+

Co-degree Density of Hypergraphs

Yi Zhao Dept. of Mathematics, Statistics, and Computer Science University of Illinois at Chicago

Joint Work with Dhruv Mubayi

+

Extremal (Hyper)graph Problems

Study the max/min value of a function over a class of (hyper)graphs

- *r*-graph: *r*-uniform (hyper)graph.
- extremal graph: realizing the extreme value.

• \mathcal{F} -free: containing no member of \mathcal{F} as a subgraph.

	Turán problem	codegree problem
function	size	min codegree
class	$\mathcal F$ -free	\mathcal{F} -free
max	$ex(n,\mathcal{F})$	$co ext{-}ex(n,\mathcal{F})$

Graphs (r = 2)

Turán Theorem

 $ex(n, K_r)$ is attained only by balanced (r-1)-partite graphs, so $ex(n, K_r)$ is (about) $(1 - \frac{1}{r-1})\binom{n}{2}$

Erdős-Simonovits-Stone theorem (ESS)

Fundamental theorem of (extremal) graph theory ex(n, F) is $(1 + o(1))(1 - \frac{1}{\chi(F) - 1}) {n \choose 2}$.

 χ : chromatic number

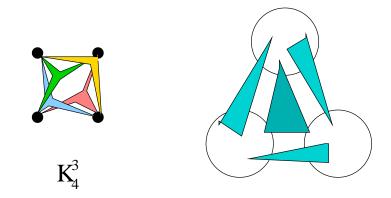
The only unknown case is bipartite graphs.

Hypergraphs

No Turán or **ESS** theorems: ex(n, F) is not even known for the complete 3-graph on 4 vertices.

Turán's Conjecture

 $ex(n, K_4^3)$ is attained by



(Erdős \$500) lim $ex(n, K_4^3) / {n \choose 3} = \frac{5}{9}$.

Definition (Turán density)

 $\pi(\mathcal{F}) = \lim_{n \to \infty} \exp(n, \mathcal{F}) / {n \choose r}$

For graphs, $\pi(\mathcal{F}) = \min_{F \in \mathcal{F}} 1 - \frac{1}{\chi(F) - 1}$ (**ESS**).

Degree problem = Turán problem

 $x \in V(G)$, deg(x) = # edges containing x. $\delta(G) = \min_{x \in V(G)} deg(x)$.

Facts:

Let G be an n-vertex r-graph.

1. If
$$\delta(G) \ge c \binom{n-1}{r-1}$$
, then $e(G) \ge c \binom{n}{r}$.

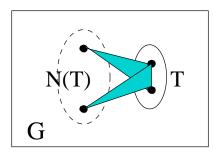
2. If $e(G) \ge (c + \varepsilon) {n \choose r}$, then G contains a subgraph G' on $m \ge \varepsilon^{1/r}n$ vertices with $\delta(G') \ge c {m \choose r-1}$.

ESS: Every graph G_n with $\delta(G_n) \ge (1 + \varepsilon)(1 - \frac{1}{\chi(F) - 1})n$ contains a copy of F.

Co-degree

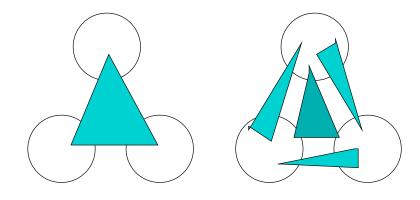
In r-graph G_n , $T \subset V(G)$ with |T| = r - 1,

 $N(T) = \{ v \in V(G) : T \cup \{ v \} \in E(G) \}.$



Co-degree $\operatorname{codeg}(T) = |N(T)|.$

Let $C(G) = \min_{T \subset V, |T| = r-1} \{ \operatorname{codeg}(T) \}$ and c(G) = C(G)/n.



