Ramsey results for 3-coloring and odd cycles

Y. Kohayakawa M. Simonovits* and J. Skokan

For graphs G_{1}, \ldots, G_{k}, the Ramsey number $R\left(G_{1}, \ldots, G_{k}\right)$ is the minimum integer N satisfying that for any coloring of edges of the complete graph K_{N} by k colors there exists a color i for which the corresponding color class contains G_{i} as a subgraph. Bondy and Erdős conjectured that if n is odd, $R\left(C_{n}, C_{n}, C_{n}\right)=4 n-3$. This is sharp if true, as shown by some constructions.

Łuczak proved (using the Regularity Lemma) that if n is odd, then $R\left(C_{n}, C_{n}, C_{n}\right)=$ $4 n+o(n)$, as $n \rightarrow \infty$. We prove that if n is odd, then

$$
R\left(C_{n}, C_{n}, C_{n}\right)=4 n-3
$$

We also describe the Ramsey-extremal colorings and prove some related stability theorems.

