On the Regularity Method for Hypergraphs

Mathias Schacht

October 2004

Outline

1

1 Density Theorems

Szemerédi's Density Theorem

Density Theorems of Furstenberg and Katznelson

Outline

1

1 Density Theorems

Szemerédi's Density Theorem Density Theorems of Furstenberg and Katznelson

2 An Extremal Hypergraph problem

Connection to the Density Theorems Szemeredi's Regularity Lemma for Graphs Solution of the Extremal Problem for Graphs

Outline

1

1 Density Theorems

Szemerédi's Density Theorem Density Theorems of Furstenberg and Katznelson

2 An Extremal Hypergraph problem

Connection to the Density Theorems Szemeredi's Regularity Lemma for Graphs Solution of the Extremal Problem for Graphs

- 3 Regularity Method for Hypergraphs
 - History Regularity Lemma Counting Lemma

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Question (Erdős & Turán 1936). Let $r_k(n)$ be the maximal size of an AP(k)-free subset Z of [n].

 $ls r_k(n) = o(n)?$

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Question (Erdős & Turán 1936). Let $r_k(n)$ be the maximal size of an AP(k)-free subset Z of [n].

 $ls r_k(n) = o(n)?$

Theorem (Roth 1954). $r_3(n) = o(n)$ Theorem (Szemerédi 1969). $r_4(n) = o(n)$

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Question (Erdős & Turán 1936). Let $r_k(n)$ be the maximal size of an AP(k)-free subset Z of [n].

 $ls r_k(n) = o(n)?$

Theorem (Roth 1954). $r_3(n) = o(n)$ Theorem (Szemerédi 1969). $r_4(n) = o(n)$

Theorem (Szemerédi 1975). For every positive integer k

 $r_k(n) = o(n) \, .$

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Question (Erdős & Turán 1936). Let $r_k(n)$ be the maximal size of an AP(k)-free subset Z of [n].

 $ls r_k(n) = o(n)?$

Theorem (Roth 1954). $r_3(n) = o(n)$ Theorem (Szemerédi 1969). $r_4(n) = o(n)$

Theorem (Szemerédi 1975). For every positive integer k

 $r_k(n) = o(n) \, .$

Alternative proofs: Furstenberg (1977)

2

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Question (Erdős & Turán 1936). Let $r_k(n)$ be the maximal size of an AP(k)-free subset Z of [n].

 $ls r_k(n) = o(n)?$

Theorem (Roth 1954). $r_3(n) = o(n)$ Theorem (Szemerédi 1969). $r_4(n) = o(n)$

Theorem (Szemerédi 1975). For every positive integer k

$$r_k(n) = o(n) \, .$$

Alternative proofs: Furstenberg (1977), Gowers (2001)

2

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there exist an n_0 such that every s-colouring of $[n] = \{1, \ldots, n\}$ $(n \ge n_0)$ contains a monochromatic AP(k), i.e., a monochromatic arithmetic progression of length k.

Question (Erdős & Turán 1936). Let $r_k(n)$ be the maximal size of an AP(k)-free subset Z of [n].

 $ls r_k(n) = o(n)?$

Theorem (Roth 1954). $r_3(n) = o(n)$ Theorem (Szemerédi 1969). $r_4(n) = o(n)$

Theorem (Szemerédi 1975). For every positive integer k

$$r_k(n) = o(n) \, .$$

Alternative proofs: Furstenberg (1977), Gowers (2001), Tao (2004++)

Multidimensional versions of Szemerédi's Theorem

Question (Erdős & Graham 1970). Given a finite configuration C in \mathbb{Z}^d . Let $r_C(n)$ be the maximal size of a subset Z of $[n]^d$ not containing a homothetic copy of C.

Multidimensional versions of Szemerédi's Theorem

Question (Erdős & Graham 1970). Given a finite configuration C in \mathbb{Z}^d . Let $r_C(n)$ be the maximal size of a subset Z of $[n]^d$ not containing a homothetic copy of C.

Is $r_{\mathcal{C}}(n) = o(n^2)$ if $\mathcal{C} = \{(0,0), (1,0), (0,1), (1,1)\}$ is a square?

Multidimensional versions of Szemerédi's Theorem

Question (Erdős & Graham 1970). Given a finite configuration C in \mathbb{Z}^d . Let $r_C(n)$ be the maximal size of a subset Z of $[n]^d$ not containing a homothetic copy of C.

Is $r_{\mathcal{C}}(n) = o(n^2)$ if $\mathcal{C} = \{(0,0), (1,0), (0,1), (1,1)\}$ is a square?

Theorem (Ajtai & Szemerédi 1974). If $C = \{(0,0), (1,0), (0,1)\}$ is an isosceles right triangle, then $r_C(n) = o(n^2)$.