 $C(K_3^3(t)) = 0 C(T^3(n)) = \frac{n}{3}$ $e(K_3^3(t)) = \frac{2}{9}n e(T^3(n)) = \frac{5}{9}n$

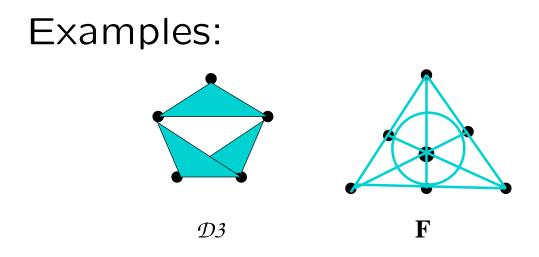
Definition:

The co-degree Turán number $co-ex(n, \mathcal{F})$ of \mathcal{F} is the maximum of $\mathcal{C}(G_n)$ over all \mathcal{F} -free r-graphs G_n . The co-degree density of \mathcal{F} is

$$\gamma(\mathcal{F}) := \limsup_{n \to \infty} \frac{\operatorname{co-ex}(n, \mathcal{F})}{n}$$

Fact 1: $\gamma(\mathcal{F}) \leq \pi(\mathcal{F})$ (averaging).

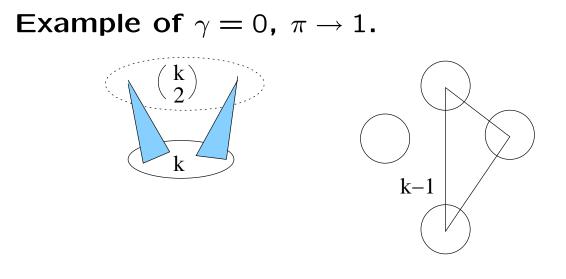
Fact 2: $\gamma(\mathcal{F}) = \pi(\mathcal{F})$ when r = 2 (co-degree = degree)



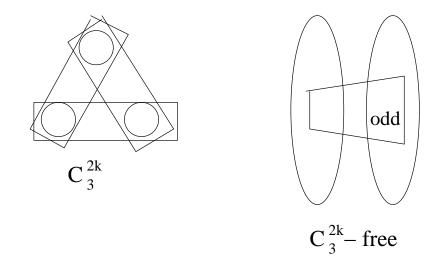
 $\gamma(\mathcal{D}_3) = 0$ trivial; $\pi(\mathcal{D}_3) = 2/9$ (Frankl-Füredi)

 $\gamma(\mathbf{F}) = 1/2$ (Mubayi); $\pi(\mathbf{F}) = 3/4$ (de Caen-Füredi)

Conjectures: $\gamma(K_4^3) = 1/2$ (Nagle-Czygrinow), $\pi(K_4^3) = 5/9$ (Turán)



Example of $0 < \gamma = \pi$ (even r only).



(Frankl) $\pi(C_3^{2k}) = 1/2.$

Because of the symmetry of the extremal graph, this implies that $\gamma(C_3^{2k}) = 1/2$.

Fundamental questions on γ :

- 1. supersaturation
- 2. jumps
- 3. principality

Supersaturation

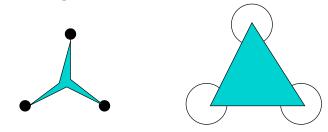
Theorem (Erdős, Simonovits)

Fix f-vertex F. For every $\varepsilon > 0$, there exists $\delta > 0$, s.t. every r-graph G_n (n sufficiently large) of size $\geq (\pi(F) + \varepsilon) {n \choose r}$ contains $\geq \delta {n \choose f}$ copies of F.

Corollary:

 $\pi(F) = \pi(F(t))$, where F(t) is a blow-up of F.

blow-up an edge



Theorem (Mubayi-Z) Supersaturation holds for γ , and $\gamma(F) = \gamma(F(t))$.

Jumps

Let $\Pi_r = \{\pi(\mathcal{F}) : \mathcal{F} \text{ is a family of } r\text{-graphs}\}.$

 $\Pi_2 = \{0, \frac{1}{2}, \frac{2}{3}, \dots, \}$ (ESS).

