<u>Use of Expert Judgment</u> <u>in Risk Assessments</u> <u>Involving Complex State Spaces</u>

Thomas A. Mazzuchi Department of Engineering Management and Systems Engineering George Washington University

MOTIVATION

Detailed inspections of in-service wiring show that problems are common to both large and small transport aircraft:

 inadvertent damage during maintenance, such as using wire bundles as ladder rungs, stepping on and damaging wiring hidden under insulation blankets,

inadequate support clamping,

improper installation that can aggravate chafing

Today's jet aircraft rely more and more on sophisticated electrical and computer systems, placing a premium on the reliability of wiring, power feeder cables, connectors and circuit protection devices.

MOTIVATION

The physical failure of wiring has

- caused damage to other aircraft systems
- ignited flammable material in close proximity to wiring.
- caused malfunctions that have contributed to turnbacks and in-flight diversions

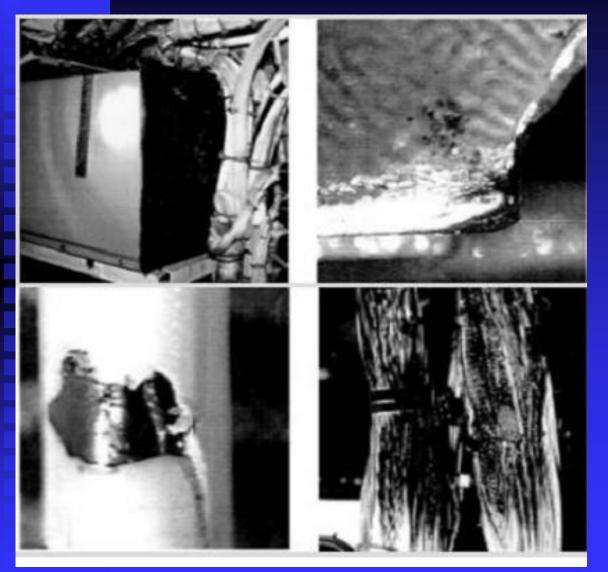
The amount of wiring in transport category aircraft has grown steadily over time, with no plateau yet visible. The more of it, the greater the potential exposure to wiring failures.

MOTIVATION

"The increasing reliance on electrical power on modern and future public transport aircraft for flying control, engine and flight management systems with the associated increase in the use of computers, in addition to passenger services and entertainment systems, makes such aircraft more vulnerable to electrical fires and their potential effects, particularly if the flight crew do not receive timely warnings of electrical fire initiation." (Investigative report United B767-300 on a Jan. 9, 1998, the UK's Air Accidents Investigation Branch)

Wires failures events can occur at three levels

Wire Level


Insulation has faults. An EWIS failure probably has not occurred yet but the probability of an EWIS event is much higher. A common cause fault is indicated as the breach in the insulation line up.

Bundle Level

An arcing event has occurred. It is assumed that the arcing event began with one or two wire chaffing against the standoff. However, as a result of the arcing many wires in the bundle have failed. The possible effect of the failure depend on which systems are routed in the bundle.

Zonal Level

<u>Upper Left</u>: Install chiller in EE bay. Large object in a zone with high wire density.

<u>Upper Right</u>: Rough metal edge of cooler.

Lower Left: Chafed wire.

<u>Lower right</u>: Resulting arcing in two adjacent bundles.

United Airlines B767-300, Jan. 9, 1998

DEVELOPEMT OF WIRE FAILURE MODEL

- Failure Modes
- Opens:

• Shorts:

"fail to open" "fail to ground"

Failure Density $f(t_i|\lambda_i) = \lambda_i \exp\{-\lambda_i t_i\}$ where i=0, g

Time until wire failure $T = Min\{T_o, T_g\} \sim exp(\lambda_o + \lambda_g)$

To completely specify the distribution, this parameter must be estimated, usually from past data

