Systems Engineering and Near Term Commercial Space Infrastructure

Keith A. Taggart, PhD, SPEC Innovations keith.taggart@specinnovations.com Fusion Fest 2014, Rutgers University www.fusionfest2014.com October 11, 2014

My Connection to Paul Kantor

- Keith Taggart: PhD-Physics (1970)
- Case-Western Reserve University
- Description
 - Paul's only Physics PhD student
 - Not an Academic: Couldn't deal with the politics
 - Learned a Trade: Problem Solving with a Supercomputer
 - Enduring interest in National Defense problems
 - Now Retired and trying to solve my own problems
 - Joke / Puzzle

Systems Engineering

- Ordered Problem Solving
 - Concept
 - Initial Requirements
 - Initial Trades
 - Conceptual Design
 - Architecture
 - Refined Trades
 - Refined Design
 - Iterate as much and as often as money allows
- Model Based Systems Engineering Tool
 - Innoslate
 - Cloud Based Interface
 - Enforces and Aids "Ordered"
 - www.innoslate.com
- Example-Space Stations Conceptual Design

Cost Schedule Performance You can have any 2

Requirements Analysis

≡ MENU - Database R	tequirements Search		Share Sp	ace Station - S	teven Dam - 🦪
Fatter Historichy	New Requirement 🔹 🖩 Quality Check 🖨 Report HBaseline			-	Collapse All 🛛 🖌 🕶
All Document Entries	Space Station - Requirements	Quality Score	Labels	Clear	Design
Only Statements	Artificial gravity The space station shall produce an artificial gravity for visitors and workers of that greater than or equal to the Earth's Moon (1/6 g)	89%	None to display.	Yes	Yes
Only Requirements Labels Acronym Answer Assumption Constraint Definition Environmental Requir Functional Requirement Goal Interface Requirement Objective Performance Require Purpose Question Reference Reflability Requirement Safety Requirement Sope Verification Requirement	1.1 Artificial gravity control The space station shall provide the means to control the artificial gravity	89%	None to display.	Yes	No • Requirement may not be directed to a diven system or service
	2 Usable volume under gravity The space station shall provide space to enable comfortable work (offices, laboratories, etc.) and visitor (e.g., hotel-like) accommodations.	100%	None to display.	Yes	Yes
	3 Modular construction The space station shall consist of modules that enable rapid connections between modules (e.g., power, water, etc.).	22%	None to display.	Yes	Yes
	3.1 Module Volume Each module must fit within the payload constraints of commercial launch vehicles.	33%	None to display.	Yes	No • Requirement may not be directed to a given system or service.
	3.2 Standard power connectors Each module shall use standard power connectors to simplify the construction and maintenance of the modules.	11%	None to display.	No • Contains a conjunction, consider separating into two statements.	No • Requirement may not be directed to a given system or service.
	3.3 Standard water connectors Each module shall use standard water connectors to simplify the construction and maintenance of the modules	115	None to display.	No • Contains a conjunction, consider separating into two statements.	No • Requirement may not be directed to a given system or service
	3.4 Construction Teleoperation The modules shall support teleoperation for assembly.	22%	None to display.	Yes	No • Requirement may not be directed to a given system or service.
	3.5 Radiation safety The modules shall provide sufficent radiation shielding to meet NASA safety standards for space work environments	44%	None to display.	Yes	Yes
		225	Alone to display	Online Use	rs (0) ^

Key Usability Requirements

- 35 m radius at 3 rpm gives .35 g
 - Result of trade between gravity, coriolis force, and size/cost/construction time
- Total volume under gravity 3300 m³ or 117,000 cubic feet
- Total floor space under gravity about 7200 square feet
 - One Module is about 300 square feet
 - A nice hotel room or office or lab
- These stations could support:
- Closed Environment Research
- Space Tourism
- Space Based Manufacturing
- Space Based Power
 - Assembly
 - > Testing
- Research for Radiation Mitigation
- Research for Impact Mitigation

- Low Gravity Research (not micro gravity)
 - Control of Spinning Habitats
 - Long Term Effects on Humans
 - Long Term Effects on animals and plants
- Lunar/Asteroid/Martian
 - Exploration
 - Resource Exploitation
- Debris Collection
- Satellite Repair

Two Space Station Concepts

Coriolis Force F_c =-2m Ω x V

Conceptual Module Construction

Falcon Heavy Provides 160% Launch Margin

"Back of the Envelope" Cost Estimates

Launch Costs

- 35 Falcon Heavy Launches
 - 35x40 metric tons=1400 metric tons to about 300 km
 - 35x120 M\$ per launch = 4.200 B\$
- 12 Falcon 9 Launches
 - 4 x 6 Construction Crew
 - 8 x 10 = 40 Metric tons of supplies
 - 12 x 56 M\$ per launch = .67 B\$
- Total Launch Costs to Construct
 - 4.9 B\$

