
Some problems around	


Mathematics of Planet Earth



What would be the rise of the oceans if all 
glaciers of Antarctica and Greenland were to melt?

Question



Greenland
Area of glaciers:  1,775,637 km2

Volume of glaciers: 2,850,000 km3

Antarctica
Area:  14,000,000 km2

The major part of the continent is covered by 
ice with a mean thickness of at least 1,6 km

Total area of oceans

335,258,000 km2



Rise of the sea level if all the melted water 
was uniformly spread over the oceans

It is given by	


!
Total volume of ice sheet  25,250,000   0.075 km	


  Total area of oceans    335,258,000	


!

hence approximately 75 meters

= =



Limits of the model
- Some of the water may evaporate. But then, will 

meteo rainfalls increase?	


  - Will some of the water enrich ground water    	


    instead of staying at the surface of the Earth?	


  - Part of the land will be covered by water, so  	


    water will be spread over a larger surface than 	


    that of the oceans.	


  - Others, that scientists may or may not have 	


    planned…	


!



Let us discuss 3: Part of the land will be covered by water, so water 
will be spread over a larger surface than that of the oceans. 

- Percentage of the area of the Earth covered by the 
oceans: approximately 70%	



  - The mean altitude of the Earth is 840m. Hence it 	


    is reasonable to assume that less than one fourth  	


    of the Earth will be covered by water, i.e. less 	


    than 1/4  x 30% = 7.5% of the surface of the Earth. 	


  - Height of the water if all the melted water is spread 	


    over the oceans plus ¼ of the land:	


!
   75 x Surface of the oceans = 75 x  70  = 68 m	


          Surface to cover           77.5	

      	


!

	
   	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  

The rise will be at least 68 meters!



Hence why do the scientists only predict a 
rise of the order of one meter til 2100?

Because the ice cannot melt so fast

But we see that we must look 
beyond 2100...



The movement of tectonic plates

The tectonic plates move slowly on the 
viscous magma

Mathematics helps understanding the 
movements of these plates



There are 12 large tectonic plates 
and many small ones (at least 40)



How to describe the movement of a tectonic 
plate

The movement of a tectonic plate is very 
slow. Moreover, the plate is rigid. Hence, 
each movement is well approximated by a 
linear transformation which preserves the 

distances and angles, hence an 	


orthogonal transformation.

This transformation is close to the identity. 
Hence, it is a rotation around an axis! 



Each tectonic plate moves according to a rotation 
around an axis. How to find it?

This axis intersects the sphere in two Eulerian 
poles

The rotation is determined by one Eulerian 
pole and the angular rotation speed around 

that pole

The linear speed depends from the distance to 
the Eulerian pole



Hence the different types of faults ??	



- divergence zones (African rift)                  

- convergence zones (rising of mountains  	


subduction zone when one plate slides below another one)

- sliding zones



The drift of continents following 
Wegener (1915)



This theory relies on

1. Marking from ancient glaciations, 

2. Similarities in fossils in regions far one 
from the other



3. Correspondence between geological structures



Evaluating the mass of the Earth

We use Newton’s gravitational law and deduce the 
mass of the Earth from the gravitational attraction 
of the Earth at the surface of the Earth. We get 	



M=5.98 x 1024 kg

The Earth is much too heavy to be homogeneous 
since the density of the crust is around 2.2-2.9 

kg/dm3 and the mean density of 5.52 kg/dm3.

Hence, this tells us that the interior of the 
Earth is very heavy!



Discovering the Earth interior

Richard Dixon Oldham identified the 
different types of seismic waves recorded 
on seismographs:

. P-waves: the pressure waves travel 	


  through the viscous interior	



. S-waves: the shear waves are damped  	



   in the mantle, and hence not recorded 	


   far from the epicenter of an earthquake. 



Inge Lehmann discovered the inner core of 
the Earth in 1936

She used the measures of the different travel 
times of seismic waves generated by earthquakes 
to different stations over the Earth.

Inge Lehmann was a 
mathematician. She 
worked at the Danish 
Geodetic Institute.



If the Earth were uniform 
then the signal would  
travel like that: 

The travel time (in s) 
depending on the angle 
would be like that: 
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But the Earth has several layers in which 
the signal travels at different speeds.

When we change layer, the signal makes 
an angle according to the refraction law:

sin ✓1
v1

=
sin ✓2
v2



This is what occurs when leaving the 
mantle and entering the core in which the 

signal slows down.

We see that no 
signals can be 
detected along 
the two brown 
arcs located 
between 112 
degrees and 154 
degrees. 



This means that there should be no signal 
detected in an annular region like this



Also, the travel time is discontinuous
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The travel time for 
rays starting in the 
upper half-sphere



But Inge Lehmann discovered that 
signals were registered in the forbidden 

region of the two brown arcs!

A model explaining the anomalies and the 
registered travel times for these signals is 
that the core is divided in two parts: the 
inner core and the outer core. 