INCORPORATION OF ENVIRONMENTAL VARIABLES

But there are many types of wiring environments and these environments will affect the failure rates A common model for incorporating the affect of covariates is the proportional hazards model (PHM) The basic idea of the model is to write the failure rate as a function of the covariates $X_1, ..., X_n$

 $f(t|\beta_0, \beta_1, ..., \beta_n) = [\exp\{\beta_0 + \sum_{j=1,n} \beta_j X_j\}] \exp\{-[\exp\{\beta_0 + \sum_{j=1,n} \beta_j X_j]t\}$

where β_0 is some base failure rate and β_i reflects the influence of X_i on the failure rate

 but not much failure data exists except for a few wire types

EXPERT JUDGEMENT USING PAIRED COMPARISON

Paired Comparison

- Designed to measure group preferences for a set of objects by letting subjects judge the objects 2 at a time
 - for each pair of objects, each subject simply states which of the 2 objects (s)he prefers
 - Allows for statistical tests for
 - individual expert responses
 - expert responses as a group
- Models for paired comparison
 - Thurstone (1927)
 - (Bradley and Terry, 1953)
 - These models also provide goodness of fit tests

Set up

- Let E_1, \ldots, E_n denote the objects to compare
- e experts are asked a series (specifically a total of n taken 2 at a time) of paired comparisons as to which they prefer the idea is that comparing items two at a time is easier than comparing items all at once
- Let $N_r(i)$ represent the number of times that expert r preferred E_i to any other
- The paired comparison results yield values $N_r(1)$, ..., $N_r(n)$ for each expert r = 1, ..., e.

Testing if each expert is specifying a true preference structure in his/her answers or just assigning answers in a random fashion.

This can be determined by analyzing the number of circular triads in his/her comparisons.

 $E_1 > E_2, E_2 > E_3$, and $E_3 > E_1$

David (1963) determined that c(r), the number of circular triads in expert r's preferences, is given by

$$c(r) = \frac{n(n^2 - 1)}{24} - \frac{1}{2} \sum_{i=1}^n \left(N_r(i) - \frac{1}{2} \left(-\frac{1}{2} \right)^2 \right)^2$$

Kendall (1962) developed tables of the probability that certain values of c(r) are exceeded under the null hypothesis that the expert answered in a random fashion for n = 2, ..., 10.

In addition, Kendall (1962) developed the following statistic for comparing n>7 items

$$c'(r) = \frac{n(-1)(-2)}{(-4)} \left(\frac{8}{n-1}\right) \left[\left(\frac{1}{4}\right)\binom{n}{3} - c(r) + \frac{1}{2}\right]$$

The above is chi squared with n(n-1)/(n+2) df Expert eliminated if we the random preference hypothesis cannot be rejected at the 5% level of significance

The agreement of the experts as a group can be statistically validated. Let N(i,j) denote the number of times some expert preferred E_i to E_j . To test the hypothesis that all agreements of experts

are due to chance, Kendall (1962) defines the *coefficient of agreement* as

$$u = \frac{2\sum_{i=1}^{n}\sum_{j=1, j\neq i}^{n} \binom{N(i, j)}{2}}{\binom{e}{2}\binom{n}{2}} - 1$$

Kendall tabulated distributions of

$$\sum_{i=1}^{n} \sum_{j=1, j\neq i}^{n} \binom{N(i, j)}{2}$$

for small values of n and e under the hypothesis that all agreements of the experts are due to chance. For large values of n and e, Kendall (1962) developed the statistic

$$u' = \frac{4\left[\sum_{i=1}^{n}\sum_{j=1, j\neq i}^{n}\binom{N(i, j)}{2} - \binom{e}{2}\binom{n}{2}\binom{e-3}{2}/(e-2)\right]}{e-2}$$

which is chi-squared, $df = n!e(e-1)/[2!(n-2)!(e-2)^2]$

The hypothesis that all agreements are due to chance should be rejected at the 5% level of significance