Multidimensional versions of Szemerédi's Theorem

Question (Erdős & Graham 1970). Given a finite configuration C in \mathbb{Z}^d . Let $r_C(n)$ be the maximal size of a subset Z of $[n]^d$ not containing a homothetic copy of C.

Is $r_{\mathcal{C}}(n) = o(n^2)$ if $\mathcal{C} = \{(0,0), (1,0), (0,1), (1,1)\}$ is a square?

Theorem (Ajtai & Szemerédi 1974). If $C = \{(0,0), (1,0), (0,1)\}$ is an isosceles right triangle, then $r_C(n) = o(n^2)$.

Theorem (Furstenberg & Katznelson 1978). For every finite configuration \mathcal{C} in \mathbb{Z}^d

$$r_{\mathcal{C}}(n) = o(n^d) \, .$$

Other Density Theorems

Theorem (Furstenberg & Katznelson 1985). If $Z \subset \mathbb{F}_q^n$ does not contain an affine subspace of dimension d, then $|Z| = o(q^n)$.

Other Density Theorems

Theorem (Furstenberg & Katznelson 1985). If $Z \subset \mathbb{F}_q^n$ does not contain an affine subspace of dimension d, then $|Z| = o(q^n)$.

Theorem (Furstenberg & Katznelson 1985). Let *G* be a finite abelian group. If $Z \subset G^n$ does not contain a coset of a subgroup of G^n isomorphic to *G*, then $|Z| = o(|G|^n)$.

Other Density Theorems

Theorem (Furstenberg & Katznelson 1985). If $Z \subset \mathbb{F}_q^n$ does not contain an affine subspace of dimension d, then $|Z| = o(q^n)$.

Theorem (Furstenberg & Katznelson 1985). Let *G* be a finite abelian group. If $Z \subset G^n$ does not contain a coset of a subgroup of G^n isomorphic to *G*, then $|Z| = o(|G|^n)$.

"Theme of this talk": New combinatorial proofs of the Density Theorems mentioned above.

Other Density Theorems

Theorem (Furstenberg & Katznelson 1985). If $Z \subset \mathbb{F}_q^n$ does not contain an affine subspace of dimension d, then $|Z| = o(q^n)$.

Theorem (Furstenberg & Katznelson 1985). Let *G* be a finite abelian group. If $Z \subset G^n$ does not contain a coset of a subgroup of G^n isomorphic to *G*, then $|Z| = o(|G|^n)$.

"Theme of this talk": New combinatorial proofs of the Density Theorems mentioned above.

Remark.

- density version of the Hales–Jewett Theorem

Other Density Theorems

Theorem (Furstenberg & Katznelson 1985). If $Z \subset \mathbb{F}_q^n$ does not contain an affine subspace of dimension *d*, then $|Z| = o(q^n)$.

Theorem (Furstenberg & Katznelson 1985). Let *G* be a finite abelian group. If $Z \subset G^n$ does not contain a coset of a subgroup of G^n isomorphic to *G*, then $|Z| = o(|G|^n)$.

"Theme of this talk": New combinatorial proofs of the Density Theorems mentioned above.

Remark.

- density version of the Hales–Jewett Theorem
 - ----> Furstenberg & Katznelson 1991
- polynomial extensions
 - ----> Bergelson & Leibman 1996, Bergelson & McCutcheon 2000

Review/Outline

1 Density Theorems

Szemerédi's Density Theorem Density Theorems of Furstenberg and Katznelson

Review/Outline

1 Density Theorems

Szemerédi's Density Theorem Density Theorems of Furstenberg and Katznelson

2 An Extremal Hypergraph problem

Connection to the Density Theorems Szemeredi's Regularity Lemma for Graphs Solution of the Extremal Problem for Graphs

- 3 Regularity Method for Hypergraphs
 - History Regularity Lemma Counting Lemma

An Extremal Hypergraph Problem

Theorem (Gowers 2003+, Nagle, Rödl, S. & Skokan 2003+). If $\mathcal{H}^{(k)}$ is a *k*-uniform hypergraph on *n* vertices such that every edge of $\mathcal{H}^{(k)}$ is contained in **precisely one** $K_{k+1}^{(k)}$, then

