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Abstract

The least core value of a cooperative game is the minimum penalty we need to charge a coalition
for defecting that ensures the existence of a fair and efficient cost allocation. The set of all such cost
allocations is called the least core. In this paper, we study the computational complexity and algorithmic
aspects of computing the least core value of supermodular cost cooperative games, and uncover some
structural properties of the least core of these games. We motivate the study of these games by showing
that a particular class of optimization problems has supermodular optimal costs. This class includes a
variety of problems in combinatorial optimization, especially in machine scheduling. We show that com-
puting the least core value of supermodular cost cooperative games is NP-hard, and build a framework to
approximate the least core value of these games using oracles that approximately determine maximally
violated constraints. With recent work on maximizing submodular functions, our framework yields a
(3+ε)-approximation algorithm for computing the least core value of general supermodular cost games.

We also apply our approximation framework to two particular classes of cooperative games: schedule
planning games and matroid profit games. Schedule planning games are cooperative games in which the
cost to a coalition is derived from the minimum sum of weighted completion times on a single machine.
By specializing some of the results for general supermodular cost cooperative games, we are able to
show that the Shapley value is an element of the least core of schedule planning games, and design a
fully polynomial time approximation scheme for computing the least core value of these games. Matroid
profit games are cooperative games with submodular profits: the profit to a coalition arises from the
maximum weight of a matroid basis. We show that an element of the least core and the least core value
of matroid profit games can be computed in polynomial time.
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1 Introduction

Consider a situation where a set of agents agree to share the cost of their joint actions, and need to determine

how to distribute the costs amongst themselves in a fair manner. For example, a set of agents may agree to

process their jobs together on a machine, and share the cost of optimally scheduling their jobs. This kind

of situation can be modeled naturally as a cooperative game. A cooperative game is a pair (N , v) where

N = {1, . . . , n} represents a set of agents, and v(S) represents the cost to agents in S ⊆ N .

In this paper, we are concerned with cooperative games (N , v) where v is nonnegative, supermodular,

and v(∅) = 0. We call such games supermodular cost cooperative games. A set function v : 2N
7→ R is

supermodular if

v(S ∪ { j})− v(S) ≤ v(S ∪ { j, k})− v(S ∪ {k}) for all S ⊆ N \ { j, k}. (1.1)

In words, supermodularity captures the notion of increasing marginal costs. Our primary motivation be-

hind studying these games is that many problems from combinatorial optimization—especially in machine

scheduling—have optimal costs that are supermodular. Cooperative games whose costs are determined by

combinatorial optimization problems have been considered previously: these include assignment games

(Shapley and Shubik 1971), minimum-cost spanning tree games (Granot and Huberman 1981), traveling

salesman games (Potters et al. 1991), facility location games (Goemans and Skutella 2004), scheduling-

related games (Curiel et al. 1989, Maniquet 2003, Mishra and Rangarajan 2005), and many others.

The central concern in cooperative game theory is the fair allocation of costs amongst agents. The

prominent solution concept for cooperative games is the core (Gillies 1959). The core of a cooperative game

(N , v) consists of all cost allocations x that distribute v(N )—the cost incurred when all agents cooperate—

in a way such that no subset of agents has incentive to forsake the rest of the agents and act on its own

behalf. Formally,

core(N , v) = {x ∈ RN : x(N ) = v(N ), x(S) ≤ v(S) for all S ⊆ N }.

(For notational convenience, for any vector x we define x(S) =
∑

i∈S xi for any S ⊆ N .) It is well known

that cooperative games with submodular1 costs always have nonempty cores (Shapley 1971). This result is

1A set function v : 2N
7→ R is submodular if −v is supermodular.
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quite intuitive. As a coalition grows, the cost of adding a particular agent to the coalition decreases, making

the idea of sharing costs more appealing. On the other hand, a supermodular cost cooperative game (N , v)

has an empty core (as long as v is not modular2). Similar intuition still holds: the cost of adding a particular

agent to a coalition increases as the coalition grows, diminishing the appeal of sharing costs.

