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Question (Erdős & Turán 1936). Let rk(n) be the maximal size of an
AP(k)-free subset Z of [n].

Is rk(n) = o(n)?



Regularity Method for Hypergraphs Density Theorems
2

Arithmetic Progressions

Theorem (van der Waerden 1927). For all positive integers k and s there
exist an n0 such that every s-colouring of [n] = {1, . . . , n} (n ≥ n0)
contains a monochromatic AP(k), i.e., a monochromatic arithmetic pro-
gression of length k.
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Question (Erdős & Graham 1970). Given a finite configuration C in Zd.
Let rC(n) be the maximal size of a subset Z of [n]d not containing a ho-
mothetic copy of C.

Is rC(n) = o(n2) if C = {(0,0), (1,0), (0,1), (1,1)} is a square?



Regularity Method for Hypergraphs Density Theorems
3

Multidimensional versions of Szemerédi’s Theorem
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an affine subspace of dimension d, then |Z| = o(qn) .

Theorem (Furstenberg & Katznelson 1985). Let G be a finite abelian
group. If Z ⊂ Gn does not contain a coset of a subgroup of Gn isomorphic
to G, then |Z| = o(|G|n) .

“Theme of this talk”: New combinatorial proofs of the Density Theorems
mentioned above.

Remark.
• density version of the Hales–Jewett Theorem
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{
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• |V | = n+n+2n− 1 = O(n)
• |E| = 3|Z| and every edge is in at least one triangle
• assumption on Z ⇒ every edge is in at most one triangle
⇒ 3|Z| = |E| = o(|V |2) = o(n2)
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Theorem (Szemerédi 1978). For every real ε > 0 and every integer t0
there exist some T0 such that for every graph G = (V, E) there exist a
partition of V = V1 ∪ · · · ∪ Vt satisfying

(i) (boundedness) t0 ≤ t ≤ T0,

(ii) (equitability) |V1| ≤ · · · ≤ |Vt| ≤ |V1|+ 1
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(
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2

)
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−
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Counting Lemma for Graphs

Fact. Let 1 ≥ d ≥ 2ε > 0. If
•G = (V1∪V2∪V3, E) is a tripartite graph with |V1| = |V2| = |V3| = m

and for all 1 ≤ i < j ≤ 3

• G[Vi, Vj] is ε-regular and
• G[Vi, Vj]/m2 ≥ d,

then
G contains at least (1− 2ε)(d− ε)3m3 triangles.

Short version. tripartite, ε-regular, and d-dense ⇒∼ d3m3 triangles
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The Regularity Method

Many more applications of the Regularity Lemma, the Counting Lemma
and its extensions in:

Extremal Graph Theory Ramsey–Turán problems, (6,3)-problem, (weak)
Burr–Erdős Conjecture, Pósa–Seymour Conjecture, Alon–Yuster Con-
jecture

Number Theory & Discrete Geometry r3 = o(n), Solymosi’s proof of
the Ajtai–Szemerédi theorem, Balog–Szemerédi Theorem

Theoretical Computer Science Algorithmic versions, Network designs,
Property testing, approximations of NP-hard problems, e.g., Max-Cut

Hope. Extension to hypergraphs is useful in the same areas.
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The Regularity Lemma (k = 3)

Theorem (Frankl & Rödl 2002). For all reals µ > 0 and δ3 > 0 and all
functions

δ2 : N → (0,1] and r : N2 → N
there are integers T0 and n0 such that the following holds.

For any 3-uniform hypergraph H(3) on n ≥ n0 vertices there exist a
partition P = {P(1), P(2)} and integers t and ` such that

(i) P is T0-bounded, i.e, max{t, `} < T0,

(ii) P is (µ, δ2(`),1/` = d2)-equitable

(iii) H(3) is (δ3, r(t, `))-regular w.r.t. P .



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0:



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0: ∀ d2 > 0



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0: ∀ d2 > 0 ∃ δ2, r, m0

such that



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0: ∀ d2 > 0 ∃ δ2, r, m0

such that every

((δ3, δ2), (d3, d2), r)-regular



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0: ∀ d2 > 0 ∃ δ2, r, m0

such that every

((δ3, δ2), (d3, d2), r)-regular

(m,4,3)-complex



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0: ∀ d2 > 0 ∃ δ2, r, m0

such that every

((δ3, δ2), (d3, d2), r)-regular

(m,4,3)-complex

H = {H(1),H(2),H(3)}



Regularity Method for Hypergraphs
14

The Counting Lemma (k = 3)

Theorem (Frankl & Rödl 2002).

∀ γ > 0, d3 > 0 ∃ δ3 > 0: ∀ d2 > 0 ∃ δ2, r, m0

such that every

((δ3, δ2), (d3, d2), r)-regular

(m,4,3)-complex

H = {H(1),H(2),H(3)}
with m ≥ m0, contains

(1± γ)d6
2d4

3m4

copies of K
(3)
4 .
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Open Problems

• Is there a proof of the density version of the Hales–Jewett Theorem
based on the extremal hypergraph problem (or based on the Regularity
Method for hypergraphs)?

• What about “Blow-up type” extensions of the Counting Lemma?