Construction Costs (Much Less Precise)

- 30 Modules at 100 M\$ each equals 3.0 B\$
- Crew Cost
 - 18 person years x 8760 hours per year x \$1000 per hour equals
 - Equipment and Supply Cost 200 M\$
 - Ground Support 200 M\$
 - Fudge Factor 400 M\$
- Total Construction Cost about 4.0 B\$

Total Costs About 9 B\$

Summary

- We have just begun to explore the utility of commercial space stations
- Applying Model Based Systems Engineering techniques during the architecture phase will enable more robust trade-offs
- Having a scalable, integrated tool cuts time, and therefore costs, that can then be applied to greater quality and profitability
- Puzzle Answer

A Canticle for Kantor

- Paul Kantor is a Physicist!
- I claim him for the Brotherhood
- Proof of my claim:
 - The Italian connection
 - The American connection
 - Paul chooses family over career
 - Paul finally gets to be an academic
- Everything I needed to know I learned from Paul (and my mother).

Paul Kantor-Academic Genealogy(1)

- The Italian Branch of the Family
 - Francesco Rossetti: University of Padova (1857)
 - Researched Electrostatics, electrochemistry, and thermometry of flames.
 - Andrea Naccari: University of Padua (1862)
 - Studied the thermoelectric properties of metals
 - Angelo Battelli: University of Turin (1884)
 - Measured temperature and heats fusion of non-metals
 - Luigi Puccianti: University of Pisa (1898)
 - Studied infrared absorption spectra to determine molecular structure
 - Enrico Fermi: Scuola Normale Superiore (1922)
 - Nobel Prize in Physics for 1938
 - Manhattan Project Chicago Pile-1, the first artificial sustained nuclear reaction
 - Theory of the weak nuclear force.
 - Fermi-Dirac Statistics.
 - Sam Treiman: University of Chicago(1952)
 - He and his students credited with developing the Standard Model of Particle Physics
 - Major contributions to the fields of Cosmic Rays, Quantum Physics, Plasma Physics, and Gravity Physics
 - Paul Kantor: Princeton University(1963)
 - Thesis: "Nucleon Nucleon Scattering and the Meson resonances,

Average Length of a Generation 14.1 years

Paul Kantor-Academic Genealogy(2)

- The American Branch of the Family
 - Owen Willans Richardson: University College (1904)
 - Won the Nobel Prize in Physics for 1928
 - Karl Taylor Compton: Princeton University (1912)
 - President MIT 1930-1948
 - Brother of Arthur Compton-Nobel Prize in Physics 1927
 - John Quincy Stewart: Princeton University (1919)
 - Chief instructor in the Army Engineering School in WWI
 - Co-authored "Astronomy: A Revision of Young's Manual of Astronomy"-The standard Astronomy textbook for 20 years
 - Serge Alexander Korff: Princeton University (1931)
 - Pioneer in the observation of Cosmic Rays at high altitude
 - John Simpson: New York University (1943)
 - High Energy radiation detectors for the Manhattan Project and later for space experiments
 - Sam Treiman: University of Chicago (1952)
 - He and his students credited with developing the Standard Model
 - Major contributions to the fields of Cosmic Rays, Quantum Physics, Plasma Physics, and Gravity Physics
 - Paul Kantor: Princeton University (1963)
 - Nucleon Nucleon Scattering and the Meson Resonances

Average Length of a Generation 9.4 years

Paul Chooses Family over Career

- Paul arrives at Case Institute (1967)
- Case Institute of Technology and Western Reserve University merge (1968)
- The Great Physics Department Debacle
 - Two Departments with ~ 50 Faculty
 - Room for only about 25
 - Particle Physics funding cut drastically (1969)
 - All without tenure not renewed (1970)
- Paul chooses family over career, works as a consultant, and stays in Cleveland Until 1991.

Paul Moves to Rutgers

- Paul was meant to be an academic
- So after his family was secure he moved to Rutgers (1991)
- Where he became Distinguished Professor of Information Scientist
- Where he found a lot more PhD students
- Where he found a lot more friends.
- BUT...in his heart of hearts he remains a

PHYSICIST

Everything I Needed to Know

- I learned from Paul
 - "Quantum Mechanics" by Albert Messiah (Mess-ee-ah).
 - Words don't mean the same thing in Physics.
 - Physics are fun and addictive, better than selling ice cream from an Uncle Marty's truck, and useful in all endeavors
 - If you work hard you might earn a PhD.
 - Family is more important than career.
 - Be Agile but be Honest.
 - Just because you got the same answer in two different ways doesn't mean it's right.
 - Algebra, even really cool relativistic tensor algebra, is not as important as thought and insight.
 - Laugh at yourself (and others) as appropriate.
 - Kindness to one's juniors helps more than you know.
 - Always recognize people for their contributions.
- (and my mother)
 - Don't let your sons grow up to be Physicists