OVERVIEW BRADLEY-TERRY MODEL

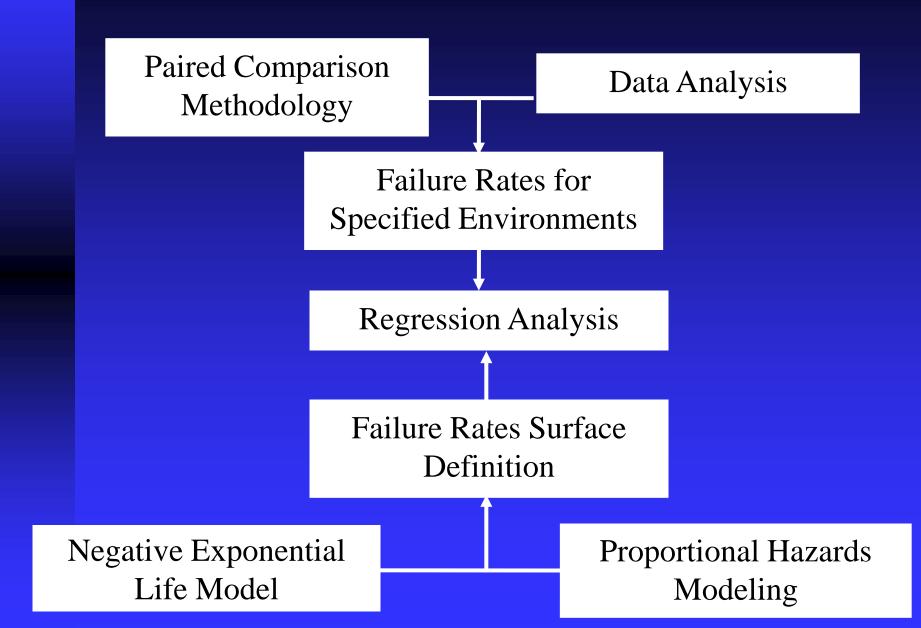
Assumes that the true "value" of object i is h_i If experts can be treated as independent samples for each question then the probability that object i is preferred to object j is expressed as $p_{ij} = h_i / (h_i + h_j)$ Given that i and j are compared e times, the probability of seeing i preferred to j exactly N(i,j) times, $i,j = 1,...k, i \le j$; is

$$L = \prod_{i < j} \binom{e}{N(i, j)} p_{ij}^{N(i, j)} (1 - p_{ij})^{e - N(i, j)} = \prod_{i < j} \binom{e}{N(i, j)} \left(\frac{h_i}{h_i + h_j}\right)^{N(i, j)} \left(\frac{h_j}{h_i + h_j}\right)^{e - N(i, j)}$$

Find h_i through maximum likelihood estimation

OVERVIEW BRADLEY-TERRY MODEL

Note that the values can be determined up to a constant, that is if h_i are solutions so are Ch_i Ford (1957): The following iterative solution procedure can be used to solve for the h_i up to a scale constant provided that it is not possible to separate the n objects into two sets where all experts deem that no object in the first set is more preferable than any object in the second set. Letting N(i) denote the number of times some expert prefers E_i over any other ite $h_i^{(k+1)} = \frac{N(i)/e}{\sum_{i=1}^{i-1} \left[\sum_{i=1}^{k} (k) + h_j^{(k+1)} \right] + \sum_{i=1}^{n} \left[\sum_{i=1}^{k} (k) + h_j^{(k)} \right]}$


OVERVIEW NEL MODEL Cooke (1991)

But the Bradley-Terry Model is for probabilities not failure rates!

