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Szemerédi’s regularity lemma

1. Works very well for large, dense graphs: n-vertex graphs with ≥ cn2

edges, n → ∞
2. Variant for sparse graphs exists (sparse = with o(n2) edges)

3. Much harder to use

4. This talk: some tools to handle difficulties
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Outline of the talk

1. Basic definitions and the regularity lemma

2. A simple application of the regularity lemma

3. The difficulty in the sparse setting

4. Some tools

5. Subgraphs of pseudorandom graphs
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ε-regularity

Basic definition. G = (V, E) a graph; U, W ⊂ V non-empty and disjoint.
Say (U, W) is ε-regular (in G) if

B for all U ′ ⊂ U, W ′ ⊂ W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′, W ′)|

|U ′||W ′|
−

|E(U, W)|

|U||W|

∣∣∣∣∣ ≤ ε.
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Szemerédi’s regularity lemma

Theorem 1 (The regularity lemma). For any ε > 0 and t0 ≥ 1, there
exist T0 such that any graph G admits a partition V(G) = V1 ∪ · · · ∪ Vt

such that

(i) |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1

(ii) t0 ≤ t ≤ T0

(iii) at least (1 − ε)
(
t
2

)
pairs (Vi, Vj) (i < j) are ε-regular.

B Myriads of applications
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Outline of the talk

1. Basic definitions and the regularity lemma

2. A simple application of the regularity lemma

3. The difficulty in the sparse setting and a workaround

4. Some tools

5. Subgraphs of pseudorandom graphs
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ε-regularity revisited

The pair (U, W) is ε-regular if for all U ′ ⊂ U, W ′ ⊂ W with |U ′| ≥ ε|U|

and |W ′| ≥ ε|W|, we have

|E(U ′, W ′)| = |U ′||W ′|

(
|E(U, W)|

|U||W|
± ε

)
Clearly, no information if

|E(U, W)|

|U||W|
→ 0

and ε is fixed. (We think of G = (V, E) with n = |V | → ∞.)
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ε-regularity; scaled version

B Roughly: scale by the global density of the graph

Actual condition is

◦ for all U ′ ⊂ U, W ′ ⊂ W with |U ′| ≥ ε|U| and |W ′| ≥ ε|W|, we have∣∣∣∣∣|E(U ′, W ′)|

p|U ′||W ′|
−

|E(U, W)|

p|U||W|

∣∣∣∣∣ ≤ ε,

where p = |E(G)|
(
n
2

)−1
.

OK even if p → 0. [Terminology: (ε, p)-regular pair]
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Any graph with no ‘dense patches’ admits a Szemerédi partition with the
new notion of ε-regularity.
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Szemerédi’s regularity lemma, sparse version

Any graph with no ‘dense patches’ admits a Szemerédi partition with the
new notion of ε-regularity.

Definition. Say G = (V, E) is locally (η, b)-bounded if for all U ⊂ V with
|U| ≥ η|V |, we have

#{edges within U} ≤ b|E|
(|U|

2

)(|V |

2

)−1

.
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Szemerédi’s regularity lemma, sparse version (cont’d)

Theorem 2 (The regularity lemma). For any ε > 0, t0 ≥ 1, and b, there
exist η > 0 and T0 such that any locally (η, b)-bounded graph G admits a
partition V(G) = V1 ∪ · · · ∪ Vt such that

(i) |V1| ≤ · · · ≤ |Vt| ≤ |V1| + 1

(ii) t0 ≤ t ≤ T0

(iii) at least (1 − ε)
(
t
2

)
pairs (Vi, Vj) (i < j) are (ε, p)-regular, where p =

|E(G)|
(
n
2

)−1
.
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Vojta Rödl
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Simple example: K3 ↪→ G? (G dense)

1. Regularize G: apply Szemerédi’s regularity lemma to G

2. Analyse the ‘cleaned-up graph’ G∗ (Definition 7) and search for
G

(ε)
3 (m, (ρij)) ⊂ G (Notation 8)

