Overlapping Expert Information: Learning about Dependencies in Expert Judgment

Jason R.W. Merrick

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Extending Winkler's Multivariate Normal Aggregation

P(Event)

$P(Event | X_1, \dots, X_n)$

$P(\text{Event} | X_1, \dots, X_n)$

Event = Collision between two vessels X_1 = Type of other vessel X_2 = Proximity of other vessel X_3 = Wind speed X_4 = Wind direction X_5 = Current speed X_6 = Current direction X_7 = Visibility

$P(\text{Event} | X_1, \dots, X_n)$

Event = Incoming vessel contains RDD X_1 = Last country docked X_2 = 2nd to last country docked X_3 = 3rd to last country docked X_4 = Frequency of US calls X_5 = Vessel ownership X_6 = Type of vessel X_7 = Type of crew

Issaquah class ferry On the Bremerton to Seattle route Crossing situation within 15 minutes Other vessel is a navy vessel No other vessels around Good visibility Negligible wind

What is the probability of a collision?

Issaquah class ferry On the Bremerton to Seattle route Crossing situation within 15 minutes Other vessel is a navy vessel No other vessels around Good visibility Negligible wind

Issaquah class ferry On the Bremerton to Seattle route Crossing situation within 15 minutes

Other vessel is a product tanke

No other vessels around Good visibility Negligible wind

Issaquah	Ferry Class	_
SEA-BRE(A)	Ferry Route	_
Navy	Ist Interacting Vessel	Product
Crossing	Traffic Scenario 1st Vessel	
< mile	Traffic Proximity 1st Vessel	
No Vessel	2nd Interacting Vessel	_
No Vessel	Traffic Scenario 2nd Vessel	
No Vessel	Traffic Proximity 2nd Vessel	
> 0.5 Miles	Visibility	
Along Ferry	Wind Direction	
0	Wind Speed	-
Likelihood of Collision		-
987	6 5 4 3 2 I 2 3 4 5 6	789

$$P(Event | X, p_0, \beta) = p_0 \exp(X^T \beta)$$

$$\frac{P(Event | R, \beta)}{P(Event | L, \beta)} = \frac{p_0 \exp(R^T \beta)}{p_0 \exp(L^T \beta)} = \exp((R - L)^T \beta)$$

$$y_{i,j} = \ln(z_{i,j}) = X_i^T \beta + u_{i,j}$$

$$u_i = \mu_i - \theta$$

$$\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_p \end{pmatrix} \sim MVNormal(\underline{0}, \Sigma)$$

$$\pi(\theta;\mu,\Sigma) \propto \exp\left(-\left(\theta-\mu^*\right)^2/2\sigma^2\right)$$

$X_{1,q}$ $x_{1,1}$ $y_{1,1}$ $y_{1,p}$ ••• β_1 β_1 $\mathcal{U}_{1,1}$ ••• $\mathcal{U}_{1,p}$ \vdots \ddots \vdots + ·. : -= β_q $\cdots \beta_q$ $\cdots x_{N,q}$ $X_{N,1}$ $u_{N,1}$ $y_{N,1}$ $\mathcal{Y}_{N,p}$ $\mathcal{U}_{N,p}$ • • •

$p(\mathbf{Y} | \mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\Sigma}) \propto |\boldsymbol{\Sigma}|^{-\frac{N}{2}} \exp\left\{-\frac{1}{2} tr(\mathbf{V}\boldsymbol{\Sigma}^{-1})\right\} \exp\left\{-\frac{1}{2} tr\left(\left(\widehat{\mathbf{B}} - \boldsymbol{\beta}\underline{1}^{T}\right)^{T} \mathbf{X}^{T} \mathbf{X}\left(\widehat{\mathbf{B}} - \boldsymbol{\beta}\underline{1}^{T}\right)\boldsymbol{\Sigma}^{-1}\right)\right\}$

$$(\Sigma) \sim Inv - Wishart(\mathbf{G}, m)$$

$$(\beta | \mathbf{Y}, \mathbf{X}, \Sigma) \sim MVNormal\left(\varphi, \frac{\mathbf{A}}{\underline{1}^{T} \Sigma^{-1} \underline{1}}\right)$$