The outer core and the inner core 

The signal travels faster in the inner core. So some 
rays cannot enter and are reflected. They are 
detected in the forbidden region of the orange arcs.



Indeed, in the refraction law, when    is too 
large and        , the signal cannot enter 
the second layer and is reflected.

✓1
v1 < v2

If                  is greater	


!
than 1, then it cannot 
be equal to sin ✓2

sin �1
v2
v1



The shapes of Earth

The loss of equilibrium through diffusion 
creates regular patterns:	


- dunes	


- waves	


- vegetation patterns	


!



The loss of equilibrium 
through diffusion creating 

patterns is a recurrent theme 
in science

It is a very powerful idea that was 
introduced by Turing to explain the 

morphogenesis  



A model explaining sparse vegetation pattern

There is not enough water 
for a uniform covering 
with vegetation

There are feed-back mechanisms explaining 
why patches of vegetation can persist:	


- the patches can drain the water from 	


  neighborhing empty spots	


- the vegetation limits the evaporation
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Figure 2: Spatial patterns for different amounts of rainfall (R) after
d. Scale is m. Plant mortality, d, is 0.25, with othert p 3,000 400 # 400

parameters set at default values (see text). Plants are represented by dark
green and bare soil by light brown. An animation of this model output
is available on the on-line edition of The American Naturalist as an
appendix. a, Spotted pattern, ; b, labyrinths with spots,R p 0.75 R p

; c, gap pattern, ; d, regular bands on slope (top on right-1.0 R p 1.25
hand side; periodic boundary conditions), .R p 1.0

flow that is set to 10 m d!1. The two-dimensional nu-
merical simulations were forward Euler integrations of the
finite-difference equations resulting from discretization of
the diffusion operator. The spatial mesh consisted of a
rectangular grid of elements with reflecting200 # 200
boundary conditions. Simulations were started by intro-
ducing random plant peaks in 1% of the grid elements,
which were all set in the plantless equilibrium of W p

and ). For the one-dimensional analysis,R/r O p R/(aWw 0

the bifurcation analysis program Content (Kuznetsov and
Levitin 1997) was used.

The typical spatial patterns on flat ground that are gen-
erated by our model are revealed in a two-dimensional
domain representing m for different amounts400 # 400
of rainfall. For mm d!1, a spotted pattern isR p 0.75
formed (fig. 2a), changing into labyrinths with spots for

(fig. 2b); a gap pattern is generated forR p 1.0 R p
(fig. 2c). In the long run, both spots and gaps arrange1.25

themselves in a regular hexagonal pattern. On slopes,
where surface water flows in one direction, the model
generates regular vegetation bands, moving slowly uphill
(fig. 2d).

In a one-dimensional analysis, we now demonstrate how
the various patterns are interlinked and how they originate
from the spatially homogeneous equilibrium. We also il-
lustrate that self-organized vegetation patterns can persist
far into regions of high aridity, where plants would become
extinct if homogeneously distributed.

The model allows for a homogeneous equilibrium of
plant density, soil water, and surface water. With decreasing
rainfall, the homogeneous plant equilibrium decreases un-
til plants become extinct for (fig. 3a). Close to thisR ≤ 1.0
extinction threshold, the homogeneous plant equilibrium
is unstable against small spatial perturbations. This is in-
dicative of the principle of pattern formation as first out-
lined by Turing (Turing 1952): pattern formation can oc-
cur if an equilibrium is stable to spatially homogeneous
perturbations but unstable to heterogeneous perturba-
tions. From the Turing instability points unstable non-
homogeneous equilibria originate which link up to a stable
nonhomogeneous equilibrium. This stable nonhomoge-
neous equilibrium, which is characterized by a single plant
peak (fig. 3b), exists for a wide range of rainfall rates, and
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Figure 1: Aerial photographs from patterned vegetation in Niger (S.
Prince, personal communication). Scale is m. a, Labyrinths400 # 400
with spots; b, gap pattern.

primarily in two ways: it is fully mechanistic, and it treats
the lateral flow of water above and below the soil as sep-
arate, not independent, variables. Although the current
model greatly simplifies the biophysics of arid systems, it
can reproduce the whole range of distinctive vegetation
patterns as observed in arid ecosystems, indicating that
the proposed mechanism might be generally applicable.
We further show that self-organized vegetation patterns
can persist far into regions of high aridity, where plants
would become extinct if homogeneously distributed,
pointing to the importance of this mechanism for main-
taining productivity of arid ecosystems (Noy-Meir 1973).