3. If found, OK. Can even estimate #{K3 ↪→ G
(ε)
3 (m, (ρij))} using the

‘Counting Lemma’ (Lemma 9)
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Simple example: K3 ↪→ G? (G sparse)

1. Regularize G: apply Szemerédi’s regularity lemma to G

2. Analyse the ‘cleaned-up graph’ G∗ (Definition 7) and search for
G

(ε)
3 (m, (ρij)) ⊂ G (Notation 8)

3. If found, OK? Can even estimate #{K3 ↪→ G
(ε)
3 (m, (ρij))} using the

‘Counting Lemma’
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Miserable: Counting Lemma is false if ρ → 0

Fact 3. ∀ε > 0 ∃ρ > 0, m0 ∀m ≥ m0 ∃G
(ε)
3 (m, ρ) with

K3 6⊂ G
(ε)
3 (m, ρ).

[cf. Lemma 9]
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An observation

Counterexamples to the embedding lemma in the sparse setting do exist
(Fact 3), but

are extremely rare.

Workaround:

B An asymptotic enumeration lemma [Lemma 10]

B Consequence for random graphs: can recover an embedding lemma
for K3 for subgraphs of random graphs [Corollary 11]. Conjecture for
general graphs H [Conjecture 13].



Tools fo sparse regularity
18

An application

Asymptotic enumeration lemma above for K3:
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An application

Asymptotic enumeration lemma above for K3: used in the proof of a ran-
dom version of Roth’s theorem (Szemerédi’s theorem for k = 3). [Theo-
rem 12]
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Outline of the talk

1. Basic definitions and the regularity lemma

2. A simple application of the regularity lemma

3. The difficulty in the sparse setting and a workaround (enumeration)

4. Some tools

5. Subgraphs of pseudorandom graphs
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Outline of the talk

1. Basic definitions and the regularity lemma

2. A simple application of the regularity lemma

3. The difficulty in the sparse setting and a workaround (enumeration)

4. Some further tools

5. Subgraphs of pseudorandom graphs
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Hereditary nature of regularity

Setup. B = (U, W; E) an ε-regular bipartite graph with |U| = |W| = m

and |E| = ρm2, ρ > 0 constant, and an integer d. Sample N ⊂ U and
N ′ ⊂ W with |N| = |N ′| = d uniformly at random.

Theorem 4. For any β > 0, ρ > 0, and ε ′ > 0, if ε ≤ ε0(β, ρ, ε ′), d ≥
d0(β, ρ, ε ′), and m ≥ m0(β, ρ, ε ′), then

P
(
(N, N ′) bad

)
≤ βd,

where (N, N ′) is bad if
∣∣∣|E(N, N ′)|d−2 − ρ

∣∣∣ > ε ′ or else (N, N ′) is not
ε ′-regular.

A result similar to Theorem 4 was proved by Duke and Rödl, ’85.
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Hereditary nature of regularity (cont’d)

Roughly speaking, Theorem 4 is true for subgraphs of G(n, p), if

dp2 � (log n)4.
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Hereditary nature of regularity (cont’d2)

Applicable version: suppose U, W, U ′, W ′ ⊂ V(G(n, p)), pairwise dis-
joint, with |U| = |W| = |U ′| = |W ′| = m. Suppose (U, W) (ε, p)-regular
for H ⊂ G; interested in the pair (NH(u ′)∩U, NH(w ′)∩W), where NH(u ′)
is the nbhd of u ′ ∈ U ′ in H, &c. Suppose p3m � (log n)100.