When a cooperative game has an empty core, one might wonder if it is possible to allocate costs so that

no subset of agents has incentive to deviate, and a fraction α of the total cost v(N ) can be recovered. This

notion is captured in the approximate or α-core solution concept. Formally, for any α ∈ (0, 1],

α-core(N , v) = {x ∈ RN : x(N ) ≥ αv(N ), x(S) ≤ v(S) for all S ⊆ N }.

The α-core has been studied for a variety of games (Faigle et al. 1998, Faigle and Kern 1998, Pál and Tardos

2003, Immorlica et al. 2005). Unfortunately, in supermodular cost cooperative games, the largest fraction α

one could hope to recover under a fair allocation is
∑

i∈N v({i})/v(N ), which may be arbitrarily small.

Since the prospect for cooperation in sharing supermodular costs is bleak, we are led to ask: how much

do we need to penalize a coalition for defecting in order to encourage cooperation amongst all agents? This

notion is captured in the least core value of a cooperative game. The least core of a cooperative game (N , v)

is the set of cost allocations x that are optimal solutions to the least core optimization problem

z∗ = minimize z

subject to x(N ) = v(N )

x(S) ≤ v(S)+ z for all S ⊆ N , S 6= ∅, N .

(LC)

The optimal value z∗ of (LC) is the least core value3 of the game (N , v). By computing the least core

value, we gain insight into the value a coalition of agents places on the ability to act on their own. The

least core solution concept was introduced by Shapley and Shubik (1966), and later named by Maschler,

Peleg, and Shapley (1979). Computing an element in the least core has been studied in several contexts.

Faigle, Kern, and Paulusma (2000) showed that computing an element in the least core of minimum-cost

spanning tree games is NP-hard. Kern and Paulusma (2003) presented a polynomial description of the least

2A set function is modular if it is submodular and supermodular.
3Adding the inequalities xi ≤ v({i}) + z for all i ∈ N and using the equality x(N ) = v(N ), we can bound z∗ below by

(v(N )−
∑

i∈N v({i}))/|N |. So as long as costs are finite, the least core value is well defined. Moreover, if v is supermodular and
v(∅) = 0, then z∗ ≥ 0.
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core optimization problem for cardinality matching games. Properties of the least core value, on the other

hand, seem to have been largely ignored.

In this paper, we consider various theoretical aspects of computing the least core value of supermodular

cost cooperative games. In Section 2, we motivate the interest in supermodular cost cooperative games by

providing a class of optimization problems whose optimal costs are supermodular. This class of optimization

problems includes a variety of classical scheduling problems and other combinatorial optimization problems.

Then, in Section 3, we show that finding the least core value of supermodular cost cooperative games is

NP-hard, and design approximation algorithms based on oracles that approximately determine maximally

violated constraints. In Section 4, we apply our results to schedule planning games, or cooperative games in

which the costs are derived from the minimum sum of weighted completion times on a single machine. By

improving on some of the results for general supermodular cost cooperative games, we are able to give an

explicit formula for an element of the least core of schedule planning games, and design a fully polynomial

time approximation scheme for computing the least core value of these games. Finally, in Section 5, we

consider a cooperative game with submodular profits: matroid profit games. Matroid profit games are

cooperative games in which the profit to a coalition arises from the maximum weight of a matroid basis.

Using the framework established in Section 3 with the appropriate natural modifications, we show that the

least core value of these games can be computed in polynomial time.

2 A class of optimization problems with supermodular optimal costs

We begin by providing some motivation for looking at cooperative games with supermodular costs. The

problem of minimizing a linear function over a supermodular polyhedron—a polyhedron of the form {x ∈

RN : x(S) ≥ u(S) for all S ⊆ N }, where u : 2N
7→ R is supermodular—arises in many areas of combi-

natorial optimization, especially in scheduling. For example, Wolsey (1985) and Queyranne (1993) showed

that the convex hull of feasible completion time vectors on a single machine is a supermodular polyhedron.