An Extremal Hypergraph Problem

Theorem (Gowers 2003+, Nagle, Rödl, S. & Skokan 2003+). If $\mathcal{H}^{(k)}$ is a *k*-uniform hypergraph on *n* vertices such that every edge of $\mathcal{H}^{(k)}$ is contained in **precisely one** $K_{k+1}^{(k)}$, then

$$|\mathcal{H}^{(k)}| = o(n^k) \,.$$

An Extremal Hypergraph Problem

Theorem (Gowers 2003+, Nagle, Rödl, S. & Skokan 2003+). If $\mathcal{H}^{(k)}$ is a *k*-uniform hypergraph on *n* vertices such that every edge of $\mathcal{H}^{(k)}$ is contained in **precisely one** $K_{k+1}^{(k)}$, then

$$|\mathcal{H}^{(k)}| = o(n^k) \,.$$

 $k = 2 \longrightarrow \text{Ruzsa \& Szemerédi 1978}$

An Extremal Hypergraph Problem

Theorem (Gowers 2003+, Nagle, Rödl, S. & Skokan 2003+). If $\mathcal{H}^{(k)}$ is a *k*-uniform hypergraph on *n* vertices such that every edge of $\mathcal{H}^{(k)}$ is contained in **precisely one** $K_{k+1}^{(k)}$, then

$$|\mathcal{H}^{(k)}| = o(n^k) \,.$$

- $k = 2 \longrightarrow Ruzsa \& Szemerédi 1978$
- $k = 3 \longrightarrow$ Frankl & Rödl 2002

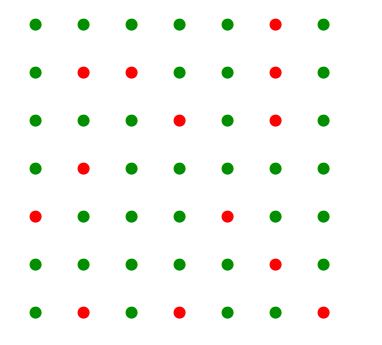
An Extremal Hypergraph Problem

Theorem (Gowers 2003+, Nagle, Rödl, S. & Skokan 2003+). If $\mathcal{H}^{(k)}$ is a *k*-uniform hypergraph on *n* vertices such that every edge of $\mathcal{H}^{(k)}$ is contained in **precisely one** $K_{k+1}^{(k)}$, then

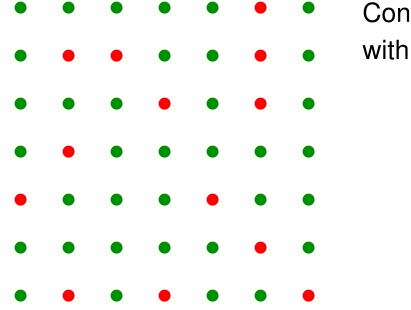
$$|\mathcal{H}^{(k)}| = o(n^k) \,.$$

- $k = 2 \longrightarrow \text{Ruzsa \& Szemerédi 1978}$
- $k = 3 \longrightarrow$ Frankl & Rödl 2002
- $k = 4 \longrightarrow \text{Rödl \& Skokan 2002+}$

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle

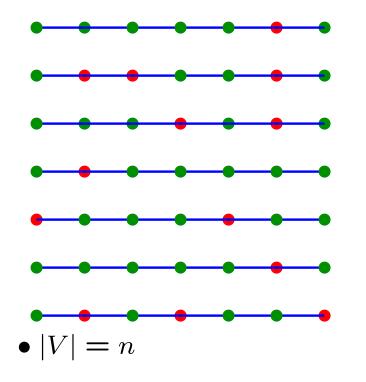


• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



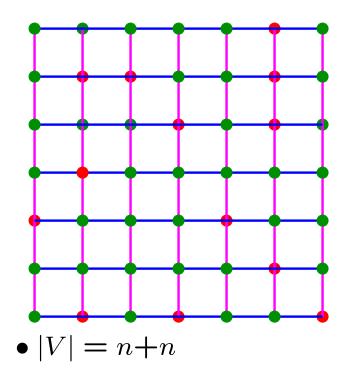
- Consider the tripartite graph G = (V, E)
 - with $V = V_{hori} \cup V_{vert} \cup V_{diag}$

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



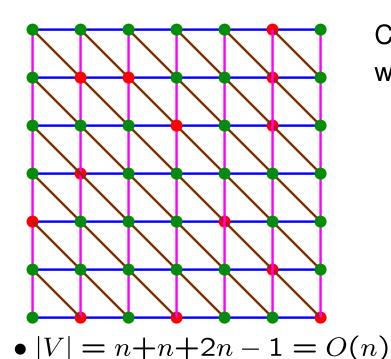
Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} = set of horizontal lines$

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} =$ set of horizontal lines $V_{vert} =$ set of vertical lines