Much less known when $r \geq 3$:

Proposition: $\pi(\mathcal{F}) \not\in (0, r!/r^r)$ for any \mathcal{F} .

Definition (Jump).

Given a function f and $r \ge 2$. A real number $0 \le \alpha < 1$ is called a jump for r in terms of f if $\exists \delta > 0$, such that no family \mathcal{G} of r-graphs satisfies $f(\mathcal{G}) \in (\alpha, \alpha + \delta)$.

In terms of π every $0 \le \alpha < 1$ is a jump for r = 2, every $0 \le \alpha < r!/r^r$ is a jump for $r \ge 3$ (Proposition). **Conjecture** (Erdős 1977): every $c \in [0, 1)$ is a jump for $r \ge 3$.

Theorem (Frankl-Rödl 1984): $1 - 1/\ell^{r-1}$ is not a jump for $r \ge 3$ and $\ell > 2r$.

Problem: is $r!/r^r$ a jump for $r \ge 3$?

Theorem (Mubayi-Z): For each $r \ge 3$, no $\alpha \in [0, 1)$ is a jump for γ .

Corollary: For each $r \geq 3$,

 $\Gamma_r = \{\gamma(\mathcal{F}) : \mathcal{F} \text{ is family of } r\text{-graphs}\}$ is dense in [0, 1).

Principality

Clearly $\pi(\mathcal{F}) \leq \pi(F)$, for all $F \in \mathcal{F}$.

Definition:

 π is principal for r if $\pi(\mathcal{F}) = \min_{F \in \mathcal{F}} \pi(F)$ for every finite family \mathcal{F} of r-graphs.

r = 2, principal (**ESS**)

 $r \geq$ 3, non-principal (Balogh, Mubayi-Pikhurko)

Theorem(Mubayi-Z):

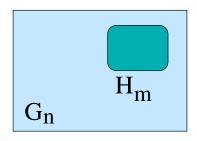
 γ is not principal for each $r \geq 3$, i.e., there exists a finite family \mathcal{F} of r-graphs s.t. $0 < \gamma(\mathcal{F}) < \min_{F \in \mathcal{F}} \gamma(F)$.

Comparing γ and π

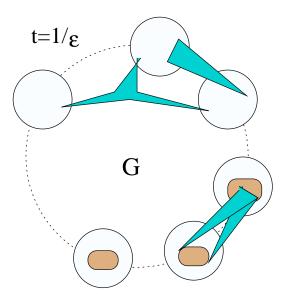
	graphs	(h) π	(h) γ
supersaturation			\checkmark
Jumps		$\sqrt{, \times}$	×
principality		×	×

An equivalent definition for jumps

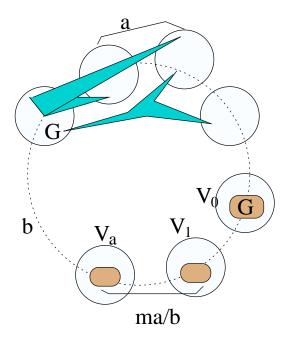
(Definition) α is a jump if $\exists \delta > 0$ s.t. $\forall \varepsilon > 0$, every large $\{G_n\}$ with $c(G_n) \ge \alpha + \varepsilon$ contains a subgraph $H_m \subseteq G_n$ for which $m \to \infty$ as $n \to \infty$ and $c(H_m) \ge \alpha + \delta$.



Proof that 0 is not a jump.



Proof that $\alpha = \frac{a}{b}$ is not a jump.



Open problems:

• What if replacing \mathcal{F} be F in the definition of jump (for π or γ)? Harder to prove no jumps

• $\Gamma_r = [0, 1)$? where $\Gamma_r = \{\gamma(\mathcal{F}) : \mathcal{F} \text{ is a family of } r\text{-graphs}\}.$

• Find two 3-graphs F_1, F_2 with $0 < \gamma(F_1, F_2) < \min\{\gamma(F_1), \gamma(F_2)\}.$