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Hypergraphs

A 3-uniform hypergraph H = (V, E) consists of the set of vertices V' and the
set of edges F C (}).

The loose cycle C,, is the hypergraph with vertices v, ..., v, and edges
U1U2V3, VU3U4V5, U5V6VUT, . . ., Un—-1UnV1.

Note that n must be even and C,, has n/2 edges (n/2 is the length of C,,).

The tight cycle I, has vertex set vy, ..., v, and edges v,vov3, V2V3V4,
UV3V4V5,...,UnpUV10V9.



Loose and tight cycles for n = 12.

Figure 1: loose cycle Cq2 Figure 2: tight cycle 71-
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Hypergraph Ramsey Numbers

Definition 1. For two hypergraphs G and 'H, the Ramsey number R(G,H)
is the minimum integer N so that any 2-coloring of the complete 3-uniform

hypergraph K ](\z,)’) by RED and BLUE yields either a RED copy of G or a BLUE
copy of H.

We prove
R(C4k,C4k) > bk — 2 and R(C4k+2, C4k_|_2) > bk — 1

and

R(Cn,Cn) < (5 + o(1))n/4.
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Lower bound: R(C4f,Car) > bk — 2

Find coloring of K with no monochromatic Cyy:

v : A: k-1 vertces

<>

B: 411 vertices

There is no RED (4 because all RED triples are inside B and B contains only
4k — 1 vertices.



There is no BLUE C4%: each of 2k edges must contain a vertex from A. Since
each vertex in Cy; can be in at most 2 edges, A must contain at least 2k /2 = k
vertices - a contradiction!

v : A: k-1 verdices

IA> Vv

B: 4k 1 vertices
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Upper bound

Theorem 2. For every n > 0 there is ng = ng(n) such that for every n > ny,
every 2-coloring of K (3) contains a monochromatic copy of C,,.

5(14n)n/4
Enemy picks n > 0.
We choose HUGE n,.

Enemy picks n and 2-coloring Fr U Fp of K](\?), where N = 5(1 + n)n/4.

We must find a RED or BLUE copy of C,,.
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Step 1: apply the Regularity Lemma on F with a small ¢

The vertex set V (Fg) is partitioned into ¢t + 1 classes Vo U V3 U ... U V; such
that

o |Vo| <eN;
o Vil=...=V|=m~ N/t;
o all but (%) restrictions Fr[V;, V;, Vi] are e-regular:
FrlV{, V], Vj] contains (di;x & €)|V]||V]||V;| RED edges for each sample

Vi C Vi, Vi C V3 Vg C Vi, [V 2 €Vil, V5] 2 el V3], Vi = €] Viel.

Note that Fp[V;, V/, V/] then contains ((1 — di;i) £ €)|V/]|V/||V}/| BLUE edges
and is also e-regular.
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Step 2: define the cluster hypergraph 7 and its 2-coloring

J has vertex set {1,2,...,t} and edge set {ijk: Fgr|V;,V;, Vi| is e-regular}.

J has at least (1 — ¢€)(;) edges.

We color the edge ijk € J RED if the density of Fr[V;, V;, V]| is at least 1/2,
otherwise we color it BLUE ;i.e. 7 = Jr U JIB.
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Step 3: shadow graph monochromatic components

The shadow graph T'(7.), * € {R, B}, has vertices 1,...,t and edge set

{ij: Ak so that ijk € J.}.

A monochromatic component of 7 is any RED component of I'(7z) or any
BLUE component of T'(Jp).

Each vertex is in exactly one RED and one BLUE component.
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Step 4: looking for (many) diamonds

A diamond D is a hypergraph with vertex set {v1, v2, vs3,v4} and edge set
{v1vv3, vov3v4 . We will call vous the central edge of D.

Lemma 3. The cluster graph J contains a monochromatic component L that
contains (i.e. J|L] does) s ~ t/5 vertex-disjoint diamonds D+, . .., D;.

Fix a (RED ) component £ and (RED ) vertex-disjoint diamonds Dy, ..., D.
Let M ={ey,...,es} be the set of all central edges of these diamonds.
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Lemma 4. InT'(Jr), there exists a closed (oriented) trail x1x2x3 ... 1, = 21
e containing M ;
e withr < 2t (remember1'(Jr) hast vertices);

e each edge of I'(JRr) Iis used at most once in each direction.
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Step 5: finding a trail with all diamonds

Lemma 4. InT'(Jr), there exists a closed (oriented) trail x1x2x3 ... 1, = 21

e containing M ;

o withr < 2t (remember1'(Jr) hast vertices),

e each edge of I'(JRr) Iis used at most once in each direction.
Let T be any tree of I'(Jr) that contains the edges of M.