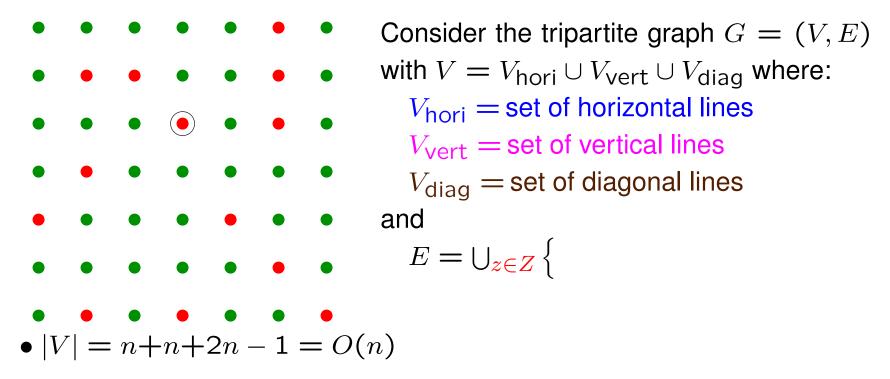
• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



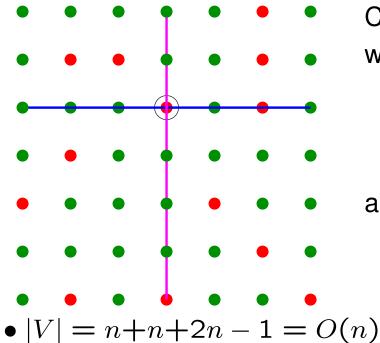
Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} =$ set of horizontal lines $V_{vert} =$ set of vertical lines $V_{diag} =$ set of diagonal lines

Solymosi: Ruzsa–Szemerédi ⇒ Ajtai–Szemerédi

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle

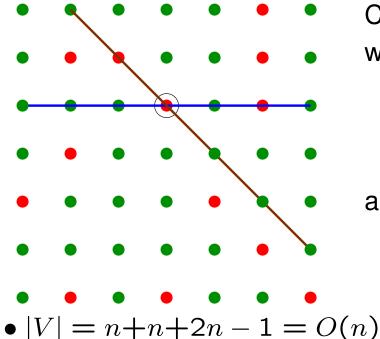


• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



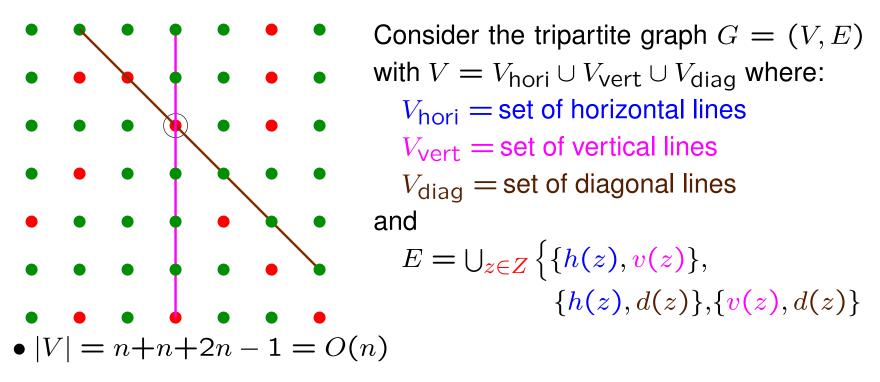
Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} =$ set of horizontal lines $V_{vert} =$ set of vertical lines $V_{diag} =$ set of diagonal lines and $E = \bigcup_{z \in Z} \left\{ \{h(z), v(z)\}, \right\}$

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



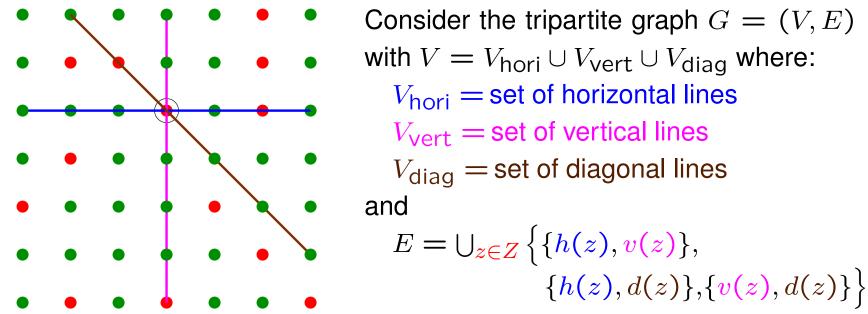
Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} =$ set of horizontal lines $V_{vert} =$ set of vertical lines $V_{diag} =$ set of diagonal lines and $E = \bigcup_{z \in Z} \left\{ \{h(z), v(z)\}, \\ \{h(z), d(z)\}, \end{cases}$

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



Solymosi: Ruzsa–Szemerédi ⇒ Ajtai–Szemerédi

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle

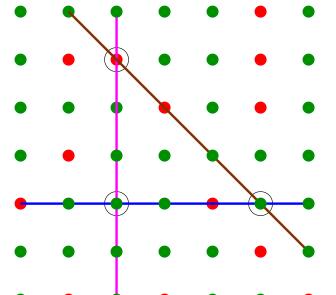


• |V| = n + n + 2n - 1 = O(n)

