Ramsey Number for Hypergraph Cycles

Jozef Skokan

University of Illinois at Urbana-Champaign

with P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits

October 18, 2004

Hypergraphs

A 3-uniform hypergraph $\mathcal{H} = (V, E)$ consists of the set of vertices V and the set of edges $E \subset {V \choose 3}$.

Hypergraphs

A 3-uniform hypergraph $\mathcal{H} = (V, E)$ consists of the set of vertices V and the set of edges $E \subset {V \choose 3}$.

The *loose cycle* C_n is the hypergraph with vertices v_1, \ldots, v_n and edges $v_1v_2v_3, v_3v_4v_5, v_5v_6v_7, \ldots, v_{n-1}v_nv_1$.

Note that n must be even and C_n has n/2 edges (n/2) is the *length* of C_n).

Hypergraphs

A 3-uniform hypergraph $\mathcal{H} = (V, E)$ consists of the set of vertices V and the set of edges $E \subset {V \choose 3}$.

The *loose cycle* C_n is the hypergraph with vertices v_1, \ldots, v_n and edges $v_1v_2v_3, v_3v_4v_5, v_5v_6v_7, \ldots, v_{n-1}v_nv_1$.

Note that n must be even and C_n has n/2 edges (n/2) is the *length* of C_n).

The *tight cycle* \mathcal{T}_n has vertex set v_1, \ldots, v_n and edges $v_1v_2v_3$, $v_2v_3v_4$, $v_3v_4v_5, \ldots, v_nv_1v_2$.

Loose and tight cycles for n = 12.

Figure 1: loose cycle C_{12}

Figure 2: tight cycle T_{12}

Definition 1. For two hypergraphs \mathcal{G} and \mathcal{H} , the Ramsey number $R(\mathcal{G}, \mathcal{H})$ is the minimum integer N so that any 2-coloring of the complete 3-uniform hypergraph $K_N^{(3)}$ by RED and BLUE yields either a RED copy of \mathcal{G} or a BLUE copy of \mathcal{H} .

Definition 1. For two hypergraphs \mathcal{G} and \mathcal{H} , the Ramsey number $R(\mathcal{G}, \mathcal{H})$ is the minimum integer N so that any 2-coloring of the complete 3-uniform hypergraph $K_N^{(3)}$ by RED and BLUE yields either a RED copy of \mathcal{G} or a BLUE copy of \mathcal{H} .

We prove

$$R(\mathcal{C}_{4k}, \mathcal{C}_{4k}) > 5k - 2 \text{ and } R(\mathcal{C}_{4k+2}, \mathcal{C}_{4k+2}) > 5k - 1$$

Definition 1. For two hypergraphs \mathcal{G} and \mathcal{H} , the Ramsey number $R(\mathcal{G}, \mathcal{H})$ is the minimum integer N so that any 2-coloring of the complete 3-uniform hypergraph $K_N^{(3)}$ by RED and BLUE yields either a RED copy of \mathcal{G} or a BLUE copy of \mathcal{H} .

We prove

$$R(\mathcal{C}_{4k}, \mathcal{C}_{4k}) > 5k - 2 \text{ and } R(\mathcal{C}_{4k+2}, \mathcal{C}_{4k+2}) > 5k - 1$$

and

$$R(\mathcal{C}_n, \mathcal{C}_n) < (5 + o(1))n/4.$$

Lower bound: $R(C_{4k}, C_{4k}) > 5k - 2$

Find coloring of $K_{5k-2}^{(3)}$ with no monochromatic C_{4k} :

Lower bound: $R(C_{4k}, C_{4k}) > 5k - 2$

Find coloring of $K_{5k-2}^{(3)}$ with no monochromatic C_{4k} :

There is no RED C_{4k} because all RED triples are inside *B* and *B* contains only 4k - 1 vertices.

There is no BLUE C_{4k} : each of 2k edges must contain a vertex from A. Since each vertex in C_{4k} can be in at most 2 edges, A must contain at least 2k/2 = k vertices - a contradiction!

Theorem 2. For every $\eta > 0$ there is $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of $K_{5(1+\eta)n/4}^{(3)}$ contains a monochromatic copy of C_n .