Note if $T_i \sim \exp(\lambda_i)$ then $\Pr\{T_i < T_j\} = \frac{\lambda_i}{(\lambda_i + \lambda_j)}$ Thus instead of asking experts "which object do you prefer", we can ask "given two environments which environment will produce a failure first" and use all the paired comparison and Bradley-Terry Methodology Given that the values h_1, \ldots, h_n are failure rates obtained to within a scale constant, if we can, from another method, determine an exact estimate of one of the failure rates, say h_i^+ , we may calculate estimates as

 $h_i^+ = (h_j^+/h_j) * h_i$ i=1, ..., n

OVERVIEW OF APPROACH

DEFINE THE ENVIRONEMENT: ENVIRONMENTAL VARIABLES

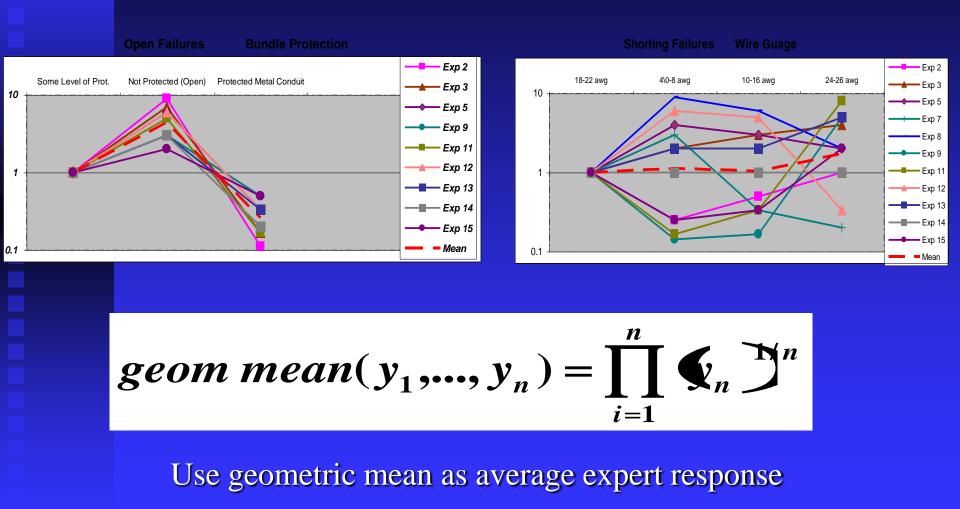
		Levels		
Variables	1	2	3	4
Wire Guage	4\0-8 awg	10-16 awg	18-22 awg	24-26 awg
Conductor Type	Aluminum	Copper	High Streng. Copper Alloy	
Splices	None	Environmental	Non-environmental	
Bundle Protection	Some Level of Protection	Not Protected (Open)	Protected Metal Conduit	
Curvature of Bundle	Low (> 10x)	High (<= 10x)		
Ops/Main Traffic	Low	Moderate	High	
Vibration	Low	Moderate	High	Extreme
Ops temp\presurization	Benign (P&T Controlled)	D1- P Contrl. but not T	D2 (P&T not controlled)	D3 (High T, P not contrl)
Exp Corrosive Fluid	No	Yes		
Exp Conducting Fluid	No	Yes		
Bundle Size	Large (> 1.25 in)	Moderate (0.5-1.25 in)	Small (0.2-0.5 in)	Very Small (< 0.2 in)
Insulation Type	Polyimide	Hybrid (PI/FP Composite)	ETFE & other FPs	
Bundle Orientation (Shock)	Horizontal/Vertical Wire	Longitudinal		

- an upper bound of 4*3*3*...*2 = 995,328 environments

Note that these are categorical

QUANTIFY VARIABLES

2


Define environments via explanatory variables

EFFECT OF SINGLE VARIABLES ON OPEN FAILURES

Page

BUNDLE PROPERTIES																		
Bundle Size																		
	Large (> 1.25 in)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
				less	sev	ere	<						>	mo	re se	evere	•	
	Moderate (0.5-1.25 in)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
	Small (0.2-0.5 in)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
	Very Small (< 0.2 in)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
Bundle Protection		_																
	Some Level of Prot.	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
				less	sev	ere	<						>	mo	re se	evere	•	
	Not Protected (Open)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
						-												
Curvature of Bundle					-													
	Low (> 10x)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
				less	sev	ere	<						>	mo	re se	evere	•	
	High (<= 10x)	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
Bundle Orientation (Shock)				1			7		r					-		-		
	Horizontal/Vertical Wire	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9
				less	sev	ere	<						>		re se	evere	•	
	Longitudinal	9	8	7	6	5	4	3	2	1	2	3	4	5	6	7	8	9