Queyranne and Schulz (1995) showed that the convex hull of feasible completion time vectors for unit jobs

on parallel machines with nonstationary speeds is a supermodular polyhedron. The scheduling problem they

consider includes various classical scheduling problems as special cases. Goemans et al. (2002) showed that

for a scheduling environment consisting of a single machine and jobs with release dates, the convex hull of

mean busy time vectors of preemptive schedules is a supermodular polyhedron.
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In this section, we show that the optimal cost of minimizing a linear function over a supermodular

polyhedron is a supermodular function. As a result, by studying supermodular cost cooperative games, we

are able to gain insight into the sharing of optimal costs for a wide class of combinatorial optimization

problems.

Theorem 2.1. Let N be a finite set, and let u : 2N
7→ R be a supermodular function. If dj ≥ 0 for all

j ∈ N, then the function v : 2N
7→ R defined by

v(S) = min
{∑

j∈S

dj x j : x(A) ≥ u(A) for all A ⊆ S
}

for all S ⊆ N (2.1)

is supermodular on N.

Proof. Let S be a subset of N with s elements. Without loss of generality, we assume that

S = {1, . . . , j − 1, j, j + 1, . . . , k − 1, k, k + 1, . . . , s},

and that the associated costs are nonincreasing: d1 ≥ · · · ≥ ds . Define Si
= {1, . . . , i} for i = 1, . . . , s and

S0
= ∅.

It is well known that minimizing a linear function over a supermodular polyhedron can be achieved by

a greedy procedure (Edmonds 1970). In particular, the value of v(S) is

v(S) =
s∑

i=1

di
(
u(Si )− u(Si−1)

)
=

s∑
i=1

di u(Si )−

s−1∑
i=0

di+1u(Si )

=

s−1∑
i=1

(di − di+1)u(Si )+ dsu(Ss)− d1u(S0).

Similarly, we have that

v(S \ { j}) =
j−2∑
i=1

(di − di+1)u(Si )+ (dj−1 − dj+1)u(S j−1)+

s−1∑
i= j+1

(di − di+1)u(Si
\ { j})

+ dsu(Ss
\ { j})− d1u(S0),
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v(S \ {k}) =
k−2∑
i=1

(di − di+1)u(Si )+ (dk−1 − dk+1)u(Sk−1)+

s−1∑
i=k+1

(di − di+1)u(Si
\ {k})

+ dsu(Ss
\ {k})− d1u(S0),

v(S \ { j, k}) =
j−2∑
i=1

(di − di+1)u(Si )+ (dj−1 − dj+1)u(S j−1)

+

k−2∑
i= j+1

(di − di+1)u(Si
\ { j})+ (dk−1 − dk+1)u(Sk−1

\ { j})

+

s−1∑
i=k+1

(di − di+1)u(Si
\ { j, k})+ dsu(Ss

\ { j, k})− d1u(S0).

For any l ∈ N and A ⊆ N \ {l}, we define 1(A, l) to be the marginal value of adding l to A; that is,

1(A, l) = u(A ∪ {l})− u(A). Therefore,

v(S \ { j})− v(S \ { j, k})

= (dk−1 − dk)u(Sk−1
\ { j})+ (dk − dk+1)u(Sk

\ { j})− (dk−1 − dk+1)u(Sk−1
\ { j})

+

s−1∑
i=k+1

(di − di+1)
(
u(Si
\ { j} − u(Si

\ { j, k})
)
+ ds

(
u(Ss
\ { j})− u(Ss

\ { j, k})
)

= (dk − dk+1)1(Sk−1
\ { j}, k)+

s∑
i=k+1

(di − di+1)1(Si
\ { j, k}, k)+ ds1(Ss

\ { j, k}, k).

