6.3 Value at Risk

7 Conclusion

In this paper we analyzed robust pricing policies by a monopolist. We began by considering globally robust policies as solution to minimax regret strategies with an unconstrained adversary. We then considered locally robust policies by restricting the strategy space by the adversary to contain only nearby distributions.

The problem of optimal monopoly price is in many respects the most elementary mechanism design problem. In a sequel to this paper, D. Bergemann \& Schlag (2004), we consider optimal policies for a wide class of design problems, including the discriminating monopolist (as in Mussa \& Rosen (1978) and Maskin \& Riley (1984)) who can offer different qualities or quantities and optimal auctions for a single unit. In contrast to the approach pursued here, there we focus local robustness with revenue maximization rather than regret minimization. In addition, as we consider multi-agent design problems, it becomes desirable to "robustify" both the decisions of the buyers and the seller. ${ }^{5}$ The complete solution of these problems poses a rich field for future research.

[^3]
References

Bose, S., E. Ozdenoren \& A. Pape. 2004. Optimal Auctions with Ambiguity. Technical report University of Texas, Austin and University of Michigan.

Chamberlain, G. 2000. "Econometrics and Decision Theory." Journal of Econometrics 95:255-283.

Chernoff, H. 1954. "Rational Selection of Decision Functions." Econometrica 22:433-443.
Chung, K.-S. \& J. Ely. 2003. "Implementation with Near-Complete Information." Econometrica 71:857-871.
D. Bergemann, A. Kumar \& K. Schlag. 2004. Robust Optimal Auctions. Technical report Yale University and Columbia University and European University Institute.

Dudley, R.M. 2002. Real Analysis and Probability. Cambridge, England: Cambridge University Press.

Ellsberg, D. 1961. "Risk, Ambiguity and the Savage Axioms." Quarterly Journal of Economics 75:643-669.

Eso, P. \& C. Futo. 1999. "Auction Desing with a Risk Averse Seller." Economics Letters 61:71-74.

Gilboa, I. \& D. Schmeidler. 1989. "Maxmin Expected Utility with Non-Unique Prior." Journal of Mathematical Economics 18:141-153.

Hampel, F. R., E. M. Ronchetti, P.J. Rousseeuw \& W.A. Stahel. 1986. Robust Statistics The Approach Based on Influence Functions. New York: John Wiley and Sons.

Hansen, L. Peter \& T. Sargent. 2004. Misspecification in Recursive Macroeconomic Theory. Technical report University of Chicago, New York University, and Hoover Institution.

Huber, Peter. J. 1981. Robust Statistics. New York: John Wiley and Sons.
Linhart, P.B \& R. Radner. 1989. "Minimax - Regret Strategies for Bargaining over Several Variables." Journal of Economic Theory 48:152-178.

Maskin, E. \& J. Riley. 1984. "Monopoly with Incomplete Information." Rand Journal of Economics 15:171-196.

Mussa, M. \& S. Rosen. 1978. "Monopoly and Product Quality." Journal of Economic Theory 18:301-317.

Neeman, Z. 1999. "The Relevance of Private Information in Mechanism Design." mimeo, Boston University.

Oechssler, J \& F. Riedel. 2001. "Evolutionary Dynamics on Infinite Strategy Spaces." Economic Theory 17:141-162.

Oechssler, J. \& F. Riedel. 2002. "On the Dynamic Foundation of Evolutionary Stability in Continuous Models." Journal of Economic Theory 107:223-252.

Pollard, D. 2002. A User's Guide to Measure Theoretic Probability. Cambridge, England: Cambridge University Press.

Prasad, K. 2003. "Non-Robustness of some Economic Models." Topics in Theoretical Economics 3:1-7.

Savage, L.J. 1954. The Foundations of Statistics. 1st ed. New York: Wiley.
Savage, L.J. 1970. The Foundations of Statistics. 2nd ed. New York: Wiley.
Segal, I. 2003. "Optimal Pricing Mechanism with Unknown Demand." American Economic Review 93:509-529.

Selten, R. 1989. Blame Avoidance as Motivating Force in the First Price Sealed Bid Private Value Auction. In Economic Essays in Honor of Werner Hildenbrand, ed. G. Debreu, W. Neuefeind \& W.Trockel. Heidelberg: Springer Verlag pp. 333-344.

Shiryaev, A. 1995. Probability. New York: Springer Verlag.
Wald, A. 1950. Statistical Decision Functions. New York: Wiley.

[^0]: *The first author gratefully acknowledges support by NSF Grants \#SES-0095321, \#CNS-0428422 and a DFG Mercator Research Professorship at the Center of Economic Studies at the University of Munich. We would like to thank Peter Klibanoff and David Pollard for helpful suggestions. We are grateful to seminar participants at the University of Wisconsin and the Cowles Foundation Conference "Uncertainty in Economic Theory" at Yale University for many helpful comments. Sahar Malik provided excellent research assistance.
 ${ }^{\dagger}$ Department of Economics, Yale University, 28 Hillhouse Avenue, New Haven, CT 06511, dirk.bergemann@yale.edu and Department of Economics, Columbia University, 420 West 118th Street, New York, NY 10027, db2232@columbia.edu
 ${ }^{\ddagger}$ Department of Economics, European University Institute, schlag@iue.it

[^1]: ${ }^{1}$ The notion of interim regret is called "regret risk" in Chamberlain (2000).

[^2]: ${ }^{2}$ The Prohorov distance is actually a metric for weak convergence of probability measures (for more on additional properties of the Prohorov distance see (Dudley (2002)) and (Pollard (2002)))
 ${ }^{3}$ There is a close relationship between the contamination neighborhood model and the variational norm, see Shiryaev (1995), p. 360 .
 ${ }^{4}$ The issue of an appropriate neighbohood also appears in stability analysis of evolutionary games, see

[^3]: ${ }^{5}$ See however Segal (2003) and Chung \& Ely (2003) for sufficient conditions for the existence of dominant strategies for the bidders in optimal auctions.