• |E| = 3|Z| and every edge is in at least one triangle

Solymosi: Ruzsa–Szemerédi \Rightarrow Ajtai–Szemerédi

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



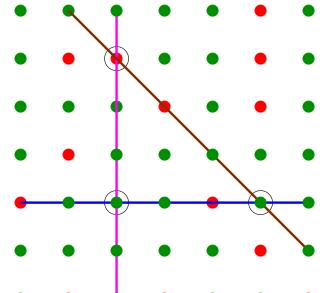
Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} =$ set of horizontal lines $V_{vert} =$ set of vertical lines $V_{diag} =$ set of diagonal lines and $E = \bigcup_{z \in Z} \left\{ \{h(z), v(z)\}, \{v(z), d(z)\} \right\}$

• |V| = n + n + 2n - 1 = O(n)

- |E| = 3|Z| and every edge is in at least one triangle
- assumption on $Z \Rightarrow$ every edge is in at most one triangle

Solymosi: Ruzsa–Szemerédi \Rightarrow Ajtai–Szemerédi

• Let $Z \subseteq [n]^2$ not containing a homothetic copy of an isosceles triangle



Consider the tripartite graph G = (V, E)with $V = V_{hori} \cup V_{vert} \cup V_{diag}$ where: $V_{hori} =$ set of horizontal lines $V_{vert} =$ set of vertical lines $V_{diag} =$ set of diagonal lines and $E = \bigcup_{z \in Z} \left\{ \{h(z), v(z)\}, \{v(z), d(z)\} \right\}$

• |V| = n + n + 2n - 1 = O(n)

- |E| = 3|Z| and every edge is in at least one triangle
- assumption on $Z \Rightarrow$ every edge is in at most one triangle $\Rightarrow 3|Z| = |E| = o(|V|^2) = o(n^2)$

Regularity Lemma for Graphs

Regularity Lemma for Graphs

- (i) (boundedness) $t_0 \leq t \leq T_0$,
- (ii) (equitability) $|V_1| \le \dots \le |V_t| \le |V_1| + 1$

Regularity Lemma for Graphs

- (i) (boundedness) $t_0 \leq t \leq T_0$,
- (ii) (equitability) $|V_1| \le \dots \le |V_t| \le |V_1| + 1$
- (iii) (regularity) for all but εt^2 pairs $\{i, j\} \in {[t] \choose 2}$ the induced subgraph $G[V_i, V_j]$ is ε -regular

Regularity Lemma for Graphs

- (i) (boundedness) $t_0 \leq t \leq T_0$,
- (ii) (equitability) $|V_1| \le \dots \le |V_t| \le |V_1| + 1$
- (iii) (regularity) for all but εt^2 pairs $\{i, j\} \in {\binom{[t]}{2}}$ the induced subgraph $G[V_i, V_j]$ is ε -regular, i.e., for all $U_i \subseteq V_i$ and $U_j \subseteq V_j$ with

Regularity Lemma for Graphs

- (i) (boundedness) $t_0 \leq t \leq T_0$,
- (ii) (equitability) $|V_1| \le \dots \le |V_t| \le |V_1| + 1$
- (iii) (regularity) for all but εt^2 pairs $\{i, j\} \in {\binom{[t]}{2}}$ the induced subgraph $G[V_i, V_j]$ is ε -regular, i.e., for all $U_i \subseteq V_i$ and $U_j \subseteq V_j$ with $|U_i| \ge \varepsilon |V_i|$ and $|U_j| \ge \varepsilon |V_j|$ we have

Regularity Lemma for Graphs

Theorem (Szemerédi 1978). For every real $\varepsilon > 0$ and every integer t_0 there exist some T_0 such that for every graph G = (V, E) there exist a partition of $V = V_1 \cup \cdots \cup V_t$ satisfying

- (i) (boundedness) $t_0 \leq t \leq T_0$,
- (ii) (equitability) $|V_1| \le \dots \le |V_t| \le |V_1| + 1$
- (iii) (regularity) for all but εt^2 pairs $\{i, j\} \in {\binom{[t]}{2}}$ the induced subgraph $G[V_i, V_j]$ is ε -regular, i.e., for all $U_i \subseteq V_i$ and $U_j \subseteq V_j$ with $|U_i| \ge \varepsilon |V_i|$ and $|U_j| \ge \varepsilon |V_j|$ we have

$$\frac{|G[U_i, U_j]|}{|U_i||U_j|} - \frac{|G[V_i, V_j]|}{|V_i||V_j|} < \varepsilon \,.$$

8

Counting Lemma for Graphs

Fact. Let $1 \ge d \ge 2\varepsilon > 0$.