Theorem 5. ∀ε ′ > 0 ∃ε > 0 : with probability → 1 as n → ∞ have:
∀U, W, U ′, W ′ ⊂ V(G(n, p)), ∃U ′′ ⊂ U ′, W ′′ ⊂ W ′ with |U ′′|, |W ′′| ≥
(1 − ε ′)m, so that ∀u ′′ ∈ U ′′, w ′′ ∈ W ′′,

(NH(u ′′) ∩U, NH(w ′′) ∩W) is (ε ′, p)-regular,

with density (1± ε ′)|EH(U, W)|/|U||W|.

[K. and Rödl, 2003]
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Local characterization for regularity

Setup. B = (U, W; E), a bipartite graph with |U| = |W| = m. Consider
the properties

(PC) for some constant p, have m−1
∑

u∈U | deg(u) − pm| = o(m) and

1

m2

∑
u,u ′∈U

| deg(u, u ′) − p2m| = o(m).

(R) (U, W) is o(1)-regular (classical sense).

Theorem 6. (PC) and (R) are equivalent.
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Local characterization for regularity (cont’d)

Roughly speaking, Theorem 6 holds for subgraphs of G(n, p), as long as

p2m � (log n)100.

[K. and Rödl, 2003]
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Outline of the talk

1. Basic definitions and the regularity lemma

2. A simple application of the regularity lemma

3. The difficulty in the sparse setting and a workaround (enumeration)

4. Some further tools (hereditary nature; local characterization)

5. Subgraphs of pseudorandom graphs
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Subgraphs of pseudorandom graphs

Roughly speaking:
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Subgraphs of pseudorandom graphs

Roughly speaking: the local characterization of regularity (Theorem 6)
holds for subgraphs of ‘strongly pseudorandom’ graphs, e.g., Ramanujan
graphs (enough: λ � d2/n).

B Need somewhat higher densities than in the r.gs case

B Good news: should have constructive versions of previous results in-
volving random graphs

[K., Rödl, Schacht, Sissokho, Skokan, 2004+]
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A class of strongly pseudorandom graphs

Say G satisfies STRONG-DISC(γ) if

B For all disjoint U and W ⊂ V(G), we have∣∣∣eG(U, W) − pG|U||W|
∣∣∣ < γp2

Gn
√

|U||W|,

where pG = |E(G)|
(
n
2

)−1
.

Roughly: graphs satisfying STRONG-DISC(o(1)) are such that any pro-
portional subgraph H ⊂ G satisfying (R) satisfies (PC).
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Concrete application

Theorem 6 generalizes to proportional subgraphs of (n, d, λ)-graphs with
λ � d2/n.
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Concrete application

Theorem 6 generalizes to proportional subgraphs of (n, d, λ)-graphs with
λ � d2/n.

Can use this, e.g.,

1. to develop a constructive version of the regularity lemma for subgraphs
of (n, d, λ)-graphs,

2. to prove counting lemmas for subgraphs of such graphs,

3. to prove Turán type results for such graphs.
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Postponed stuff and others

1. Definition 7: cleaned-up graph

2. Notation 8: G
(ε)
3 (m, (ρij))

3. Lemma 9: Counting Lemma

4. Theorem 12: AP3s

5. Theorem 14: Turán problem

6. Theorem 15 and Corollary 16: fault-tolerance

7. Theorem 18: size-Ramsey numbers
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Terminology: Cleaned-up graph G∗

Definition 7. After regularization of G, have V = V1∪ · · · ∪Vt. Remove all
edges in G[Vi, Vj] for all i and j such that

1. (Vi, Vj) is not ε-regular,

2. |E(Vi, Vj)| ≤ f(ε)m2 (suitable f with f(ε) → 0 as ε → 0).

Resulting graph: cleaned-up graph G∗.

In G∗, every G∗[Vi, Vj] is regular and ‘dense’. Usually, lose very little.
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Notation: G
(ε)
3 (m, (ρij))

Notation 8. Suppose G = (V1, V2, V3; E) tripartite is such that

1. |Vi| = m for all i,

2. (Vi, Vj) ε-regular for all i < j,

3. |E(Vi, Vj)| = ρijm
2 for all i < j.