QUANTIFY VARIABLES

SELECTION OF PAIRED COMPARISON ENVIRONMENTS

This selection should

- ♦ be relatively small
 - but at a minimum of one plus the number of variables describing the environment
- not contain any obviously dominated environments
- provides maximum coverage for the regression estimates
- contain at least one environment for which failure data exists.
- However, the result should yield a relatively easy paired comparison of the environments

PAIRED COMPARISON ENVIRONMENTS

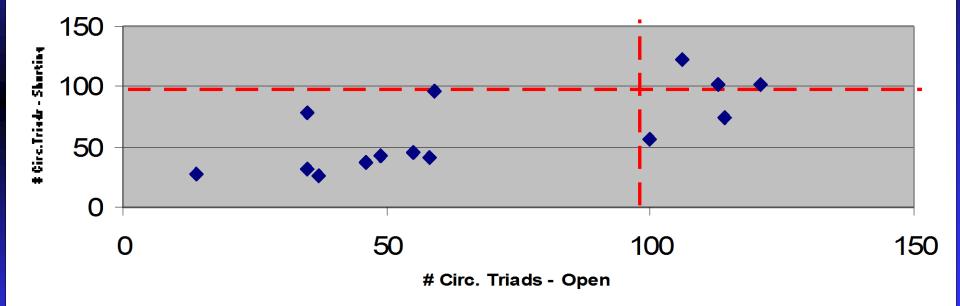
$\langle \rangle$	\backslash		_ \	g \	\backslash	, /			Bund		8		ё́ \ \ S \	
		Wire	nsulati	onduct		Bung	Idle Pro	ime of	eonien	admair	stemp	Vi Jonosh		\mathbf{n}
	wittonment	Wire Guage	Insulation Type	Conductor Type	Splices	Bundle Size	Bundle Protection	Curvature of Bundle	Bundle Orientationt.	- simain Traffic	ops templaltitude	Exp Corrosiv Exp Vibration	sxp Conductiny .	Flie
			Hybrid (PI/FP			Moderate	Not Protected		Horizontal/Vertical		Benign (P&T			
	-	18-22 awg	Composite)	Copper	None		(Open)	Low (> 10x)	Wire	High	Controlled)	Moderate	No	Yes
			Hybrid (PI/FP	High Streng.		Very Small	Not Protected		Horizontal/Vertical		Benign (P&T			
	2	2 24-26 awg	Composite)	Copper Alloy	None	(< 0.2 in)	(Open)	Low (> 10x)	Wire	High	Controlled)	Moderate	No	Yes
			Hybrid (PI/FP			Moderate	Not Protected		Horizontal/Vertical		Benign (P&T			
		3 24-26 awg	Composite) Hybrid	Copper	None	(0.5-1.25 in)	(Open)	Low (> 10x)	Wire	Moderate	Controlled)	Moderate	No	Yes
			(PI/FP			Moderate	Some Level		Horizontal/Vertical		Benign (P&T			
	4	18-22 awg	Composite) Hybrid	Copper	None	(0.5-1.25 in)	of Prot. Not	Low (> 10x)	Wire	High	Controlled)	High	No	Yes
			(PVFP			Large	Protected		Horizontal/Vertical		Benign (P&T			
		5 18-22 awg	Composite) Hybrid	Copper	None	(> 1.25 in)	(Open) Not	Low (> 10x)	Wire	High	Controlled)	Moderate	Yes	Yes
			(PVFP		Non-	Moderate	Protected		Horizontal/Vertical		Benign (P&T			
		6 18-22 awg	Composite)	Copper	environmental	(0.5-1.25 in)	(Open) Not	Low (> 10x)	Wire	High	Controlled)	Low	No	Yes
			ETFE &			Moderate	Protected		Horizontal/Vertical		Benign (P&T			
	7	7 18-22 awg	other FPs Hybrid	Copper	None	(0.5-1.25 in)	(Open) Not	Low (> 10x)	Wire	High	Controlled)	Low	No	Yes
			(PI/FP			Moderate	Protected		Horizontal/Vertical		Benign (P&T			
	5	3 18-22 awg	Composite)	Copper	None	(0.5-1.25 in)	(Open)	High (<= 10x)	Wire	High	Controlled)	Moderate	No	No
			Hybrid (PI/FP			Moderate	Some Level		Horizontal/Vertical		D2 (P&T not			
	5	9 18-22 awg	Composite)	Copper	None	(0.5-1.25 in)	of Prot.	Low (> 10x)	Wire	High	controlled)	Moderate	No	Yes
			Hybrid (PI/FP			Moderate	Not Protected		Horizontal/Vertical		Benign (P&T			
	10) 18-22 awg	Composite)	Copper	None	(0.5-1.25 in)		High (<= 10x)	Wire	High	Controlled)	Low	No	Yes
			Hybrid (PI/FP			Moderate	Not Protected				Benign (P&T			
	11	18-22 awg	Composite)	Copper	None	(0.5-1.25 in)	(Open)	Low (> 10x)	Longitudinal	High	Controlled)	Moderate	No	No
			Hybrid (PI/FP			Moderate	Not Protected		Horizontal/Vertical		Benign (P&T			
	12	2 18-22 awg	Composite)	Copper	None	(0.5-1.25 in)		Low (> 10x)	Wire	Low	Controlled)	High	No	Yes
						Moderate	Not Protected		Horizontal/Vertical		Benign (P&T			
	13	3 18-22 awg	Polyimide	Copper	None	(0.5-1.25 in)	(Open)	High (<= 10x)		High	Controlled)	Moderate	No	Yes
			Hybrid (PI/FP			Moderate	Not Protected		Horizontal/Vertical		Benign (P&T			
	14	4\0-8 awg	Composite)	Aluminum	None	(0.5-1.25 in)		Low (> 10x)	Wire	High	Controlled)	Moderate	No	No
			Hybrid (PI/FP			Moderate	Not Protected		Horizontal/Vertical		D2 (P&T not			
	15	5 4\0-8 awg	Composite)	Copper	None	(0.5-1.25 in)		Low (> 10x)	Wire	High	controlled)	Moderate	No	Yes