Similar to above, we consider the effects of adding k to S \ {k}:

v(S)− v(S \ {k})

= (dk−1 − dk)u(Sk−1)+ (dk − dk+1)u(Sk)− (dk−1 − dk+1)u(Sk−1)

+

s−1∑
i=k+1

(di − di+1)
(
u(Si )− u(Si

\ {k})
)
+ ds

(
u(Ss)− u(Ss

\ {k})
)

= (dk − dk+1)1(Sk−1, k)+
s−1∑

i=k+1

(di − di+1)1(Si
\ {k}, k)+ ds1(Ss

\ {k}, k).

By the supermodularity of u, we have that 1(A, k) ≤ 1(B, k) for any A ⊆ B ⊆ N \ {k}. This, in addition

with the fact that di − di+1 ≥ 0 for all i = 1, . . . , s − 1 and ds ≥ 0, implies that

v(S)− v(S \ {k})
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= (dk − dk+1)1(Sk−1, k)+
s−1∑

i=k+1

(di − di+1)1(Si
\ {k}, k)+ ds1(Ss

\ {k}, k)

≥ (dk − dk+1)1(Sk−1
\ { j}, k)+

s∑
i=k+1

(di − di+1)1(Si
\ { j, k}, k)+ ds1(Ss

\ { j, k}, k)

= v(S \ { j})− v(S \ { j, k}).

Therefore, v is supermodular.

As mentioned above, by the work of Wolsey (1985), Queyranne (1993), Queyranne and Schulz (1995),

and Goemans et al. (2002), we immediately have the following corollary of Theorem 2.1.

Corollary 2.2. If for all S ⊆ N, v(S) is the objective value of optimally scheduling jobs in S for the

problem4

(a) 1 | |
∑
wj C j ,

(b) Q | pj = 1 |
∑
wj C j ,

(c) P | pj = 1, rj integral |
∑
wj C j ,

(d) P | |
∑

C j ,

(e) 1 | rj , pmtn |
∑
wj Mj ,

then v is supermodular.

Unfortunately, Corollary 2.2(d) does not extend to the case with arbitrary weights and processing times. In

addition, one can show that the scheduling problems 1 | rj |
∑

C j and 1 | prec |
∑

C j do not have supermod-

ular optimal costs.

Using almost identical techniques to those in the proof of Theorem 2.1, we can also show that maxi-

mizing a nonnegative linear function over a submodular polyhedron—a polyhedron of the form {x ∈ RN :

x(S) ≤ u(S) for all S ⊆ N } where u : 2N
7→ R is submodular—has submodular optimal values.

Theorem 2.3. Let N be a finite set, and let u : 2N
7→ R be a submodular function. If dj ≥ 0 for all j ∈ N,

4We describe these problems using the notation of Graham et al. (1979), in which the features of a scheduling problem is
captured in the three-field abbreviation α |β | γ . The field α represents the machine environment: for example, “1” refers to a
single machine, “P” refers to identical parallel machines, and “Q” refers to uniform parallel machines. The field β describes job
characteristics: for instance, “pj = 1” indicates that all jobs have unit processing time, “rj ” indicates that jobs have release dates,
and “pmtn” indicates that preemption of jobs is allowed. Finally, the field γ denotes the objective function to be minimized: for
example, “

∑
wj C j ” refers to the sum of weighted completion times objective, and “

∑
wj Mj ” refers to the sum of weighted mean

busy times objective.
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then the function v : 2N
7→ R defined by

v(S) = max
{∑

j∈S

dj x j : x(A) ≤ u(A) for all A ⊆ S
}

for all S ⊆ N

is submodular on N.

The prominent example of maximizing a nonnegative linear function over a submodular polyhedron is find-

ing a maximum weight basis of a matroid. Finding a maximum weight forest in an undirected graph is

a special case of the maximum weight matroid basis problem (Birkhoff 1935, Whitney 1935). Later, in

Section 5, we study a cooperative game in which the profit to a coalition arises from the maximum weight

matroid basis problem.