Write G
(ε)
3 (m, (ρij)) for a graph as above.

B ‘ε-regular triple’
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A counting lemma (simplest version)

Setup. G = (V1, V2, V3; E) tripartite with

1. |Vi| = m for all i

2. (Vi, Vj) ε-regular for all i < j

3. |E(Vi, Vj)| = ρm2 for all i < j

That is, G = G
(ε)
3 (m, ρ), i.e., G is an ε-regular triple with density ρ.

Just like random:

Lemma 9 (Counting Lemma). ∀ρ > 0, δ > 0 ∃ε > 0, m0 :

if m ≥ m0, then ∣∣∣#{K3 ↪→ G} − ρ3m3
∣∣∣ ≤ δm3.
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An asymptotic enumeration lemma

Lemma 10 (K., Łuczak, Rödl, ’96). ∀β > 0 ∃ε > 0, C > 0, m0 : if
T = ρm2 ≥ Cm3/2, then

#{G
(ε)
3 (m, ρ) 6⊃ K3} ≤ βT

(m2

T

)3
.

Observe that ρ ≥ C/
√

m → 0.
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Consequence for random graphs

Easy expectation calculations imply

B if p � 1/
√

n, then almost every G(n, p) is such that(
K3-free G

(ε)
3 (m, ρ)

)
6⊂ G(n, p),

if (*) mp � log n and ρ ≥ αp for some fixed α.

Conclusion. Recovered an ‘embedding lemma’ in the sparse setting, for
subgraphs of random graphs.

Corollary 11 (EL for subgraphs of r.gs). If p � 1/
√

n and (*) holds,

then almost every G(n, p) is such that if G
(ε)
3 (m, ρ) ⊂ G(n, p), then

∃K3 ↪→ G
(ε)
3 (m, ρ) ⊂ G(n, p).
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Superexponential bounds

Suppose we wish to prove a statement about all subgraphs of G(n, p).

B Too many such subgraphs: about 2p(n
2)

B G(n, p) has no edges with probability (1 − p)(
n
2) ≥ exp{−2pn2}, if,

say, p ≤ 1/2.

B Bounds of the form

o(1)T
((m

2

)
T

)
for the cardinality of a family of ‘undesirable subgraphs’ U(m, T) do
the job. Use of such bounds goes back to Füredi, ’94.
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An application

The above asymptotic enumeration lemma is used in the proof of the fol-
lowing result.

Theorem 12 (K., Łuczak, Rödl, ’96). ∀η > 0 ∃C : if randomly select R ⊂
{1, . . . , n} with |R| = C

√
n, then a.a.s.

R →η AP3.

R →η AP3 means any S ⊂ R with |S| ≥ η|R| contains an AP3 (arithmetic
progression of 3 terms)
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General graphs H?

Let us state our conjecture for H = Kk.

Conjecture 13 (K., Łuczak, Rödl, ’97). ∀k ≥ 4, β > 0 ∃ε > 0, C > 0,
m0 : if T = ρm2 ≥ Cm2−2/(k+1), then

#{G
(ε)
k (m, ρ) 6⊃ Kk} ≤ βT

(m2

T

)(k
2)

.

For general H, the conjecture involves the 2-density of H.

Best known so far: k = 5, by Gerke, Prömel, Schickinger, Steger, and
Taraz, 2004.
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If true, Conjecture 13 implies . . .

1. The Rödl–Ruciński theorem on threshold for Ramsey properties of
random graphs and the Turán counterpart.

2. Łuczak, 2000: almost all triangle-free graphs are very close to being
bipartite (e(Gn) � n3/2). Conjecture 13 is the ‘only’ missing ingredi-
ent for the general Kk+1-free ⇒ very close to k-partite.
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Turán type results for subgraphs of random graphs

Theorem 14 (K., Rödl, and Schacht, ’04). Let H be a graph with maxi-
mum degree ∆ = ∆(H), and suppose

np∆ � (log n)4.