Fix a planar embedding of 7', and let =, be the root of T'.

Construct the trail: walk from x; around the boundary of the (single) face of
the embedding, ending back at x;.
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Step 5 and 1/2: good vertices

Let Jr[V;, V5, Vi] be e-regular with density d > 2¢'/2.

A vertex x € V; is good for the triple Jr[Vi, V;, Vi] if

(i) for at least d|V;|/2 vertices y € V;, there are at least d|V|/2 vertices z € Vj
such that xyz € Jgr, and

(i) for at least d|Vy|/2 vertices z € V4, there are at least d|V}|/2 vertices y € V;
such that zyz € Jg.

We define vertices in V; and Vj, to be good for Jr|V;, V;, Vi] in a similar way.

Observation: e-regularity = almost all vertices in V;, V;, V, are good.
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Let Jr[V;, V5, Vi] be e-regular with density d > 2¢'/3.

Let v € V; and w € V; be any two good vertices and B be a (small) set of
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Then there is a u, v-path of length 3 and/or 6 in Jr|V;, V;, Vi] avoiding B.



Step 5 and 3/4: properties of good vertices

Let Jr[V;, V5, Vi] be e-regular with density d > 2¢'/3.

Let v € V; and w € V; be any two good vertices and B be a (small) set of
vertices.

Then there is a u, v-path of length 3 and/or 6 in Jr|V;, V;, Vi] avoiding B.
Let J1 = Tr|Vi, Vj, Vi|, J2 = Tr|Vi, V;, Vi| be e-regular with density d > 2¢1/6,

Let v € V; and w € V; be any two good vertices (for J; and J») and B be a
(small) set of vertices.

Then there is a u, v-path of length up to ~ 2m Iin J; U J> avoiding B.
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Step 6: from a trail to a short cycle

Let 125 ... 2, = 21 be the closed directed trail given by Lemma 4.

For each arc (x;_1, z;), choose an e-regular triple J; = Jr[Vs._,, Va,, Vi,| Of
density at least 1/2 for some k;.

We choose distinct vertices v; € V. for 1 < i <r — 1 such that v, is good for
both triples J; and J;. 1.

If ; is incident to the central edge of some diamond D € {D,,...,Ds}, we
also require that v; be good for the two triples induced by D.

For:=2,3,...,r,1, we join v;_; and v; by a path of length 3, disjoint from all
previously defined paths.

These short paths link to form a loose cycle of length 3(r — 1).



If the length n/2 of C,, has different parity from 3(r — 1), replace one path of
length 3 by a path of length 6 to make the parities agree. This gives a loose
cycle C of length ¢, where 3(r — 1) < ¢ < 3r and ¢ = n/2 (mod 2).
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Step 7: from a short to a long cycle C,

We replace each short path in C corresponding to a central edge by a long
path.

Let (z;_1,x;) be a central edge for some diamond {x; _1x;k, x;_1x;p}.

Then we find a long (odd) path (od length ~ n/2s = 5n/2t < 2N/t = 2m) in
jR[in_la VZIS?;) Vk] U jR[Vaﬁz’_p VSC@W ‘/p] aVOIdIng C

Since the s diamonds D, ..., D, of L are vertex-disjoint, the long paths
cannot interfere with each other.

This way we obtain a cycle of length ~ s x n/2s = n/2. With a bit of extra
work (and details), we get length exactly n /2.
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Remarks

e the magnitude of the Ramsey number does not depend on the parity of the
length »n /2 of the cycle C,,;

e one of few applications of this version of the regularity lemma for 3-uniform
hypergraphs;

e we need to look for s ~ t/5 connected diamonds. If one would like to use a

matching to find C,,, its size s would have to be s ~ 4t/15 (so that s x 35”7/4 ~
n and this cannot be guaranteed.
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We can prove
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Tight cycle 7,

We can prove
R(Cgk,C;gk) > 4k — 2

and
R(C3k+1,C3k+1), R(Csk+2,Csry2) > 6k
and
R(an,C'gn) < (4 + 0(1))77,
and

R(Cs3141,C3n+1), R(C3pnt2,C3ny2) < (64 0o(1))n.



Construction for the lower bound

Coloring of Ki?_Q without monochromatic C;;: take X and Y
| X| = |Y| =2k — 1, color all triples inside X and those with exactly two
vertices in Y RED , all others by BLUE .

In this coloring, there is no monochromatic matching saturating 3k vertices
contained in one strong component, and thus also no monochromatic copy
of Csp.



Differences

e use of the Regularity Lemma (RL) of Frankl-Rodl;
e we look for a strongly connected matching of size s ~ t/4;

e we need to find long path in a regular triad produced by RL (done by Polcyn,
R&dI, Rucinski, Szemerédi).