Theorem 2. For every $\eta > 0$ there is $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of $K_{5(1+\eta)n/4}^{(3)}$ contains a monochromatic copy of C_n .

Enemy picks $\eta > 0$.

Theorem 2. For every $\eta > 0$ there is $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of $K_{5(1+\eta)n/4}^{(3)}$ contains a monochromatic copy of C_n .

Enemy picks $\eta > 0$.

We choose HUGE n_0 .

Theorem 2. For every $\eta > 0$ there is $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of $K_{5(1+\eta)n/4}^{(3)}$ contains a monochromatic copy of C_n .

Enemy picks $\eta > 0$.

We choose HUGE n_0 .

Enemy picks n and 2-coloring $\mathcal{F}_R \cup \mathcal{F}_B$ of $K_N^{(3)}$, where $N = 5(1 + \eta)n/4$.

Theorem 2. For every $\eta > 0$ there is $n_0 = n_0(\eta)$ such that for every $n > n_0$, every 2-coloring of $K_{5(1+\eta)n/4}^{(3)}$ contains a monochromatic copy of C_n .

Enemy picks $\eta > 0$.

We choose HUGE n_0 .

Enemy picks n and 2-coloring $\mathcal{F}_R \cup \mathcal{F}_B$ of $K_N^{(3)}$, where $N = 5(1 + \eta)n/4$.

We must find a **RED** or **BLUE** copy of C_n .

The vertex set $V(\mathcal{F}_R)$ is partitioned into t + 1 classes $V_0 \cup V_1 \cup \ldots \cup V_t$ such that

• $|V_0| \leq \epsilon N$;

The vertex set $V(\mathcal{F}_R)$ is partitioned into t + 1 classes $V_0 \cup V_1 \cup \ldots \cup V_t$ such that

- $|V_0| \le \epsilon N$;
- $|V_1| = \ldots = |V_t| = m \sim N/t;$

The vertex set $V(\mathcal{F}_R)$ is partitioned into t + 1 classes $V_0 \cup V_1 \cup \ldots \cup V_t$ such that

- $|V_0| \le \epsilon N$;
- $|V_1| = \ldots = |V_t| = m \sim N/t;$
- all but $\epsilon {t \choose 3}$ restrictions $\mathcal{F}_R[V_i, V_j, V_k]$ are ϵ -regular:

The vertex set $V(\mathcal{F}_R)$ is partitioned into t + 1 classes $V_0 \cup V_1 \cup \ldots \cup V_t$ such that

- $|V_0| \leq \epsilon N$;
- $|V_1| = \ldots = |V_t| = m \sim N/t;$
- all but $\epsilon \binom{t}{3}$ restrictions $\mathcal{F}_R[V_i, V_j, V_k]$ are ϵ -regular:

 $\mathcal{F}_R[V'_i, V'_j, V'_k] \text{ contains } (d_{ijk} \pm \epsilon) |V'_i| |V'_j| |V'_k| \text{ RED edges for each sample } V'_i \subset V_i, V'_j \subset V_j, V'_k \subset V_k, |V'_i| \ge \epsilon |V_i|, |V'_j| \ge \epsilon |V_j|, |V'_k| \ge \epsilon |V_k|.$

The vertex set $V(\mathcal{F}_R)$ is partitioned into t + 1 classes $V_0 \cup V_1 \cup \ldots \cup V_t$ such that

- $|V_0| \leq \epsilon N$;
- $|V_1| = \ldots = |V_t| = m \sim N/t;$
- all but $\epsilon \binom{t}{3}$ restrictions $\mathcal{F}_R[V_i, V_j, V_k]$ are ϵ -regular:

 $\mathcal{F}_R[V'_i, V'_j, V'_k] \text{ contains } (d_{ijk} \pm \epsilon)|V'_i||V'_j||V'_k| \text{ RED edges for each sample } V'_i \subset V_i, V'_j \subset V_j, V'_k \subset V_k, |V'_i| \ge \epsilon|V_i|, |V'_j| \ge \epsilon|V_j|, |V'_k| \ge \epsilon|V_k|.$

Note that $\mathcal{F}_B[V'_i, V'_j, V'_k]$ then contains $((1 - d_{ijk}) \pm \epsilon)|V'_i||V'_j||V'_k|$ BLUE edges and is also ϵ -regular.

