Overlapping Expert Information: Learning about Dependencies in Expert Judgment

Jason R.W. Merrick

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Extending Winkler's Multivariate Normal
 Aggregation

P(Event)

$P\left(\right.$ Event $\left.\mid X_{1}, \ldots, X_{n}\right)$

$P\left(\right.$ Event $\left.\mid X_{1}, \ldots, X_{n}\right)$

Event = Collision between two vessels
$X_{1}=$ Type of other vessel
$X_{2}=$ Proximity of other vessel
$X_{3}=$ Wind speed
$X_{4}=$ Wind direction
$X_{5}=$ Current speed
$X_{6}=$ Current direction
$\mathrm{X}_{7}=$ Visibility

$P\left(\right.$ Event $\left.\mid X_{1}, \ldots, X_{n}\right)$

Event = Incoming vessel contains RDD
$X_{1}=$ Last country docked
$X_{2}=2 n d$ to last country docked
$X_{3}=3 r d$ to last country docked
$X_{4}=$ Frequency of US calls
$X_{5}=$ Vessel ownership
$X_{6}=$ Type of vessel
$X_{7}=$ Type of crew

What is the probability of a collision?

On the Bremerton to Seattle route Crossing situation within 15 minutes

Other vessel is a navy vessel
No other vessels around Good visibility Negligible wind

On the Bremerton to Seattle route Crossing situation within 15 minutes

No other vessels around Good visibility Negligible wind

On the Bremerton to Seattle route Crossing situation within 15 minutes

No other vessels around Good visibility
Negligible wind

Issaquah	Ferry Class	-
SEA-BRE(A)	Ferry Route	-
Navy	I st Interacting Vessel	Product
Crossing	Traffic Scenario Ist Vessel	-
< I mile	Traffic Proximity Ist Vessel	-
No Vessel	2nd Interacting Vessel	-
No Vessel	Traffic Scenario 2nd Vessel	-
No Vessel	Traffic Proximity 2nd Vessel	-
> 0.5 Miles	Visibility	-
Along Ferry	Wind Direction	-
0	Wind Speed	-
	Likelihood of Collision	-
987	$\begin{array}{llllllllll}5 & 4 & 3 & 2 & 1 & 2 & 3 & 4 & 5\end{array}$	789

$P\left(\right.$ Event $\left.\mid X, p_{0}, \beta\right)=p_{0} \exp \left(X^{T} \beta\right)$

$$
\frac{P(\text { Event } \mid R, \beta)}{P(\text { Event } \mid L, \beta)}=\frac{p_{0} \exp \left(R^{T} \beta\right)}{p_{0} \exp \left(L^{T} \beta\right)}=\exp \left((R-L)^{T} \beta\right)
$$

$y_{i, j}=\ln \left(z_{i, j}\right)=X_{i}^{T} \beta+u_{i, j}$

$$
\left\{\left(\begin{array}{ccc}
y_{1,1} & \cdots & y_{1, p} \\
\vdots & \ddots & \vdots \\
y_{N, 1} & \cdots & y_{N, p}
\end{array}\right)=\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, q} \\
\vdots & \ddots & \vdots \\
x_{N, 1} & \cdots & x_{N, q}
\end{array}\right)\left(\begin{array}{ccc}
\beta_{1} & \cdots & \beta_{1} \\
\vdots & \ddots & \vdots \\
\beta_{q} & \cdots & \beta_{q}
\end{array}\right)+\left(\begin{array}{ccc}
u_{1,1} & \cdots & u_{1, p} \\
\vdots & \ddots & \vdots \\
u_{N, 1} & \cdots & u_{N, p}
\end{array}\right)\right\}
$$

$$
\mathbf{Y}=\mathbf{X} \beta 1^{T}+\mathbf{U}
$$

$\underbrace{(\beta \mid \mathbf{Y}, \mathbf{X}, \Sigma) \sim \operatorname{MVNormal}\left(\left(\mathbf{A}^{-1}+\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{X} \frac{\hat{\mathbf{B}} \Sigma^{-1}-1}{\underline{1}^{T} \Sigma^{-1}}+\mathbf{A}^{-1} \varphi\right), \frac{\left(\mathbf{A}^{-1}+\mathbf{X}^{T} \mathbf{X}\right)^{-1}}{\underline{1}^{T} \Sigma^{-1} \underline{1}}\right)}$

Description	Notation	Values
Ferry route and class	FR_FC	26
Type of I st interacting vessel	TT_I	I3
Scenario of Ist interacting vessel	TS_I	4
Proximity of Ist interacting vessel	TP_I	Binary
Type of 2nd interacting vessel	TT_2	5
Scenario of 2nd interacting vessel	TS_2	4
Proximity of 2nd interacting vessel	TP_2	Binary
Visibility	VIS	Binary
Wind direction	WD	Binary
Wind speed	WS	Continuous

Assume independence between the experts a priori

Comparing the two scenarios we pictured earlier a priori

Doesn't dependence between experts increase posterior variance?

Comparing the two
scenarios we pictured earlier

Credibility Interval

90\% Prior [1.88*10-35, 5.32*1034]
Dependent $[4.38,5.84] \quad 1 / 2$ width $=0.73$ Independent [4.43,7.04] $1 / 2$ width $=1.3$

Getting the Right Mix of Experts

(2, Z_{1}, Z_{2}
$\underbrace{}_{\left(z_{1}, \ldots, z_{n} \mid \theta, \Sigma\right) \sim \operatorname{MVNormal}(\theta, \Sigma)}$

$$
\left\{\begin{array}{c}
\left(z_{i} \mid \mu_{i}, \alpha_{i}, \gamma_{i}\right) \sim N\left(\mu_{i}, r_{i}\right) \\
\left(\mu_{i} \mid \theta, \lambda\right) \sim N(\theta, \lambda)
\end{array}\right.
$$

$$
\begin{gathered}
\left(z_{i} \mid \theta, r_{i}, \alpha_{i}, \gamma_{i}\right) \sim N\left(\theta+\alpha_{i}, \gamma_{i} r_{i}\right) \\
\left(r_{i} \mid \theta, z_{i}, a_{\gamma}, b_{\gamma}\right) \sim G a\left(a_{\gamma}, b_{\gamma}\right) \\
\alpha_{1}, \ldots, \alpha_{p} \sim N(0, \lambda) \\
\gamma_{1},, \ldots, \gamma_{p} \sim \operatorname{Gamma}(a, b)
\end{gathered}
$$

$$
\begin{gathered}
\left(z_{i} \mid \theta, r_{i}, \alpha_{i}, \gamma_{i}\right) \sim N\left(\theta+\alpha_{i}, \gamma_{i} r_{i}\right) \\
\left(r_{i} \mid \theta, z_{i}, a_{\gamma}, b_{\gamma}\right) \sim G a\left(a_{\gamma}, b_{\gamma}\right) \\
\left(\alpha_{1}, \gamma_{1}\right), \ldots,\left(\alpha_{p}, \gamma_{p}\right) \sim G \\
G \sim \operatorname{DP}\left(G_{0}, M\right) \\
G_{0}=\operatorname{gamma}(a, b)
\end{gathered}
$$