Our analyses are based on the model first developed in
HilleRisLambers et al. (2001), which we now briefly review.
Vegetation patterning is generally linked to the mechanism
by which plants increase surface-water infiltration into the
soil, in combination with low annual rainfall conditions
(Bromley et al. 1997; Klausmeier 1999; Leprun 1999; Lud-
wig et al. 1999a; HilleRisLambers et al. 2001). During rain
showers, some rainwater will infiltrate into the soil, while
the remainder will run off as surface water to other areas.
With increasing plant density, the rate of infiltration of
surface water into the soil will asymptotically approach a
maximum (Rietkerk and van de Koppel 1997). Lateral flow
of surface water is due to pressure differences measured
by the slope of the thickness of the surface-water layer and
can be described with a single diffusion term (Bear and
Verruyt 1990; HilleRisLambers et al. 2001). Part of the
infiltrated soil water subsequently evaporates or moves out
of reach of plant roots by drainage and lateral subsurface
flow due to capillary forces (Hills 1971; Lawrence Ding-
man 1994). Soil water uptake and plant growth are both
assumed to be saturation functions of soil-water availa-
bility (de Wit 1958; Rietkerk et al. 1997). Plant dispersal,
through seed or vegetative propagation, is approximated
by a diffusion term (Okubo 1989; Cain 1990; HilleRis-
Lambers et al. 2001).

The model is a set of three partial differential equations
describing the dynamics of three state variables: plant den-
sity (P ; g m!2), soil water (W; mm), and surface water
(O; mm). The full model reads

!P W
p c # g # # P ! d # P " D DP, (1a)max p!t W " k1

!W P " k # W W2 0p a # O ! g #max!t P " k W " k2 1

# P ! r # W " D DW, (1b)w w

!O P " k # W2 0p R ! a # O " D DO, (1c)o!t P " k 2

where c (g mm!1 m!2) is the conversion of water uptake
by plants to plant growth, gmax (mm g!1 m!2 d!1) is the
maximum specific water uptake, k1 (mm) is a half-satu-
ration constant of specific plant growth and water uptake,
d (d!1) is the specific loss of plant density due to mortality,
Dp (m2 d!1) is plant dispersal, a (d!1) is the maximum
infiltration rate, k2 (g m!2) is the saturation constant of
water infiltration, W0 (—) is the water infiltration rate in
the absence of plants, rw (d!1) is the specific soil water loss
due to evaporation and drainage, Dw (m2 d!1) is the dif-
fusion coefficient for soil water, R (mm d!1) is rainfall,
and Do (m2 d!1) is the diffusion coefficient for surface
water (HilleRisLambers et al. 2001). Plausible parameters
were obtained from the literature and were set as follows:

, , , , ,c p 10 g p 0.05 k p 5 D p 0.1 a p 0.2 k pmax 1 p 2

, , , , , d ranges be-5 W p 0.2 r p 0.2 D p 0.1 D p 100o w w o

tween 0 and 0.5, and R ranges between 0 and 3 (Hills
1971; Oborny and Cain 1997; Rietkerk et al. 1997; Klaus-
meier 1999; HilleRisLambers et al. 2001). A Laplacian op-
erator was added for diffusion. We extended the original
model in case of a slope by replacing the diffusion term
DoDO with v dO/dx (eq. [1c]), in which v is the downhill
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without consumers functioning as ecosystem
engineers. Increasing resource availability
does not recover these localized structures,
because the resource concentration mecha-
nism fails. This phenomenon is called hyster-
esis, meaning that specific spatial structures
may develop in real ecosystems that only
arise when resource availability is de-
creased, but not when increased. There-
fore, we propose the hypothesis that
imminent catastrophic shifts in ecosys-
tems can be predicted by self-organized
patchiness.

Arid Ecosystems
Self-organized patchiness and the re-
source concentration mechanisms in-
volved have been reported from various
ecosystems (Table 1 and Fig. 1), among
which arid ecosystems are the most
prominent (8–14). The self-organized
patchiness in these ecosystems differs
in scale and shape. Patterns reported are
gaps, labyrinths, stripes (‘‘tiger bush’’)
(Fig. 1, A to C), and spots (‘‘leopard
bush’’).

The general mechanism underlying
this self-organized patchiness is a pos-
itive feedback between plant growth and
availability of water. Higher vegetation
density allows for higher water infiltra-
tion into the soil (because of root
penetration) and lower soil evaporation
(because of shading). As a result, vege-
tation persists once present, but bare soil
is too hostile for recolonization after the
vegetation disappears, implying that the
present state of the vegetation depends
on its history (3).

Recent studies link this positive feed-
back with subsequent redistribution of
water resources (10–12). Lateral flow of
subsurface soil water at a scale of 0.1 m,
driven by differences in evapotranspira-
tion, explains regular patterning of grasses
in the Negev desert (11) (Fig. 1C).
Redistribution of surface runoff water
at a scale of 10 m, driven by differences
in water infiltration, elucidates the for-
mation of self-organized patchiness in
arid bushlands (12) (Fig. 1, A and B).
These observations show that similar
patterns of self-organized patchiness
may emerge at different scales. Eco-
system transitions involve a sequence
of emerging patterns of various forms
induced by decreased rainfall. Vegeta-
tion states include homogeneous cover,
gaps, labyrinths or stripes, and spots, in
that order (11, 12, 14). More important,
in these models the vegetation shifts
catastrophically from the spotted state
to a bare homogeneous state if rainfall
is decreased beyond a threshold. This
can be attributed to global bistability

of the spotted and bare states. Hence, a
predictable form of self-organized patchi-
ness may indicate imminent catastrophic
shift to a bare homogeneous state. Increased
rainfall may not recover the spotted state,
because the resource concentration mecha-

nism (concentration of soil water under veg-
etated patches) fails (11).