$$V = (\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})^{T} (\mathbf{Y} - \mathbf{X}\hat{\mathbf{B}})$$

$$(\Sigma | \mathbf{Y}, \mathbf{X}) \sim Inv - Wishart(\mathbf{G} + \mathbf{V}, m + N)$$

$$(\beta | \mathbf{Y}, \mathbf{X}, \Sigma) \sim MVNormal\left((\mathbf{A}^{-1} + \mathbf{X}^{T} \mathbf{X})^{-1} \left(\mathbf{X}^{T} \mathbf{X} \frac{\hat{\mathbf{B}} \Sigma^{-1} \underline{1}}{\underline{1}^{T} \Sigma^{-1} \underline{1}} + \mathbf{A}^{-1} \varphi\right), \frac{(\mathbf{A}^{-1} + \mathbf{X}^{T} \mathbf{X})^{-1}}{\underline{1}^{T} \Sigma^{-1} \underline{1}}\right)$$

Description	Notation	Values
Ferry route and class	FR_FC	26
Type of 1st interacting vessel	TT_I	3
Scenario of 1st interacting vessel	TS_I	4
Proximity of 1st interacting vessel	TP_I	Binary
Type of 2nd interacting vessel	TT_2	5
Scenario of 2nd interacting vessel	TS_2	4
Proximity of 2nd interacting vessel	TP_2	Binary
Visibility	VIS	Binary
Wind direction	WD	Binary
Wind speed	WS	Continuous

Assume independence between the experts a priori

Comparing the two scenarios we pictured earlier a priori

Doesn't dependence between experts increase posterior variance?

1,1 Experts 1, 3 and 7 are correlated Experts 2, 4 and 6 are correlated 0 3,1 Experts 5 and 8 are negatively or 3,3 uncorrelated with other experts 0 _1 7.7 7,1 7,3 -1 0 0 0 Remember we 4,1 4,7 4,4 4,3 assumed independence -1 0 -1 0 a priori, but we learnt 2,1 2,3 2.7 2.4 2.2 about $\Sigma!$ 6.2 6,1 6,3 6,7 6,4 6.6 -1 0 5,1 5,4 5,2 5,6 5,3 5,7 5.5 Λ Λ -1 8.6 8.1 8.3 8,7 8,4 8.2 8.5 8,8 -0.9 0.1 0 -1 0 0 -1 -1 -1 -1 0 -1 0 0

90% Credibility Interval

Prior $[1.88*10^{-35}, 5.32*10^{34}]$ Dependent[4.38,5.84] $\frac{1}{2}$ width = 0.73Independent[4.43,7.04] $\frac{1}{2}$ width = 1.3

Getting the Right Mix of Experts

 $(z_i | \mu_i, \alpha_i, \gamma_i) \sim N(\mu_i, r_i)$ $(\mu_i | \theta, \lambda) \sim N(\theta, \lambda)$

$$\begin{pmatrix} z_i | \theta, r_i, \alpha_i, \gamma_i \end{pmatrix} \sim N(\theta + \alpha_i, \gamma_i r_i) \\ \begin{pmatrix} r_i | \theta, z_i, \alpha_\gamma, b_\gamma \end{pmatrix} \sim Ga(\alpha_\gamma, b_\gamma) \\ \alpha_1, \dots, \alpha_p \sim N(0, \lambda) \\ \gamma_1, \dots, \gamma_p \sim Gamma(a, b)$$

$$\begin{aligned} \left(z_{i} \mid \theta, r_{i}, \alpha_{i}, \gamma_{i}\right) &\sim N(\theta + \alpha_{i}, \gamma_{i}r_{i}) \\ \left(r_{i} \mid \theta, z_{i}, a_{\gamma}, b_{\gamma}\right) &\sim Ga(a_{\gamma}, b_{\gamma}) \\ (\alpha_{1}, \gamma_{1}), \dots, (\alpha_{p}, \gamma_{p}) &\sim G \\ G &\sim DP(G_{0}, M) \\ G_{0} &= gamma(a, b) \end{aligned}$$