3 Complexity and approximation

Now that we have some notion of what kind of combinatorial optimization problems have supermodular

optimal costs, we turn our attention to the computational complexity and approximability of computing the

least core value of (N , v), where v is supermodular. Note that an arbitrary supermodular function v may not

be compactly encoded. Therefore, for the remainder of this section we assume that we have a value-giving

oracle for v. In addition, for the remainder of the paper, we assume that there are at least two agents (n ≥ 2).

3.1 Computational complexity

Theorem 3.1. Computing the least core value of supermodular cost cooperative games is strongly NP-hard.

Proof. We show that any instance of the strongly NP-hard maximum cut problem on an undirected graph

(Garey et al. 1976) can be reduced to an instance of computing the least core value of a supermodular cost

cooperative game. Consider an arbitrary undirected graph G = (N , E). Let κ : 2N
7→ R be the cut function

of G; that is,

κ(S) =
∣∣∣{{i, j} ∈ E : i ∈ S, j ∈ N \ S

}∣∣∣.
Also, let the function η : 2N

7→ R be defined as

η(S) =
∣∣∣{{i, j} ∈ E : i ∈ S, j ∈ S

}∣∣∣.
7



Clearly, η is nonnegative. Using the increasing marginal cost characterization of supermodularity (1.1), it is

straightforward to see that η is supermodular. Using counting arguments, it is also straightforward to show

that

η(S)+ η(N \ S)+ κ(S) = η(N )

for any S ⊆ N .

Now consider the supermodular cost cooperative game (N , v), where v(S) = 2η(S) for all S ⊆ N . For

each player i ∈ N , we define the cost allocation xi = deg(i), where deg(i) denotes the degree of node i in

G. In addition, let z = maxS⊆N ,S 6=∅,N κ(S). Note that x(N ) =
∑

i∈N deg(i) = v(N ), and for all S ⊆ N ,

S 6= ∅, N ,

z ≥ κ(S) = (2η(S)+ κ(S))− 2η(S) = x(S)− v(S).

Therefore, (x, z) is a feasible solution to (LC). Now suppose (x∗, z∗) is an optimal solution to (LC). Adding

the inequalities x∗(S) ≤ v(S)+ z∗ and x∗(N \ S) ≤ v(N \ S)+ z∗ for any S ⊆ N , S 6= ∅, N , and using the

equality x∗(N ) = v(N ), we have that

2z∗ ≥ v(N )− v(S)− v(N \ S) = 2κ(S) for all S ⊆ N , S 6= ∅, N .

Therefore, z∗ ≥ z. It follows that z∗ = z = maxS⊆N ,S 6=∅,N κ(S). In other words, finding the least core value

of (N , v) is equivalent to finding the value of a maximum cut in G = (N , E).

In our proof of the above theorem, we show that for any instance of the maximum cut problem on an

undirected graph, there exists a supermodular cost cooperative game whose least core value is exactly equal

to the value of the maximum cut. Since the maximum cut problem is not approximable within a factor of

1.0624 (Håstad 2001), we immediately obtain the following inapproximability result:

Corollary 3.2. There is no ρ-approximation algorithm5 for computing the least core value of supermodular

cost cooperative games, where ρ < 1.0624, unless P = NP.

5A ρ-approximation algorithm (ρ ≥ 1) is an algorithm that always finds a solution whose objective value is within a factor ρ
of the optimal value, and whose running time is polynomial in the input size.
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3.2 Approximation by fixing a cost allocation

The above negative results indicate that it is rather unlikely that we will be able to compute the least core

value of supermodular cost cooperative games exactly in polynomial time, even if an element of the least

core is known. This motivates us to design methods with polynomial running time that approximate the

least core value of these games.