 $\begin{pmatrix} 15 \\ 2 \end{pmatrix} = 105$ comparisons

PAIRED COMPARISON SURVEY

Variables

Wire Guage **Conductor Type Splices Bundle Protection** Curvature of Bundle **Ops/Main Traffic** Vibration **Ops Temp/Presssurization Exp Corrosive Fluid** Exp Conducting Fluid **Bundle Size** Insulation Type **Bundle Orientation**

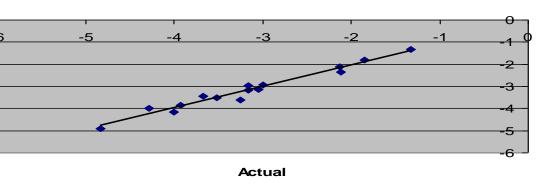


PAIRED COMPARISON SURVEY

		COMPARISON		
WI	RE ENVIRONMENT 1	11	WIRE ENVIRONMENT 2	
WIRE PROPERTIES			WIRE PROPERTIES	
Wire Gauge Conductor Type Insulation Type Splices	18-22 awg Copper Hybrid (PI/FP Composite) None		Wire Gauge Conductor Type Insulation Type Splices	
BUNDLE PROPERTIES			BUNDLE PROPERTIES	
Bundle Size Bundle Protection Curvature of Bundle Bundle Orientation (Shock)	Moderate (0.5-1.25 in) Not Protected (Open) Low (> 10x) Horizontal/Vertical Wire		Bundle Size Bundle Protection Curvature of Bundle Bundle Orientation (Shock)	Some Level of Pro
ZONAL PROPERTIES			ZONAL PROPERTIES	
Ops/Main Traffic Ops Temp/Alt Vibration Exposure to Corrosive Fluid Exposure to Conductive Fluid	High Benign (P&T Controlled) Moderate No Yes		Ops/Main Traffic Ops Temp/Alt Vibration Exposure to Corrosive Fluid Exposure to Conductive Fluid	High