Step 2: define the cluster hypergraph ${\mathcal J}$ and its 2-coloring

 \mathcal{J} has vertex set $\{1, 2, \ldots, t\}$ and edge set $\{ijk: \mathcal{F}_R[V_i, V_j, V_k] \text{ is } \epsilon$ -regular $\}$.

Step 2: define the cluster hypergraph \mathcal{J} and its 2-coloring

 \mathcal{J} has vertex set $\{1, 2, \ldots, t\}$ and edge set $\{ijk: \mathcal{F}_R[V_i, V_j, V_k] \text{ is } \epsilon$ -regular $\}$.

 \mathcal{J} has at least $(1-\epsilon) {t \choose 3}$ edges.

Step 2: define the cluster hypergraph \mathcal{J} and its 2-coloring

 \mathcal{J} has vertex set $\{1, 2, \ldots, t\}$ and edge set $\{ijk: \mathcal{F}_R[V_i, V_j, V_k] \text{ is } \epsilon$ -regular $\}$.

 \mathcal{J} has at least $(1-\epsilon) {t \choose 3}$ edges.

We color the edge $ijk \in \mathcal{J}$ RED if the density of $\mathcal{F}_R[V_i, V_j, V_k]$ is at least 1/2, otherwise we color it BLUE ; i.e. $\mathcal{J} = \mathcal{J}_R \cup \mathcal{J}_B$.

Step 3: shadow graph monochromatic components

The shadow graph $\Gamma(\mathcal{J}_*)$, $* \in \{R, B\}$, has vertices $1, \ldots, t$ and edge set

 $\{ij: \exists k \text{ so that } ijk \in \mathcal{J}_*\}.$

Step 3: shadow graph monochromatic components

The shadow graph $\Gamma(\mathcal{J}_*)$, $* \in \{R, B\}$, has vertices $1, \ldots, t$ and edge set

 $\{ij: \exists k \text{ so that } ijk \in \mathcal{J}_*\}.$

A *monochromatic* component of \mathcal{J} is any RED component of $\Gamma(\mathcal{J}_R)$ or any BLUE component of $\Gamma(\mathcal{J}_B)$.

Step 3: shadow graph monochromatic components

The shadow graph $\Gamma(\mathcal{J}_*), * \in \{R, B\}$, has vertices $1, \ldots, t$ and edge set

 $\{ij: \exists k \text{ so that } ijk \in \mathcal{J}_*\}.$

A *monochromatic* component of \mathcal{J} is any RED component of $\Gamma(\mathcal{J}_R)$ or any BLUE component of $\Gamma(\mathcal{J}_B)$.

Each vertex is in exactly one RED and one BLUE component.

Step 4: looking for (many) diamonds

A diamond \mathcal{D} is a hypergraph with vertex set $\{v_1, v_2, v_3, v_4\}$ and edge set $\{v_1v_2v_3, v_2v_3v_4\}$. We will call v_2v_3 the *central edge* of \mathcal{D} .

Step 4: looking for (many) diamonds

A diamond \mathcal{D} is a hypergraph with vertex set $\{v_1, v_2, v_3, v_4\}$ and edge set $\{v_1v_2v_3, v_2v_3v_4\}$. We will call v_2v_3 the *central edge* of \mathcal{D} .

Lemma 3. The cluster graph \mathcal{J} contains a monochromatic component \mathcal{L} that contains (i.e. $\mathcal{J}[\mathcal{L}]$ does) $s \sim t/5$ vertex-disjoint diamonds $\mathcal{D}_1, \ldots, \mathcal{D}_s$.

Step 4: looking for (many) diamonds

A diamond \mathcal{D} is a hypergraph with vertex set $\{v_1, v_2, v_3, v_4\}$ and edge set $\{v_1v_2v_3, v_2v_3v_4\}$. We will call v_2v_3 the *central edge* of \mathcal{D} .

Lemma 3. The cluster graph \mathcal{J} contains a monochromatic component \mathcal{L} that contains (i.e. $\mathcal{J}[\mathcal{L}]$ does) $s \sim t/5$ vertex-disjoint diamonds $\mathcal{D}_1, \ldots, \mathcal{D}_s$.