Short version.

Fact. Let $1 \ge d \ge 2\varepsilon > 0$. If • $G = (V_1 \cup V_2 \cup V_3, E)$ is a tripartite graph with $|V_1| = |V_2| = |V_3| = m$

Short version. tripartite,

Fact. Let $1 \ge d \ge 2\varepsilon > 0$. If • $G = (V_1 \cup V_2 \cup V_3, E)$ is a tripartite graph with $|V_1| = |V_2| = |V_3| = m$ and for all $1 \le i < j \le 3$ • $G[V_i, V_j]$ is ε -regular

Short version. tripartite, ε -regular,

Fact. Let $1 \ge d \ge 2\varepsilon > 0$. If • $G = (V_1 \cup V_2 \cup V_3, E)$ is a tripartite graph with $|V_1| = |V_2| = |V_3| = m$ and for all $1 \le i < j \le 3$ • $G[V_i, V_j]$ is ε -regular and

• $G[V_i, V_j]/m^2 \ge d$,

Short version. tripartite, ε -regular, and d-dense

Fact. Let $1 \ge d \ge 2\varepsilon > 0$. If • $G = (V_1 \cup V_2 \cup V_3, E)$ is a tripartite graph with $|V_1| = |V_2| = |V_3| = m$ and for all $1 \le i < j \le 3$ • $G[V_i, V_j]$ is ε -regular and • $G[V_i, V_j]/m^2 \ge d$,

then

Short version. tripartite, ε -regular, and d-dense \Rightarrow

Fact. Let $1 \ge d \ge 2\varepsilon > 0$. If • $G = (V_1 \cup V_2 \cup V_3, E)$ is a tripartite graph with $|V_1| = |V_2| = |V_3| = m$ and for all $1 \le i < j \le 3$ • $G[V_i, V_j]$ is ε -regular and • $G[V_i, V_j]/m^2 \ge d$, then

G contains at least $(1 - 2\varepsilon)(d - \varepsilon)^3 m^3$ triangles.

Short version. tripartite, ε -regular, and d-dense $\Rightarrow \sim d^3m^3$ triangles

The Regularity Method

Many more applications of the Regularity Lemma, the Counting Lemma and its extensions in:

Extremal Graph Theory Ramsey–Turán problems, (6, 3)-problem, (weak) Burr–Erdős Conjecture, Pósa–Seymour Conjecture, Alon–Yuster Conjecture

The Regularity Method

Many more applications of the Regularity Lemma, the Counting Lemma and its extensions in:

- **Extremal Graph Theory** Ramsey–Turán problems, (6, 3)-problem, (weak) Burr–Erdős Conjecture, Pósa–Seymour Conjecture, Alon–Yuster Conjecture
- **Number Theory & Discrete Geometry** $r_3 = o(n)$, Solymosi's proof of the Ajtai–Szemerédi theorem, Balog–Szemerédi Theorem

Theoretical Computer Science Algorithmic versions, Network designs, Property testing, approximations of NP-hard problems, e.g., Max-Cut

The Regularity Method

Many more applications of the Regularity Lemma, the Counting Lemma and its extensions in:

- **Extremal Graph Theory** Ramsey–Turán problems, (6, 3)-problem, (weak) Burr–Erdős Conjecture, Pósa–Seymour Conjecture, Alon–Yuster Conjecture
- **Number Theory & Discrete Geometry** $r_3 = o(n)$, Solymosi's proof of the Ajtai–Szemerédi theorem, Balog–Szemerédi Theorem

Theoretical Computer Science Algorithmic versions, Network designs, Property testing, approximations of NP-hard problems, e.g., Max-Cut

Hope. Extension to hypergraphs is useful in the same areas.

Review/Outline

1 Density Theorems

Szemerédi's Density Theorem Density Theorems of Furstenberg and Katznelson

2 An Extremal Hypergraph problem

Connection to the Density Theorems Szemeredi's Regularity Lemma for Graphs Solution of the Extremal Problem for Graphs

Review/Outline

1 Density Theorems

Szemerédi's Density Theorem Density Theorems of Furstenberg and Katznelson

2 An Extremal Hypergraph problem

Connection to the Density Theorems Szemeredi's Regularity Lemma for Graphs Solution of the Extremal Problem for Graphs

- 3 Regularity Method for Hypergraphs
 - History Regularity Lemma Counting Lemma

Bad News. Straightforward approach fails.

Bad News. Straightforward approach fails.

92–02 Frankl & Rödl: Regularity Lemma for k = 3 and corresponding Counting Lemma for $K_4^{(3)}$

Bad News. Straightforward approach fails.

92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$

 \longrightarrow solution of the extremal problem for k = 3

Bad News. Straightforward approach fails.