PAIRED COMPARISON RESULTS

Plot of Individual Expert Performance


PAIRED COMPARISON RESULTS

					•	1
	Open Failures			Shorting Failur	es	
Environemnt	lower	Bradley-Terry Est	upper	lower	Bradley-Terry Est	upper
1	0.016	0.039	0.068	0.020	0.045	0.067
2	0.060	0.121	0.260	0.047	0.085	0.160
3	0.007	0.026	0.047	0.007	0.019	0.039
4	0.017	0.042	0.073	0.031	0.070	0.130
5	0.068	0.119	0.190	0.077	0.150	0.220
6	0.150	0.265	0.420	0.057	0.102	0.170
7	0.004	0.014	0.029	0.006	0.017	0.032
8	0.021	0.050	0.089	0.012	0.028	0.044
9	0.018	0.042	0.063	0.030	0.059	0.110
10	0.019	0.048	0.080	0.019	0.044	0.075
11	0.004	0.020	0.040	0.003	0.012	0.022
12	0.005	0.018	0.041	0.007	0.024	0.038
13	0.110	0.158	0.260	0.160	0.252	0.430
14	0.001	0.008	0.018	0.004	0.012	0.019
15	0.010	0.030	0.055	0.047	0.081	0.120

REGRESSION OUTPUT

Actual vs Predicted Ln(Failure Rate)

SUMMARY OUTPU	F OPEN FA	ILURE ANA	ALYSIS			
					-	-6
Regression Stat	tistics				a b	
Multiple R	0.9987				Predictede	
R Square	0.9975				edic	
Adjusted R Square	0.7929				<u> </u>	
Standard Error	0.2868					
Observations	15					
ANOVA						
	df	SS	MS	F	ignificance	F
Regression	10	161.4031	16.1403	196.2824	0.0001	
Residual	5	0.4112	0.0822			
Total	15	161.8142				
(Coefficients	tandard Err	t Stat	P-value		
Intercept	0	#N/A	#N/A	#N/A		
Wire Guage	0.4535	0.1343	3.3770	0.0197		
Insulation Type	2.0738	0.6439	3.2209	0.0234		
Conductor Type	-0.4380	0.1701	-2.5745	0.0498		
Splices	0.5639	0.0781	7.2246	0.0008		
Curvature of Bundle	0.5013	0.2000	2.5061	0.0541		
Shock Dam. Pot.	-8.1221	0.9121	-8.9051	0.0003		
Ops/Main Traffic	0.2014	0.0560	3.5950	0.0156		
Ops temp\altitude	0.2050	0.1236	1.6585	0.1581		
Vibration	0.2239	0.0924	2.4218	0.0600		
Exp Corrosive Fluid	0.4742	0.1026	4.6237	0.0057		

Failure Rate Open Failures

 $= \exp\{0-(-3.1354)+0.4535*$ Wire Gauge Code

- + 2.0738*Insulation Type Code
- 0.4380*Conductor Type Code
- + 0.5639*Splices Code
- + 0.5013*Curvature of Bundle Code
- 8.1221*Shcok Damage Potential Code
- + 0.2014*Ops/Main Traffic Code
- + 0.2050*Ops Temp/Altitude
- + 0.2239*Vibration Code
- + 0.4742*Exp Corrosive Fluid Code} x10⁻⁷ failures per 100 feet of wire

