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A 3-uniform hypergraph H = (V,E) consists of the set of vertices V and the
set of edges E ⊂

(
V
3

)
.

The loose cycle Cn is the hypergraph with vertices v1, . . . , vn and edges
v1v2v3, v3v4v5, v5v6v7, . . . , vn−1vnv1.

Note that n must be even and Cn has n/2 edges (n/2 is the length of Cn).

The tight cycle Tn has vertex set v1, . . . , vn and edges v1v2v3, v2v3v4,
v3v4v5, . . . , vnv1v2.
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2Loose and tight cycles for n = 12.

Figure 1: loose cycle C12 Figure 2: tight cycle T12
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3Hypergraph Ramsey Numbers

Definition 1. For two hypergraphs G and H, the Ramsey number R(G,H)
is the minimum integer N so that any 2-coloring of the complete 3-uniform
hypergraph K

(3)
N by RED and BLUE yields either a RED copy of G or a BLUE

copy of H.

We prove
R(C4k, C4k) > 5k − 2 and R(C4k+2, C4k+2) > 5k − 1

and

R(Cn, Cn) < (5 + o(1))n/4.
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4Lower bound: R(C4k, C4k) > 5k − 2

Find coloring of K
(3)
5k−2 with no monochromatic C4k:

There is no RED C4k because all RED triples are inside B and B contains only
4k − 1 vertices.
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There is no BLUE C4k: each of 2k edges must contain a vertex from A. Since
each vertex in C4k can be in at most 2 edges, A must contain at least 2k/2 = k
vertices - a contradiction!
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6Upper bound

Theorem 2. For every η > 0 there is n0 = n0(η) such that for every n > n0,
every 2-coloring of K

(3)
5(1+η)n/4 contains a monochromatic copy of Cn.

Enemy picks η > 0.

We choose HUGE n0.

Enemy picks n and 2-coloring FR ∪ FB of K
(3)
N , where N = 5(1 + η)n/4.

We must find a RED or BLUE copy of Cn.
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7Step 1: apply the Regularity Lemma on FR with a small ε

The vertex set V (FR) is partitioned into t + 1 classes V0 ∪ V1 ∪ . . . ∪ Vt such
that

• |V0| ≤ εN ;

• |V1| = . . . = |Vt| = m ∼ N/t;

• all but ε
(

t
3

)
restrictions FR[Vi, Vj, Vk] are ε-regular:

FR[V ′
i , V ′

j , V ′
k] contains (dijk ± ε)|V ′

i ||V ′
j ||V ′

k| RED edges for each sample
V ′

i ⊂ Vi, V
′
j ⊂ Vj, V

′
k ⊂ Vk, |V ′

i | ≥ ε|Vi|, |V ′
j | ≥ ε|Vj|, |V ′

k| ≥ ε|Vk|.

Note that FB[V ′
i , V ′

j , V ′
k] then contains

(
(1− dijk)± ε

)
|V ′

i ||V ′
j ||V ′

k| BLUE edges
and is also ε-regular.
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8Step 2: define the cluster hypergraph J and its 2-coloring

J has vertex set {1, 2, . . . , t} and edge set {ijk : FR[Vi, Vj, Vk] is ε-regular}.

J has at least (1− ε)
(

t
3

)
edges.

We color the edge ijk ∈ J RED if the density of FR[Vi, Vj, Vk] is at least 1/2,
otherwise we color it BLUE ; i.e. J = JR ∪ JB.
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9Step 3: shadow graph monochromatic components

The shadow graph Γ(J∗), ∗ ∈ {R,B}, has vertices 1, . . . , t and edge set

{ij : ∃k so that ijk ∈ J∗}.

A monochromatic component of J is any RED component of Γ(JR) or any
BLUE component of Γ(JB).

Each vertex is in exactly one RED and one BLUE component.
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10Step 4: looking for (many) diamonds

A diamond D is a hypergraph with vertex set {v1, v2, v3, v4} and edge set
{v1v2v3, v2v3v4}. We will call v2v3 the central edge of D.

Lemma 3. The cluster graph J contains a monochromatic component L that
contains (i.e. J [L] does) s ∼ t/5 vertex-disjoint diamonds D1, . . . ,Ds.

Fix a (RED ) component L and (RED ) vertex-disjoint diamonds D1, . . . ,Ds.
Let M = {e1, . . . , es} be the set of all central edges of these diamonds.
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11Step 5: finding a trail with all diamonds

Lemma 4. In Γ(JR), there exists a closed (oriented) trail x1x2x3 . . . xr = x1

• containing M ;

• with r ≤ 2t (remember Γ(JR) has t vertices);

• each edge of Γ(JR) is used at most once in each direction.

Let T be any tree of Γ(JR) that contains the edges of M .

Fix a planar embedding of T , and let x1 be the root of T .

Construct the trail: walk from x1 around the boundary of the (single) face of
the embedding, ending back at x1.
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12Step 5 and 1/2: good vertices

Let JR[Vi, Vj, Vk] be ε-regular with density d > 2ε1/2.