Savanna Ecosystems
In nutrient-poor Savanna ecosystems, periodic
and aperiodic isolated spots of trees and shrubs

Fig. 1. Field observations. (A to C) Arid ecosystems: (A) Labyrinth of bushy vegetation in Niger [(12), *
2002 University of Chicago]; (B) Striped pattern of bushy vegetation in Niger; (C) Labyrinth of perennial
grass Paspalum vaginatum in Israel [(11), * 2001 American Physical Society]. (D and E) Savanna
ecosystems: Aerial and ground photographs of spots of tree patches in Ivory Coast and French Guiana,
respectively [(15), * 2002 American Physical Society]. (F and G) Peatlands: Regular maze patterns of
shrubs and trees in western Siberia [(25), * 2004 University of Chicago]. Scales of oblique aerial
photographs [all panels except (E)] are order-of-magnitude approximations of distance in the x direction
shown in the scale bars.

R E V I E W

www.sciencemag.org SCIENCE VOL 305 24 SEPTEMBER 2004 1927

without consumers functioning as ecosystem
engineers. Increasing resource availability
does not recover these localized structures,
because the resource concentration mecha-
nism fails. This phenomenon is called hyster-
esis, meaning that specific spatial structures
may develop in real ecosystems that only
arise when resource availability is de-
creased, but not when increased. There-
fore, we propose the hypothesis that
imminent catastrophic shifts in ecosys-
tems can be predicted by self-organized
patchiness.
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(Fig. 1, A to C), and spots (‘‘leopard
bush’’).
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itive feedback between plant growth and
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density allows for higher water infiltra-
tion into the soil (because of root
penetration) and lower soil evaporation
(because of shading). As a result, vege-
tation persists once present, but bare soil
is too hostile for recolonization after the
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Redistribution of surface runoff water
at a scale of 10 m, driven by differences
in water infiltration, elucidates the for-
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arid bushlands (12) (Fig. 1, A and B).
These observations show that similar
patterns of self-organized patchiness
may emerge at different scales. Eco-
system transitions involve a sequence
of emerging patterns of various forms
induced by decreased rainfall. Vegeta-
tion states include homogeneous cover,
gaps, labyrinths or stripes, and spots, in
that order (11, 12, 14). More important,
in these models the vegetation shifts
catastrophically from the spotted state
to a bare homogeneous state if rainfall
is decreased beyond a threshold. This
can be attributed to global bistability

of the spotted and bare states. Hence, a
predictable form of self-organized patchi-
ness may indicate imminent catastrophic
shift to a bare homogeneous state. Increased
rainfall may not recover the spotted state,
because the resource concentration mecha-

nism (concentration of soil water under veg-
etated patches) fails (11).

Savanna Ecosystems
In nutrient-poor Savanna ecosystems, periodic
and aperiodic isolated spots of trees and shrubs

Fig. 1. Field observations. (A to C) Arid ecosystems: (A) Labyrinth of bushy vegetation in Niger [(12), *
2002 University of Chicago]; (B) Striped pattern of bushy vegetation in Niger; (C) Labyrinth of perennial
grass Paspalum vaginatum in Israel [(11), * 2001 American Physical Society]. (D and E) Savanna
ecosystems: Aerial and ground photographs of spots of tree patches in Ivory Coast and French Guiana,
respectively [(15), * 2002 American Physical Society]. (F and G) Peatlands: Regular maze patterns of
shrubs and trees in western Siberia [(25), * 2004 University of Chicago]. Scales of oblique aerial
photographs [all panels except (E)] are order-of-magnitude approximations of distance in the x direction
shown in the scale bars.
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Figure 2: Spatial patterns for different amounts of rainfall (R) after
d. Scale is m. Plant mortality, d, is 0.25, with othert p 3,000 400 # 400

parameters set at default values (see text). Plants are represented by dark
green and bare soil by light brown. An animation of this model output
is available on the on-line edition of The American Naturalist as an
appendix. a, Spotted pattern, ; b, labyrinths with spots,R p 0.75 R p

; c, gap pattern, ; d, regular bands on slope (top on right-1.0 R p 1.25
hand side; periodic boundary conditions), .R p 1.0

flow that is set to 10 m d!1. The two-dimensional nu-
merical simulations were forward Euler integrations of the
finite-difference equations resulting from discretization of
the diffusion operator. The spatial mesh consisted of a
rectangular grid of elements with reflecting200 # 200
boundary conditions. Simulations were started by intro-
ducing random plant peaks in 1% of the grid elements,
which were all set in the plantless equilibrium of W p

and ). For the one-dimensional analysis,R/r O p R/(aWw 0

the bifurcation analysis program Content (Kuznetsov and
Levitin 1997) was used.