Then

ex(G(n, p), H) =

(
1 −

1

χ(H) − 1
+ o(1)

)
p
(n
2

)
with probability → 1 as n → ∞.

Conjectured threshold for p:

npd2(H) → ∞
should suffice. [If H = Kk, have d2(H) = (k + 1)/2.]
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Some applications of the hereditary nature &c

1. Turán type results for subgraphs of random graphs [Theorem 14]

2. Small fault-tolerant networks [Theorem 15 and Corollary 16]

3. Size-Ramsey numbers [Theorem 18]
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Some applications of the hereditary nature &c

1. Turán type results for subgraphs of random graphs

2. Small fault-tolerant networks [Theorem 15 and Corollary 16]

3. Size-Ramsey numbers
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Small fault-tolerant networks

B(m, m; ∆): family of m by m bipartite graphs with maximum degree ≤ ∆

Theorem 15 (Alon, Capalbo, K., Rödl, Ruciński, Szemerédi, ’00). For
all η > 0 and ∆, there is C such that if

p = C

(
log n

n

)1/2∆

and m = bn/Cc,

then

G(n, n; p) →η B(m, m; ∆)

with probability → 1 as n → ∞.
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Small fault-tolerant networks (cont’d)

Corollary 16. There is an η-fault-tolerant graph Γ for B(m, m; ∆) with
Õ(m2−1/2∆) edges.

Remark. If Γ̃ ⊃ B any B ∈ B(m, m; ∆), then

|E(Γ̃)| ≥ cm2−2/∆.
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Size-Ramsey numbers for bounded degree graphs

The size-Ramsey number of H is

re(H) = min{|E(Γ)| : Γ → (H, H)}.

Known that re(H) is linear in |V(H)| if H is a path (Beck, ’83), tree with
bounded degree (Friedman and Pippenger, ’87), cycle (Haxell, K., and Łuc-
zak, ’95), and (almost linear if) H is a long subdivision (Pak, ’01).
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Size-Ramsey numbers for bounded degree graphs (cont’d)

Theorem 17 (Rödl and Szemerédi, ’00). re(H) ≥ cn(log n)α for a certain
cubic, n-vertex graph H (c and α > 0 universal constants).

Theorem 18 (K., Rödl and Szemerédi, ’0?). For any ∆ there is ε =

ε(∆) > 0 for which we have

re(H) ≤ n2−ε

for any n-vertex graph H with ∆(H) ≤ ∆.

[ε ≤ 1/2∆?]
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Remark

Meaning of ‘assertion A is true for (proportional) subgraphs of pseudoran-
dom graphs’ is roughly clear.
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Remark

Meaning of ‘assertion A is true for (proportional) subgraphs of pseudoran-
dom graphs’ is roughly clear.

However, shall often say ‘assertion A is true for (proportional) subgraphs
of random graphs’, which means. . .
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Remark

Assertion A is true for (proportional) subgraphs of random graphs:

B with probability → 1 as n → ∞, assertion A holds for any subgraph of
G(n, p).

Assertion A will often be an implication P ⇒ Q

P ⇒ Q will often be true for dense graphs, i.e., with ≥ cn2 edges,
and false for sparse graphs in general

Recent result: properties that will make our results hold for deterministic
classes of graphs.
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Remark

Assertion A is true for (proportional) subgraphs of random graphs:

B with probability → 1 as n → ∞, assertion A holds for any subgraph of
G(n, p).

Assertion A will often be an implication P ⇒ Q

P ⇒ Q will often be true for dense graphs, i.e., with ≥ cn2 edges,
and false for sparse graphs in general

Recent result: properties that will make our results hold for deterministic
classes of graphs. Turns out that, e.g., Ramanujan graphs will do (eigen-
value conditions).