A vertex x ∈ Vi is good for the triple JR[Vi, Vj, Vk] if

(i) for at least d|Vj|/2 vertices y ∈ Vj, there are at least d|Vk|/2 vertices z ∈ Vk

such that xyz ∈ JR, and

(ii) for at least d|Vk|/2 vertices z ∈ Vk, there are at least d|Vj|/2 vertices y ∈ Vj

such that xyz ∈ JR.

We define vertices in Vj and Vk to be good for JR[Vi, Vj, Vk] in a similar way.

Observation: ε-regularity ⇒ almost all vertices in Vi, Vj, Vk are good.
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13Step 5 and 3/4: properties of good vertices

Let JR[Vi, Vj, Vk] be ε-regular with density d > 2ε1/3.

Let u ∈ Vi and w ∈ Vj be any two good vertices and B be a (small) set of
vertices.

Then there is a u, v-path of length 3 and/or 6 in JR[Vi, Vj, Vk] avoiding B.



13Step 5 and 3/4: properties of good vertices

Let JR[Vi, Vj, Vk] be ε-regular with density d > 2ε1/3.

Let u ∈ Vi and w ∈ Vj be any two good vertices and B be a (small) set of
vertices.

Then there is a u, v-path of length 3 and/or 6 in JR[Vi, Vj, Vk] avoiding B.

Let J1 = JR[Vi, Vj, Vk], J2 = JR[Vi, Vj, V`] be ε-regular with density d > 2ε1/6.

Let u ∈ Vi and w ∈ Vj be any two good vertices (for J1 and J2) and B be a
(small) set of vertices.

Then there is a u, v-path of length up to ∼ 2m in J1 ∪ J2 avoiding B.
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14Step 6: from a trail to a short cycle

Let x1x2 . . . xr = x1 be the closed directed trail given by Lemma 4.

For each arc (xi−1, xi), choose an ε-regular triple Ji = JR[Vxi−1
, Vxi

, Vki
] of

density at least 1/2 for some ki.

We choose distinct vertices vi ∈ Vxi
for 1 ≤ i ≤ r − 1 such that vi is good for

both triples Ji and Ji+1.

If xi is incident to the central edge of some diamond D ∈ {D1, . . . ,Ds}, we
also require that vi be good for the two triples induced by D.

For i = 2, 3, . . . , r, 1, we join vi−1 and vi by a path of length 3, disjoint from all
previously defined paths.

These short paths link to form a loose cycle of length 3(r − 1).
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15If the length n/2 of Cn has different parity from 3(r − 1), replace one path of
length 3 by a path of length 6 to make the parities agree. This gives a loose
cycle C of length c, where 3(r − 1) ≤ c ≤ 3r and c ≡ n/2 (mod 2).
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16Step 7: from a short to a long cycle Cn

We replace each short path in C corresponding to a central edge by a long
path.

Let (xi−1, xi) be a central edge for some diamond {xi−1xik, xi−1xip}.

Then we find a long (odd) path (od length ∼ n/2s = 5n/2t ≤ 2N/t = 2m) in
JR[Vxi−1

, Vxi
, Vk] ∪ JR[Vxi−1

, Vxi
, Vp] avoiding C.

Since the s diamonds D1, . . . , Ds of L are vertex-disjoint, the long paths
cannot interfere with each other.

This way we obtain a cycle of length ∼ s× n/2s = n/2. With a bit of extra
work (and details), we get length exactly n/2.
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17Remarks

• the magnitude of the Ramsey number does not depend on the parity of the
length n/2 of the cycle Cn;

• one of few applications of this version of the regularity lemma for 3-uniform
hypergraphs;

• we need to look for s ∼ t/5 connected diamonds. If one would like to use a
matching to find Cn, its size s would have to be s ∼ 4t/15 (so that s×35n/4

t ∼
n and this cannot be guaranteed.
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18Tight cycle Tn

We can prove
R(C3k, C3k) > 4k − 2

and
R(C3k+1, C3k+1), R(C3k+2, C3k+2) > 6k

and

R(C3n, C3n) < (4 + o(1))n

and
R(C3n+1, C3n+1), R(C3n+2, C3n+2) < (6 + o(1))n.
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19Construction for the lower bound

Coloring of K
(3)
4k−2 without monochromatic C3k: take X and Y

|X| = |Y | = 2k − 1, color all triples inside X and those with exactly two
vertices in Y RED , all others by BLUE .

In this coloring, there is no monochromatic matching saturating 3k vertices
contained in one strong component, and thus also no monochromatic copy
of C3k.
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20Differences

• use of the Regularity Lemma (RL) of Frankl-Rödl;

• we look for a strongly connected matching of size s ∼ t/4;

• we need to find long path in a regular triad produced by RL (done by Polcyn,
Rödl, Ruciński, Szemerédi).
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