CALCULATION OF SCALE CONSTANT³¹ CABIN LIGHTING WIRING

Report Number	Occurrence Date	Submitter	Operator	Stage of Operation	SDR Type	Report Status	ATA System Code	ATA System	Aircraft Make Name	Aircraft Model Name	Aircraft Series Name	Registrati on Nbr	Aircraft Serial Nbr
2002021200040	25-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	A	CLOSED	(3397	' LIGHT SY	(BOEING	767	300) 390AA	27450
2002021200041	25-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	CRUISE	A	CLOSED	(2612	2 FIRE DET	TIBOEING	767	300) 386AA	27060
2002021200034	21-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	A	CLOSED	(3397	' LIGHT SY	BOEING	767	300) 378AN	25447
2002021200035	21-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	А	CLOSED	(3397	' LIGHT S	BOEING	767	300) 386AA	27060
2002021200027	20-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	А	CLOSED	(3397	' LIGHT S	BOEING	767	300) 390AA	27450
2002011100057	10-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	А	CLOSED	(3397	' LIGHT S	BOEING	767	300) 362AA	24043
2002011000070	07-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	А	CLOSED	(3397	' LIGHT S	(BOEING	767	300) 353AA	24034
2002011000072	05-dec-01	AIR CARRIER\TAXI	(AMERICAN AIRLINES	INSP/MAINT	A	CLOSED	(3397	' LIGHT S	(BOEING	767	300) 386AA	27060

CALCULATION OF SCALE CONSTANT

Number of Engines	Wing Type	Part Name	Part Condition	Part Location	Nature of Condition	Precautionary Condition
2	2 MONOPLANE-LOW WING	WIRE	DAMAGE	CABIN	SYSTEM	NONE
	2 MONOPLANE-LOW WING	WIRE	FALSE INI	LAVATOR	FALSE W/	UNSCHED LAN
2	2 MONOPLANE-LOW WING	WIRE	DAMAGE	CABIN	SYSTEM	NONE
	2 MONOPLANE-LOW WING	WIRE	DAMAGE	CABIN	SYSTEM	NONE
	2 MONOPLANE-LOW WING	WIRE	BROKEN	CABIN	SYSTEM	NONE
	2 MONOPLANE-LOW WING	WIRE	DAMAGE	CABIN	SYSTEM	NONE
	2 MONOPLANE-LOW WING	WIRE	DAMAGE	CABIN	SYSTEM	NONE
2	2 MONOPLANE-LOW WING	WIRE	BROKEN	CABIN	SYSTEM	NONE

CALCULATION OF SCALE CONSTANT

TURBOFA	M/TURBOJET			ER	NOVENS	8 8	DECEMS		Quart	
	Aircraft Operat Mfg Nodel Dewign				Number Aircraft	Flight Time	Number Aircraft	Vlight. Time	Average Number Aircraft	Total Flight Time
A 330	10•	FDEA	43	5,382	43	5,394	43	5,990	43	16,766
Air	roraft Model	Total:	43	5,382	43	5,194	43	5,990	43	15,766
¥ ¥30	094203	DHLA XNOA			6	811	8	1,299	6 8	811 1,299
Air	roraft Model	Total:			e	811	8	1,299	7	2,110
A A30	0246058	AALA	24	5,909	34	6,409	34	6,852	34	19,170
Air	roraft Model	Total:	24	5,909	14	6,409	34	6,852	34	19,170
A A30	0746058	IRKA	47	4,250	47	4,875	47	6,248	47	15,373
Air	roraft Model	Total:	47	4,250	47	4,875	47	6,248	47	15,271
A A71	10203	702A	26	2,141	26	2,240	26	3,209	26	7,590
Air	reraft Model	Total:	26	2,141	26	2,240	26	3,209	26	7,590
A A31	10222	702A	18	1,489	18	1,711	18	1,798	18	4,995

OTHER WORKS

Chaloner, K., Church, T., Louis, T. A., and Matts, J.P., (1993), "Graphical elicitation of a prior distribution for a clinical trial", Statistician, 42, pp. 341-355

Zuashkiani, A., Banjevic, D. and Jardine, A.K.S. (2009), "Estimating parameters of the proportional hazards modelbased on expert knowledge and statistical data", Journal of n the Operational Research Society, 60, pp. 1621-1636.