Fix a (RED) component \mathcal{L} and (RED) vertex-disjoint diamonds $\mathcal{D}_1, \ldots, \mathcal{D}_s$. Let $M = \{e_1, \ldots, e_s\}$ be the set of all central edges of these diamonds.

Lemma 4. In $\Gamma(\mathcal{J}_R)$, there exists a closed (oriented) trail $x_1x_2x_3...x_r = x_1$

- containing M;
- with $r \leq 2t$ (remember $\Gamma(\mathcal{J}_R)$ has t vertices);
- each edge of $\Gamma(\mathcal{J}_R)$ is used at most once in each direction.

Lemma 4. In $\Gamma(\mathcal{J}_R)$, there exists a closed (oriented) trail $x_1x_2x_3...x_r = x_1$

- containing M;
- with $r \leq 2t$ (remember $\Gamma(\mathcal{J}_R)$ has t vertices);
- each edge of $\Gamma(\mathcal{J}_R)$ is used at most once in each direction.

Let T be any tree of $\Gamma(\mathcal{J}_R)$ that contains the edges of M.

Lemma 4. In $\Gamma(\mathcal{J}_R)$, there exists a closed (oriented) trail $x_1x_2x_3...x_r = x_1$

- containing M;
- with $r \leq 2t$ (remember $\Gamma(\mathcal{J}_R)$ has t vertices);
- each edge of $\Gamma(\mathcal{J}_R)$ is used at most once in each direction.

Let T be any tree of $\Gamma(\mathcal{J}_R)$ that contains the edges of M.

Fix a planar embedding of T, and let x_1 be the root of T.

Lemma 4. In $\Gamma(\mathcal{J}_R)$, there exists a closed (oriented) trail $x_1x_2x_3...x_r = x_1$

- containing M;
- with $r \leq 2t$ (remember $\Gamma(\mathcal{J}_R)$ has t vertices);
- each edge of $\Gamma(\mathcal{J}_R)$ is used at most once in each direction.

Let T be any tree of $\Gamma(\mathcal{J}_R)$ that contains the edges of M.

Fix a planar embedding of T, and let x_1 be the root of T.

Construct the trail: walk from x_1 around the boundary of the (single) face of the embedding, ending back at x_1 .

Step 5 and 1/2: good vertices

Let $\mathcal{J}_R[V_i, V_j, V_k]$ be ϵ -regular with density $d > 2\epsilon^{1/2}$.

Step 5 and 1/2: good vertices

Let $\mathcal{J}_R[V_i, V_j, V_k]$ be ϵ -regular with density $d > 2\epsilon^{1/2}$.

A vertex $x \in V_i$ is *good* for the triple $\mathcal{J}_R[V_i, V_j, V_k]$ if

(i) for at least $d|V_j|/2$ vertices $y \in V_j$, there are at least $d|V_k|/2$ vertices $z \in V_k$ such that $xyz \in \mathcal{J}_R$, and

(ii) for at least $d|V_k|/2$ vertices $z \in V_k$, there are at least $d|V_j|/2$ vertices $y \in V_j$ such that $xyz \in \mathcal{J}_R$.

We define vertices in V_j and V_k to be good for $\mathcal{J}_R[V_i, V_j, V_k]$ in a similar way.

Observation: ϵ -regularity \Rightarrow almost all vertices in V_i, V_j, V_k are good.

Step 5 and 3/4: properties of good vertices

Let $\mathcal{J}_R[V_i, V_j, V_k]$ be ϵ -regular with density $d > 2\epsilon^{1/3}$.

Let $u \in V_i$ and $w \in V_j$ be any two good vertices and *B* be a (small) set of vertices.

Then there is a u, v-path of length 3 and/or 6 in $\mathcal{J}_R[V_i, V_j, V_k]$ avoiding B.

Step 5 and 3/4: properties of good vertices

Let $\mathcal{J}_R[V_i, V_j, V_k]$ be ϵ -regular with density $d > 2\epsilon^{1/3}$.

Let $u \in V_i$ and $w \in V_j$ be any two good vertices and *B* be a (small) set of vertices.

Then there is a u, v-path of length 3 and/or 6 in $\mathcal{J}_R[V_i, V_j, V_k]$ avoiding B.