The typical spatial patterns on flat ground that are gen-
erated by our model are revealed in a two-dimensional
domain representing m for different amounts400 # 400
of rainfall. For mm d!1, a spotted pattern isR p 0.75
formed (fig. 2a), changing into labyrinths with spots for

(fig. 2b); a gap pattern is generated forR p 1.0 R p
(fig. 2c). In the long run, both spots and gaps arrange1.25

themselves in a regular hexagonal pattern. On slopes,
where surface water flows in one direction, the model
generates regular vegetation bands, moving slowly uphill
(fig. 2d).

In a one-dimensional analysis, we now demonstrate how
the various patterns are interlinked and how they originate
from the spatially homogeneous equilibrium. We also il-
lustrate that self-organized vegetation patterns can persist
far into regions of high aridity, where plants would become
extinct if homogeneously distributed.

The model allows for a homogeneous equilibrium of
plant density, soil water, and surface water. With decreasing
rainfall, the homogeneous plant equilibrium decreases un-
til plants become extinct for (fig. 3a). Close to thisR ≤ 1.0
extinction threshold, the homogeneous plant equilibrium
is unstable against small spatial perturbations. This is in-
dicative of the principle of pattern formation as first out-
lined by Turing (Turing 1952): pattern formation can oc-
cur if an equilibrium is stable to spatially homogeneous
perturbations but unstable to heterogeneous perturba-
tions. From the Turing instability points unstable non-
homogeneous equilibria originate which link up to a stable
nonhomogeneous equilibrium. This stable nonhomoge-
neous equilibrium, which is characterized by a single plant
peak (fig. 3b), exists for a wide range of rainfall rates, and
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Siganus vermiculatus

Figure 11. The skin pattern of the Siganus vermiculatus [reproduced from Frank (1973)],
showing the transition from stripes to spots that can be simulated with the calculations
shown in Fig. 5 when a source is present at one of the boundaries.

An example of a transient pattern is shown in Fig. 14, obtained with a small
q1 coupling, which converges very slowly, and compared with the hexagons with
missing central spots found in the skin of the Coria formosa parrot fish.
A very important aspect of pattern generation is the robustness of pattern. This

depends on a number of things, including the boundary conditions and the non-
linear terms. Our results show that in the case where spots compete with stripes,
spotted patterns are very robust and appear to arise as long as the coefficient of
the quadratic term is non-zero (Fig. 3 illustrates this). A source-type bound-
ary condition can robustly select stripes near to the boundary in the case when
there is stripe–spot competition (Figs 4 and 8). For the case where stripes are the
only pattern, the boundary sources can influence their orientation (illustrated by
Fig. 13).

siganus vermiculatus
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Hypostomus plecostomus

(a) (b)

Figure 12. The skin pattern of the Hypostomus plecostomus can be modeled with the set of
quadratically coupled Turing equations (see Fig. 6).

6. CONCLUSIONS

In this paper, we have carried out a detailed numerical investigation of a generic
Turing system and have examined the effects of boundary conditions, domain shape,
and coupling of Turing systems. We have shown that these modified models can
generate patterns not exhibited by the standard Turing model, and have compared
themwith the pigmentation patterns observed on fish. For example, coupled Turing
systems with very different diffusion times can exhibit stripes interspersed with
spots (Fig. 10) due to the modulation of the non-linear terms which are crucial in
determining whether the pattern evolves to stripes or to spots. Also, the coupled
system can exhibit hexagonal arrays of spots with the central spot missing (Fig. 14).
We are unaware of such patterns arising from a single Turing system. Coupled
Turing systems are able to producemodulated stripes [Figs 6(c) and7]. Furthermore,

hypostomus plecostomus

leopard

tiger



The hysteresis phenomenon

Attention! If the vegetation has disappeared in a region of low humidity 
following a drought period, then it will not spontaneously reappear because 
the feedback mechanisms cannot help. 
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parameters set at default values (see text). Plants are represented by dark
green and bare soil by light brown. An animation of this model output
is available on the on-line edition of The American Naturalist as an
appendix. a, Spotted pattern, ; b, labyrinths with spots,R p 0.75 R p

; c, gap pattern, ; d, regular bands on slope (top on right-1.0 R p 1.25
hand side; periodic boundary conditions), .R p 1.0

flow that is set to 10 m d!1. The two-dimensional nu-
merical simulations were forward Euler integrations of the
finite-difference equations resulting from discretization of
the diffusion operator. The spatial mesh consisted of a
rectangular grid of elements with reflecting200 # 200
boundary conditions. Simulations were started by intro-
ducing random plant peaks in 1% of the grid elements,
which were all set in the plantless equilibrium of W p

and ). For the one-dimensional analysis,R/r O p R/(aWw 0

the bifurcation analysis program Content (Kuznetsov and
Levitin 1997) was used.