Suppose (N , v) is a cooperative game, with v supermodular. As a first attempt at approximation, we

fix a cost allocation x such that x(N ) = v(N ), and then try to determine the minimum value of z such that

(x, z) is feasible in the least core optimization problem (LC). Since we are looking for the smallest value z

such that z ≥ x(S) − v(S) for all S ⊆ N , S 6= ∅, N , we can determine z by maximizing x(S) − v(S) over

all subsets S ⊆ N , S 6= ∅, N . This observation motivates the following definitions. For any cooperative

game (N , v) and cost allocation x such that x(N ) = v(N ), define the function f x(S) = x(S) − v(S), and

the following problem:

x-maximally violated constraint problem for cooperative game (N , v) (x-MVC).

For a given cost allocation x such that x(N ) = v(N ), find a subset S∗ such that

f x(S∗) = max
S⊆N

S 6=∅,N

f x(S) = max
S⊆N

S 6=∅,N

{
x(S)− v(S)

}
.

For any value of z, if z ≥ f x(S∗), then (x, z) is feasible in (LC). If z < f x(S∗), then x(S∗) ≤ v(S∗) + z

is a constraint that is maximally violated by (x, z). Intuitively, we want to find a value z that is as close to

f x(S∗) as possible, but larger than f x(S∗), since (x, z) is feasible if and only if z ≥ f x(S∗).

How should we fix x? For any set function v : 2N
7→ R, we define the polytope

Bv =
{

x ∈ RN : x(N ) = v(N ), x(S) ≥ v(S) for all S ⊆ N
}
.

For arbitrary set functions v, computing an element of Bv may require an exponential number of oracle calls,

or Bv may be empty. Fortunately, when v is supermodular, the vertices of Bv are computable in polynomial

time, and even have explicit formulas (Edmonds 1970). It turns out that for any cost allocation x in Bv, we

can show that the optimal value of the x-maximally violated constraint problem is always within a factor of

2 of the least core value of (N , v).
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Theorem 3.3. Suppose (N , v) is a supermodular cost cooperative game, and x is a cost allocation in Bv.

Let f x(S∗) be the optimal value of the x-maximally violated constraint problem for (N , v), and let z∗ be the

least core value of (N , v). Then f x(S∗) ≤ 2z∗.

Proof. Let (x∗, z∗) be an optimal solution to (LC). As in the proof of Theorem 3.1, we have that

2z∗ ≥ v(N )− v(S)− v(N \ S) for all S ⊆ N , S 6= ∅, N .

Since x ∈ Bv, we can deduce that for any S ⊆ N , S 6= ∅, N ,

2z∗ ≥ v(N )− v(S)− v(N \ S) = x(S)− v(S)+ x(N \ S)− v(N \ S) ≥ f x(S).

Since the above lower bound on 2z∗ holds for any S ⊆ N , S 6= ∅, N , it follows that 2z∗ ≥ f x(S∗).

In some sense, Theorem 3.3 tells us that any cost allocation x in Bv is “almost” an element of the

least core of (N , v). We use this observation, in conjunction with a ρ-approximation algorithm for the

x-maximally violated constraint problem for (N , v), to approximate the least core value of (N , v).

Theorem 3.4. Suppose (N , v) is a supermodular cost cooperative game, and x is a cost allocation in Bv. If

there exists a ρ-approximation algorithm for the x-maximally violated constraint problem for (N , v), then

there exists a 2ρ-approximation algorithm for computing the least core value of (N , v).

Proof. Let S̄ be the output from a ρ-approximation algorithm for the x-maximally violated constraint prob-

lem for (N , v), and let z = ρ f x(S̄). We show that (x, z) is a feasible solution to the optimization problem

(LC), and that z is within a factor of 2ρ of z∗, the least core value of (N , v). Since x ∈ Bv, we have that

x(N ) = v(N ). Since S̄ is output from a ρ-approximation algorithm for the x-maximally violated constraint

problem for (N , v), it follows that z = ρ f x(S̄) ≥ f x(S∗) ≥ x(S) − v(S) for all S ⊆ N , S 6= ∅, N . So

(x, z) is a feasible solution to (LC). By Theorem 3.3, it follows that z = ρ f x(S̄) ≤ ρ f x(S∗) ≤ 2ρz∗.