Let $\mathcal{J}_1 = \mathcal{J}_R[V_i, V_j, V_k]$, $\mathcal{J}_2 = \mathcal{J}_R[V_i, V_j, V_\ell]$ be ϵ -regular with density $d > 2\epsilon^{1/6}$.

Let $u \in V_i$ and $w \in V_j$ be any two good vertices (for \mathcal{J}_1 and \mathcal{J}_2) and B be a (small) set of vertices.

Then there is a u, v-path of length up to $\sim 2m$ in $\mathcal{J}_1 \cup \mathcal{J}_2$ avoiding B.

Let $x_1x_2...x_r = x_1$ be the closed directed trail given by Lemma 4.

Let $x_1x_2...x_r = x_1$ be the closed directed trail given by Lemma 4.

For each arc (x_{i-1}, x_i) , choose an ϵ -regular triple $\mathcal{J}_i = \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_{k_i}]$ of density at least 1/2 for some k_i .

Let $x_1x_2...x_r = x_1$ be the closed directed trail given by Lemma 4.

For each arc (x_{i-1}, x_i) , choose an ϵ -regular triple $\mathcal{J}_i = \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_{k_i}]$ of density at least 1/2 for some k_i .

We choose distinct vertices $v_i \in V_{x_i}$ for $1 \le i \le r-1$ such that v_i is good for both triples \mathcal{J}_i and \mathcal{J}_{i+1} .

Let $x_1x_2...x_r = x_1$ be the closed directed trail given by Lemma 4.

For each arc (x_{i-1}, x_i) , choose an ϵ -regular triple $\mathcal{J}_i = \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_{k_i}]$ of density at least 1/2 for some k_i .

We choose distinct vertices $v_i \in V_{x_i}$ for $1 \le i \le r-1$ such that v_i is good for both triples \mathcal{J}_i and \mathcal{J}_{i+1} .

If x_i is incident to the central edge of some diamond $\mathcal{D} \in \{\mathcal{D}_1, \ldots, \mathcal{D}_s\}$, we also require that v_i be good for the two triples induced by \mathcal{D} .

Let $x_1x_2...x_r = x_1$ be the closed directed trail given by Lemma 4.

For each arc (x_{i-1}, x_i) , choose an ϵ -regular triple $\mathcal{J}_i = \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_{k_i}]$ of density at least 1/2 for some k_i .

We choose distinct vertices $v_i \in V_{x_i}$ for $1 \le i \le r-1$ such that v_i is good for both triples \mathcal{J}_i and \mathcal{J}_{i+1} .

If x_i is incident to the central edge of some diamond $\mathcal{D} \in \{\mathcal{D}_1, \ldots, \mathcal{D}_s\}$, we also require that v_i be good for the two triples induced by \mathcal{D} .

For i = 2, 3, ..., r, 1, we join v_{i-1} and v_i by a path of length 3, disjoint from all previously defined paths.

Let $x_1x_2...x_r = x_1$ be the closed directed trail given by Lemma 4.

For each arc (x_{i-1}, x_i) , choose an ϵ -regular triple $\mathcal{J}_i = \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_{k_i}]$ of density at least 1/2 for some k_i .

We choose distinct vertices $v_i \in V_{x_i}$ for $1 \le i \le r-1$ such that v_i is good for both triples \mathcal{J}_i and \mathcal{J}_{i+1} .

If x_i is incident to the central edge of some diamond $\mathcal{D} \in \{\mathcal{D}_1, \ldots, \mathcal{D}_s\}$, we also require that v_i be good for the two triples induced by \mathcal{D} .

For i = 2, 3, ..., r, 1, we join v_{i-1} and v_i by a path of length 3, disjoint from all previously defined paths.

These short paths link to form a loose cycle of length 3(r-1).

If the length n/2 of C_n has different parity from 3(r-1), replace one path of length 3 by a path of length 6 to make the parities agree. This gives a loose cycle C of length c, where $3(r-1) \le c \le 3r$ and $c \equiv n/2 \pmod{2}$.

We replace each short path in \mathcal{C} corresponding to a central edge by a long path.

We replace each short path in \mathcal{C} corresponding to a central edge by a long path.