The typical spatial patterns on flat ground that are gen-
erated by our model are revealed in a two-dimensional
domain representing m for different amounts400 # 400
of rainfall. For mm d!1, a spotted pattern isR p 0.75
formed (fig. 2a), changing into labyrinths with spots for

(fig. 2b); a gap pattern is generated forR p 1.0 R p
(fig. 2c). In the long run, both spots and gaps arrange1.25

themselves in a regular hexagonal pattern. On slopes,
where surface water flows in one direction, the model
generates regular vegetation bands, moving slowly uphill
(fig. 2d).

In a one-dimensional analysis, we now demonstrate how
the various patterns are interlinked and how they originate
from the spatially homogeneous equilibrium. We also il-
lustrate that self-organized vegetation patterns can persist
far into regions of high aridity, where plants would become
extinct if homogeneously distributed.

The model allows for a homogeneous equilibrium of
plant density, soil water, and surface water. With decreasing
rainfall, the homogeneous plant equilibrium decreases un-
til plants become extinct for (fig. 3a). Close to thisR ≤ 1.0
extinction threshold, the homogeneous plant equilibrium
is unstable against small spatial perturbations. This is in-
dicative of the principle of pattern formation as first out-
lined by Turing (Turing 1952): pattern formation can oc-
cur if an equilibrium is stable to spatially homogeneous
perturbations but unstable to heterogeneous perturba-
tions. From the Turing instability points unstable non-
homogeneous equilibria originate which link up to a stable
nonhomogeneous equilibrium. This stable nonhomoge-
neous equilibrium, which is characterized by a single plant
peak (fig. 3b), exists for a wide range of rainfall rates, and
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The hysteresis phenomenon

We have passed a tipping point: no return is possible
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dicative of the principle of pattern formation as first out-
lined by Turing (Turing 1952): pattern formation can oc-
cur if an equilibrium is stable to spatially homogeneous
perturbations but unstable to heterogeneous perturba-
tions. From the Turing instability points unstable non-
homogeneous equilibria originate which link up to a stable
nonhomogeneous equilibrium. This stable nonhomoge-
neous equilibrium, which is characterized by a single plant
peak (fig. 3b), exists for a wide range of rainfall rates, and
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Figure 2: Spatial patterns for different amounts of rainfall (R) after
d. Scale is m. Plant mortality, d, is 0.25, with othert p 3,000 400 # 400

parameters set at default values (see text). Plants are represented by dark
green and bare soil by light brown. An animation of this model output
is available on the on-line edition of The American Naturalist as an
appendix. a, Spotted pattern, ; b, labyrinths with spots,R p 0.75 R p

; c, gap pattern, ; d, regular bands on slope (top on right-1.0 R p 1.25
hand side; periodic boundary conditions), .R p 1.0

flow that is set to 10 m d!1. The two-dimensional nu-
merical simulations were forward Euler integrations of the
finite-difference equations resulting from discretization of
the diffusion operator. The spatial mesh consisted of a
rectangular grid of elements with reflecting200 # 200
boundary conditions. Simulations were started by intro-
ducing random plant peaks in 1% of the grid elements,
which were all set in the plantless equilibrium of W p

and ). For the one-dimensional analysis,R/r O p R/(aWw 0

the bifurcation analysis program Content (Kuznetsov and
Levitin 1997) was used.

The typical spatial patterns on flat ground that are gen-
erated by our model are revealed in a two-dimensional
domain representing m for different amounts400 # 400
of rainfall. For mm d!1, a spotted pattern isR p 0.75
formed (fig. 2a), changing into labyrinths with spots for

(fig. 2b); a gap pattern is generated forR p 1.0 R p
(fig. 2c). In the long run, both spots and gaps arrange1.25

themselves in a regular hexagonal pattern. On slopes,
where surface water flows in one direction, the model
generates regular vegetation bands, moving slowly uphill
(fig. 2d).

In a one-dimensional analysis, we now demonstrate how
the various patterns are interlinked and how they originate
from the spatially homogeneous equilibrium. We also il-
lustrate that self-organized vegetation patterns can persist
far into regions of high aridity, where plants would become
extinct if homogeneously distributed.