92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$

 \longrightarrow solution of the extremal problem for k = 3

99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs

Bad News. Straightforward approach fails.

- 92–02 Frankl & Rödl: Regularity Lemma for k = 3 and corresponding Counting Lemma for $K_4^{(3)}$
 - \longrightarrow solution of the extremal problem for k = 3
- 99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs
- 00–04 Rödl & Skokan: general Hypergraph Regularity Lemma $k \ge 3$ and Counting Lemma for $K_5^{(4)}$

Bad News. Straightforward approach fails.

- 92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$
 - \longrightarrow solution of the extremal problem for k = 3
- 99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs
- 00–04 Rödl & Skokan: general Hypergraph Regularity Lemma $k \ge 3$ and Counting Lemma for $K_5^{(4)}$

 \longrightarrow solution of the extremal problem for k = 4

Bad News. Straightforward approach fails.

- 92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$
 - \longrightarrow solution of the extremal problem for k = 3
- 99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs
- 00–04 Rödl & Skokan: general Hypergraph Regularity Lemma $k \ge 3$ and Counting Lemma for $K_5^{(4)}$
 - \longrightarrow solution of the extremal problem for k = 4
- 03–04 Gowers: different Hypergraph Regularity Lemma and a corresponding Counting Lemma

Bad News. Straightforward approach fails.

- 92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$
 - \longrightarrow solution of the extremal problem for k = 3
- 99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs
- 00–04 Rödl & Skokan: general Hypergraph Regularity Lemma $k \ge 3$ and Counting Lemma for $K_5^{(4)}$
 - \longrightarrow solution of the extremal problem for k = 4
- 03–04 Gowers: different Hypergraph Regularity Lemma and a corresponding Counting Lemma

 \longrightarrow solution to the extremal problem for arbitrary k

Bad News. Straightforward approach fails.

92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$

 \longrightarrow solution of the extremal problem for k = 3

- 99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs
- 00–04 Rödl & Skokan: general Hypergraph Regularity Lemma $k \ge 3$ and Counting Lemma for $K_5^{(4)}$

 \longrightarrow solution of the extremal problem for k = 4

03–04 Gowers: different Hypergraph Regularity Lemma and a corresponding Counting Lemma

 \longrightarrow solution to the extremal problem for arbitrary k

03–04 Nagle, Rödl & S.: general Counting Lemma corresponding to the Rödl– Skokan Lemma

Bad News. Straightforward approach fails.

92–02 Frankl & Rödl: Regularity Lemma for k = 3 and **corresponding** Counting Lemma for $K_4^{(3)}$

 \longrightarrow solution of the extremal problem for k = 3

- 99–03 Nagle & Rödl: Counting Lemma for arbitrary fixed 3-graphs
- 00–04 Rödl & Skokan: general Hypergraph Regularity Lemma $k \ge 3$ and Counting Lemma for $K_5^{(4)}$

 \longrightarrow solution of the extremal problem for k = 4

03–04 Gowers: different Hypergraph Regularity Lemma and a corresponding Counting Lemma

 \longrightarrow solution to the extremal problem for arbitrary k

03–04 Nagle, Rödl & S.: general Counting Lemma corresponding to the Rödl– Skokan Lemma

 \longrightarrow solution to the extremal problem for arbitrary k

Theorem (Frankl & Rödl 2002). For all reals $\mu > 0$ and $\delta_3 > 0$ and all functions

 $\delta_2 \colon \mathbb{N} \to (0, 1] \text{ and } r \colon \mathbb{N}^2 \to \mathbb{N}$

there are integers T_0 and n_0 such that the following holds.

Theorem (Frankl & Rödl 2002). For all reals $\mu > 0$ and $\delta_3 > 0$ and all functions

 $\delta_2 \colon \mathbb{N} \to (0, 1] \text{ and } r \colon \mathbb{N}^2 \to \mathbb{N}$

there are integers T_0 and n_0 such that the following holds.

For any 3-uniform hypergraph $\mathcal{H}^{(3)}$ on $n \geq n_0$ vertices

Theorem (Frankl & Rödl 2002). For all reals $\mu > 0$ and $\delta_3 > 0$ and all functions

 $\delta_2 \colon \mathbb{N} \to (0, 1] \text{ and } r \colon \mathbb{N}^2 \to \mathbb{N}$

there are integers T_0 and n_0 such that the following holds.

For any 3-uniform hypergraph $\mathcal{H}^{(3)}$ on $n \ge n_0$ vertices there exist a partition $\mathscr{P} = \{\mathscr{P}^{(1)}, \mathscr{P}^{(2)}\}$ and integers t and ℓ such that

Theorem (Frankl & Rödl 2002). For all reals $\mu > 0$ and $\delta_3 > 0$ and all functions

 $\delta_2 \colon \mathbb{N} \to (0, 1] \text{ and } r \colon \mathbb{N}^2 \to \mathbb{N}$

there are integers T_0 and n_0 such that the following holds.