Let (x_{i-1}, x_i) be a central edge for some diamond $\{x_{i-1}x_ik, x_{i-1}x_ip\}$.

We replace each short path in \mathcal{C} corresponding to a central edge by a long path.

Let (x_{i-1}, x_i) be a central edge for some diamond $\{x_{i-1}x_ik, x_{i-1}x_ip\}$.

Then we find a long (odd) path (od length $\sim n/2s = 5n/2t \leq 2N/t = 2m$) in $\mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_k] \cup \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_p]$ avoiding \mathcal{C} .

We replace each short path in \mathcal{C} corresponding to a central edge by a long path.

Let (x_{i-1}, x_i) be a central edge for some diamond $\{x_{i-1}x_ik, x_{i-1}x_ip\}$.

Then we find a long (odd) path (od length $\sim n/2s = 5n/2t \leq 2N/t = 2m$) in $\mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_k] \cup \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_p]$ avoiding \mathcal{C} .

Since the *s* diamonds $\mathcal{D}_1, \ldots, \mathcal{D}_s$ of \mathcal{L} are vertex-disjoint, the long paths cannot interfere with each other.

We replace each short path in C corresponding to a central edge by a long path.

Let (x_{i-1}, x_i) be a central edge for some diamond $\{x_{i-1}x_ik, x_{i-1}x_ip\}$.

Then we find a long (odd) path (od length $\sim n/2s = 5n/2t \leq 2N/t = 2m$) in $\mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_k] \cup \mathcal{J}_R[V_{x_{i-1}}, V_{x_i}, V_p]$ avoiding \mathcal{C} .

Since the *s* diamonds $\mathcal{D}_1, \ldots, \mathcal{D}_s$ of \mathcal{L} are vertex-disjoint, the long paths cannot interfere with each other.

This way we obtain a cycle of length $\sim s \times n/2s = n/2$. With a bit of extra work (and details), we get length exactly n/2.

 the magnitude of the Ramsey number does not depend on the parity of the length n/2 of the cycle Cn;

- the magnitude of the Ramsey number does not depend on the parity of the length n/2 of the cycle C_n;
- one of few applications of this version of the regularity lemma for 3-uniform hypergraphs;

- the magnitude of the Ramsey number does not depend on the parity of the length n/2 of the cycle C_n ;
- one of few applications of this version of the regularity lemma for 3-uniform hypergraphs;
- we need to look for $s \sim t/5$ connected diamonds. If one would like to use a matching to find C_n , its size s would have to be $s \sim 4t/15$ (so that $s \times 3\frac{5n/4}{t} \sim n$ and this cannot be guaranteed.

Tight cycle T_n

We can prove

 $R(\mathcal{C}_{3k}, \mathcal{C}_{3k}) > 4k - 2$

and

 $R(\mathcal{C}_{3k+1}, \mathcal{C}_{3k+1}), R(\mathcal{C}_{3k+2}, \mathcal{C}_{3k+2}) > 6k$

Tight cycle T_n

We can prove

 $R(\mathcal{C}_{3k}, \mathcal{C}_{3k}) > 4k - 2$

and

 $R(\mathcal{C}_{3k+1}, \mathcal{C}_{3k+1}), R(\mathcal{C}_{3k+2}, \mathcal{C}_{3k+2}) > 6k$

and

 $R(\mathcal{C}_{3n}, \mathcal{C}_{3n}) < (4 + o(1))n$

and

$$R(\mathcal{C}_{3n+1}, \mathcal{C}_{3n+1}), R(\mathcal{C}_{3n+2}, \mathcal{C}_{3n+2}) < (6+o(1))n.$$

Construction for the lower bound

Coloring of $K_{4k-2}^{(3)}$ without monochromatic \mathcal{C}_{3k} : take X and Y|X| = |Y| = 2k - 1, color all triples inside X and those with exactly two vertices in Y RED, all others by BLUE.

In this coloring, there is no monochromatic matching saturating 3k vertices contained in one strong component, and thus also no monochromatic copy of C_{3k} .

Differences

- use of the Regularity Lemma (RL) of Frankl-Rödl;
- we look for a strongly connected matching of size $s \sim t/4$;
- we need to find long path in a regular triad produced by RL (done by Polcyn, Rödl, Ruciński, Szemerédi).