The model allows for a homogeneous equilibrium of
plant density, soil water, and surface water. With decreasing
rainfall, the homogeneous plant equilibrium decreases un-
til plants become extinct for (fig. 3a). Close to thisR ≤ 1.0
extinction threshold, the homogeneous plant equilibrium
is unstable against small spatial perturbations. This is in-
dicative of the principle of pattern formation as first out-
lined by Turing (Turing 1952): pattern formation can oc-
cur if an equilibrium is stable to spatially homogeneous
perturbations but unstable to heterogeneous perturba-
tions. From the Turing instability points unstable non-
homogeneous equilibria originate which link up to a stable
nonhomogeneous equilibrium. This stable nonhomoge-
neous equilibrium, which is characterized by a single plant
peak (fig. 3b), exists for a wide range of rainfall rates, and
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Earth is inhabited by millions 
of living species

Where does all this biodiversity come from?

Mutations (randomness) create new species 

These species interact to survive

How?



Predators and preys

Mathematicians represent their 
interaction by a geometric model

Prey
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Competing species

We use the same type of models

Strong competition Weak competition
Species 1 Species 1
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Strong competition for one resource leads 
to the extinction of one species

This has been generalized by Simon Levin: 
in a model with n species	



Hence, competition goes against biodiversity!



Other forces allow to maintain biodiversity

One of them is spatial heterogeneity
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A second one is temporal heterogeneity
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Another force supports biodiversity

Cooperation! 	


(Martin Nowak)



The Prisoner’s Dilemma

COOPERATE(rem
ain silent)

DEFECT	


(confess)

COOPERATE(rem
ain silent)

2 years in jail	


2 years in jail

4 years in jail	


1 year in jail

DEFECT	


(confess)

1 year in jail	


4 years in jail

3 years in jail	


3 years in jail

Individual 2

Individual 1



Martin Nowak identified five 
mechanisms leading to communities 

dominated by cooperators 

1. Direct reciprocity: vampire bats share	


 with the bat who found no blood. A 	


 winning strategy: win-stay, lose-shift

2. Spatial selection when cooperators and	


  defectors are not uniformly distributed,	


  leading to patches of cooperators and	


  defectors: yeast cells



Five mechanisms

4. Indirect reciprocity: help of another	


 based on the needy’s individual	


 reputation: Japanese macaques

5. Group selection: employees competing	


 among themselves, but cooperating for	


 their company

3. Kin selection: cooperation (including	


  sacrifice) between genetically related	


  individuals



Cooperation has modeled 	


the world as we know it

It explains the preservation of biodiversity

It is everywhere present in the human 
organization of the planet



Calculating the size of the Earth

The Greeks knew that the Earth is a sphere. 
Eratosthenes had approximately calculated 
the circumference of the Earth

O a
a



O a
a

Syene

Alexandria

He knew that: 	


. the distance from Syene to Alexandria was 5000 	


  stadiums (one stadium measured 157.5m), 	


. that the Sun was making an angle of 7.5 degrees 	


  with the vertical direction at Alexandria at the 	


  precise time when it was vertical at Syena,	


. and that Alexandria and Syene are on the same 	


  meridian. 



Question: what is the shortest path on 
Earth between two points?

Answer: It is the short arc of great 
circle joining these two points

Problem



Example
Calculate the shortest path on Earth between 	


Dar es Salaam and Tokyo

Dar es Salaam:	


Longitude: 39,27 E	


Latitude: 6.82 S

Tokyo:	


Longitude: 139,75 E	


Latitude: 35,67 N

Considering that the Earth has an 
approximate radius R = 6360 km



How to compute the distance between	


Dar es Salaam and Tokyo?

If a point has longitude L 	


and latitude l, its coordinates are

(x, y, z) = R(cosL cos �, sinL cos �, sin �)

Let us consider the two vectors joining the 
center of the Earth to Toronto and Tokyo



The cosine of the angle 
between the two vectors is 
given by their scalar product 
divided by the product of 
their lengths, 

This yields

The length of the arc of great circle 
is given by the angle (in radians!) 
multiplied by the radius         km

↵

R⇥R

R = 6360



Toronto	


Longitude: 79.33 W 	


Latitude: 43.68 N  

Tokyo	


Longitude: 139.75 E 	


Latitude: 35.67 N



Suppose that a year is 365 days. How 
many revolutions does the Earth make 
around its axis during one day? During 
one year?	



Question



Questions

The Tropic of Cancer has latitude 23.5 N 
and that of Capricorn, 23.5 S

The Arctic Polar Circle has latitude 66.5 
N and the Antarctic Polar Circle has 
latitude 66.5 S 

Explain what special phenomena occur at 
these latitudes, as well as at the Equator 
and at the poles.



What is the height of the Sun at noon 
depending on the date and the latitude?

The seasons

What is the length of the day depending 
on the date and the latitude?



The angle of the Earth’s Axis with the 
equatorial plane is 23.5 degrees 



The season mechanism comes from the 
obliquity of the Earth axis



The geocentric point of view:	


!

- The earth is at the center	


- The equatorial plane is horizontal and	


  the polar axis vertical 	


- The Earth is at the center of the 	


  celestial sphere of infinite radius 	


- The Sun rotates around the Earth in a 	


  plane making an angle of 23.5 degrees 	


  with the equatorial plane 

How to make the computation



The height of the Sun at noon is given by 	


!