For any 3-uniform hypergraph $\mathcal{H}^{(3)}$ on $n \ge n_0$ vertices there exist a partition $\mathscr{P} = \{\mathscr{P}^{(1)}, \mathscr{P}^{(2)}\}$ and integers t and ℓ such that

(i) \mathscr{P} is T_0 -bounded, i.e., $\max\{t, \ell\} < T_0$,

Theorem (Frankl & Rödl 2002). For all reals $\mu > 0$ and $\delta_3 > 0$ and all functions

 $\delta_2 \colon \mathbb{N} \to (0, 1] \text{ and } r \colon \mathbb{N}^2 \to \mathbb{N}$

there are integers T_0 and n_0 such that the following holds.

For any 3-uniform hypergraph $\mathcal{H}^{(3)}$ on $n \ge n_0$ vertices there exist a partition $\mathscr{P} = \{\mathscr{P}^{(1)}, \mathscr{P}^{(2)}\}$ and integers t and ℓ such that

- (i) \mathscr{P} is T_0 -bounded, i.e., $\max\{t, \ell\} < T_0$,
- (ii) \mathscr{P} is $(\mu, \delta_2(\ell), 1/\ell = d_2)$ -equitable

Theorem (Frankl & Rödl 2002). For all reals $\mu > 0$ and $\delta_3 > 0$ and all functions

 $\delta_2 \colon \mathbb{N} \to (0, 1] \text{ and } r \colon \mathbb{N}^2 \to \mathbb{N}$

there are integers T_0 and n_0 such that the following holds.

For any 3-uniform hypergraph $\mathcal{H}^{(3)}$ on $n \ge n_0$ vertices there exist a partition $\mathscr{P} = \{\mathscr{P}^{(1)}, \mathscr{P}^{(2)}\}$ and integers t and ℓ such that

(i)
$$\mathscr{P}$$
 is T_0 -bounded, i.e., $\max\{t, \ell\} < T_0$,

- (ii) \mathscr{P} is $(\mu, \delta_2(\ell), 1/\ell = d_2)$ -equitable
- (iii) $\mathcal{H}^{(3)}$ is $(\delta_3, r(t, \ell))$ -regular w.r.t. \mathscr{P} .

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, \, d_3 > 0$

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, d_3 > 0 \exists \delta_3 > 0:$

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, \, d_3 > 0 \exists \delta_3 > 0 \colon \forall d_2 > 0$

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, d_3 > 0 \exists \delta_3 > 0: \forall d_2 > 0 \exists \delta_2, r, m_0$

such that

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, d_3 > 0 \exists \delta_3 > 0: \forall d_2 > 0 \exists \delta_2, r, m_0$

such that every

 $((\delta_3, \delta_2), (d_3, d_2), r)$ -regular

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, d_3 > 0 \exists \delta_3 > 0: \forall d_2 > 0 \exists \delta_2, r, m_0$

such that every

 $((\delta_3, \delta_2), (d_3, d_2), r)$ -regular (m, 4, 3)-complex

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, d_3 > 0 \exists \delta_3 > 0: \forall d_2 > 0 \exists \delta_2, r, m_0$

such that every

 $((\delta_3, \delta_2), (d_3, d_2), r)$ -regular (m, 4, 3)-complex $\mathcal{H} = \{\mathcal{H}^{(1)}, \mathcal{H}^{(2)}, \mathcal{H}^{(3)}\}$

Theorem (Frankl & Rödl 2002).

 $\forall \gamma > 0, d_3 > 0 \exists \delta_3 > 0: \forall d_2 > 0 \exists \delta_2, r, m_0$

such that every

 $((\delta_3, \delta_2), (d_3, d_2), r)$ -regular (m, 4, 3)-complex $\mathcal{H} = \{\mathcal{H}^{(1)}, \mathcal{H}^{(2)}, \mathcal{H}^{(3)}\}$

with $m \ge m_0$, contains

$$(1\pm\gamma)d_{2}^{6}d_{3}^{4}m^{4}$$

copies of $K_4^{(3)}$.

Open Problems

• Is there a proof of the density version of the Hales-Jewett Theorem based on the extremal hypergraph problem

Open Problems

• Is there a proof of the density version of the Hales–Jewett Theorem based on the extremal hypergraph problem (or based on the Regularity Method for hypergraphs)?

Open Problems

• Is there a proof of the density version of the Hales–Jewett Theorem based on the extremal hypergraph problem (or based on the Regularity Method for hypergraphs)?

• What about "Blow-up type" extensions of the Counting Lemma?