!

where   is the latitude and   is the  
declination (i.e the angle between the line 
Earth-Sun and the equatorial plane)

��

O d

f

f-d

90o � |�� �|



How to compute the declination  ?  �

sin � = sin↵ sin ✓

where   is the angle 
spread by the Sun since 
the spring equinox

✓

i.e., in degrees � =
360N

365, 25
where N is the number of days since the 
spring equinox



Checking the formula

sin � = sin↵ sin ✓

is a bit subtle. We consider that 
the celestial sphere has radius 1 

First method:  the Sun has cordinates   

(x, y0, z0) = (cos �, sin �, 0)

One then needs to change in the coordinates 
(x,y,z) and take the z-coordinate



Checking the formula

sin � = sin↵ sin ✓

Second method (more elementary but requiring 
mre computation):  Consider similar traingles 
in the vertical plane through the Sun and 
the intersection point of the y’-axis with 
the celestial sphere.



What is the length of the day?
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O d
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It is determined by the portion of the 
parallel which receives the sunlight

O d
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It is determined by the portion of the 
parallel which receives the sunlight

O d
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This corresponds to a central angle of 	



O d

f
d

f-d

360o � 2�



O d

f
d

f-d

|OB| = R sin⇥ tan �

cos� =

|OB|
|OC|

|OC| = R cos�

cos� = tan� tan �



The height of the Sun at noon depending 
on the date and the latitude
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The equation of time

Have you already noticed that in the 
Northern hemisphere the sunset is sooner on 
December 10 than at the winter solstice? 

At a given place, the solar noon (when the 
Sun is at its highest position) is not always 

at the same time.



date sunrise sunset solar noon

January 1st 6:11 18:42 12:26

February 1st 6:24 18:48 12:36

March 1st 6:28 18:42 12:35

April 1st 6:25 18:27 12:26

May 1st 6:23 18:16 12:19

June 1st 6:28 18:13 12:20

July 1st 6:34 18:18 12:26

August 1st 6:34 18:23 12:29

September 1st 6:23 18:22 12:23

October 1st 6:07 18:17 12:12

November 1st 5:55 18:17 12:06

December 1st 5:57 18:26 12:12

Solar noon at Dar es Salaam (at normal time)

The mean noon is at 12:23, taking into account that Dar 
es Salaam is East of the center of the time zone



The equation of time is the difference	


!

mean time - solar time  
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The first is that the orbit of the Earth	


 around the Sun is an ellipse

This difference comes from two reasons



When the Earth is closer to the Sun (around January 
4th) it has a higher speed. 	



!
Between two consecutive solar noons, the Earth makes 

one turn around its axis plus a portion of turn.	


!



This portion of turn is 
larger when the speed is 
higher. The solar days are 
then longer. This is the 

case in winter when Earth 
is closer to the Sun 	



 

This is the red component
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The second reason is the obliquity 	


of the Earth axis

It is the orange 
component
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The GPS (Global Positioning System)	


Fully operational since 1995

Network of 
satellites 
whose position 
is known



The receiver measures the travel time t of a 
signal emitted by a satellite to the receiver

The distance from the satellite to the receiver is 	


d = vt	



where v is the speed of light

The points at a distance 
d from the satellite are 
the points of a sphere 
centered at the satellite 
with radius d



The intersection of 
three spheres is two 
points. One is 
excluded since 
unrealistic

The intersection of 2 
spheres is a cercle

Hence, if we know the 
travel times of 3 signals 
from 3 satellites, then we 
know the position of the 
receiver.



In pratice ... the satellites have atomic 
clokcs perfectly synchronized

This is the theory...

We have a fourth unknown:  the shift 
between the clock of the satellites and that 
of the receiver

The receiver has a cheap clock

We then need to measure the travel time of 
the signal from a fourth satellite



4 measured times 4 unknown

-  The shift of the 	


  clocks	


- The 3 coordinates 	


  of position

With this method we get a precision of 
20 meters



Non standard applications of GPS

- Measuring the displacement of tectonic plates 

- Measuring Everest and observing its growth

- - Synchronizing electronic equipments	



-            The receiver calculates the shift of its clock with that of the satellites          



What means altitude if the Earth 
is not a sphere but a geoid?

Level surfaces of altitude are level surfaces 
of the gravitational field, with altitude zero 

corresponding to the level surface best 
approximating the surface of the oceans.



Can a person cross all bridges exactly once 
and come back to his(her) departure point?

Königsberg’s bridges



Cartography

Show that the orthogonal projection on the 
cylinder preserves ratios of areas 



The stereographic map is 
conformal



Applying the function log(z) one gets 
the Mercator transformation
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A sphere is conformally equivalent to a 
plane. But the Earth is not a sphere… 

It is still possible to draw conformal maps!



Thank you!