Note that the x-maximally violated constraint problem for a supermodular cost cooperative game is an

instance of submodular function maximization. In addition, for any x ∈ Bv, the objective function f x of

the x-maximally violated constraint problem is nonnegative. Feige et al. (2007) gave a 5/2-approximation

algorithm for maximizing nonnegative submodular functions. With Theorem 3.4, this immediately implies

the following corollary.
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Corollary 3.5. Suppose (N , v) is a supermodular cost cooperative game. Then, there exists a 5-approximation

algorithm for computing the least core value (N , v).

3.3 Approximation without fixing a cost allocation

Until now, we have considered approximating the least core value of a supermodular cost cooperative game

(N , v) by fixing a cost allocation x and then finding z such that (x, z) is feasible in the least core optimization

problem (LC). Suppose that, instead of fixing a cost allocation in advance, we compute a cost allocation

along with an approximation to the least core value. Let us assume that we have a ρ-approximation algorithm

for the x-maximally violated constraint problem for (N , v), for every x such that x(N ) = v(N ).6 By using

the ellipsoid method with binary search, we can establish one of the main results of this work:

Theorem 3.6. Suppose (N , v) is a supermodular cost cooperative game, and there exists a ρ-approximation

algorithm for the x-maximally violated constraint problem for (N , v), for every cost allocation x such that

x(N ) = v(N ). Let z∗ be the least core value of (N , v). Then,

(a) there exists a polynomial-time algorithm for computing a ρ-approximate element of the least core of

(N , v): that is, a cost allocation x such that

x(N ) = v(N ), x(S) ≤ v(S)+ ρz∗ for all S ⊆ N , S 6= ∅, N , and

(b) there exists a ρ-approximation algorithm for computing the least core value of (N , v).

As we noted in Section 3.2, the x-maximally violated constraint problem for a supermodular cost coop-

erative game (N , v) is an instance of submodular function maximization. Unlike in Section 3.2, however,

the objective functions for the instances of the x-maximally violated constraint problem that need to be

solved for Theorem 3.6 are not necessarily nonnegative. Feige et al. (2007) designed a local-search based

approximation algorithm for maximizing a submodular function f : 2N
7→ R with f (∅) ≥ 0 and f (N ) ≥ 0,

that has a performance guarantee of (3+ε) for any ε > 0. Since f x(∅) = f x(N ) = 0 for any cost allocation

x such that x(N ) = v(N ), we obtain the following corollary.

Corollary 3.7. Suppose (N , v) is a supermodular cost cooperative game. Then for any ε > 0,

6Note that since v is supermodular and v(∅) = 0, for any x such that x(N ) = v(N ), we have that
∑

i∈N (xi − v({i})) ≥∑
i∈N xi − v(N ) = 0. Therefore, there must exist i ∈ N such that xi − v({i}) ≥ 0, and so maxS⊆N ,S 6=∅,N f x (S) ≥ 0. This

ensures that the notion of a ρ-approximation algorithm for the x-maximally violated constraint problem is sensible, for any given
cost allocation x such that x(N ) = v(N ).
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(a) there exists a polynomial-time algorithm for computing a (3 + ε)-approximate element of the least

core of (N , v), and

(b) there exists a (3+ ε)-approximation algorithm for computing the least core value of (N , v).

Before proving Theorem 3.6, we first need to establish some definitions and intermediate results. To

simplify the exposition, for the remainder of this subsection, we assume that v is integer-valued.

Suppose K ⊆ Rn is a polyhedron, and ϕ and ν are positive integers. We say that K has facet complexity

at most ϕ if there exists a system of inequalities with rational coefficients that has solution set K and such

that the encoding length of each inequality of the system is at most ϕ. We say that K has vertex complexity

at most ν if there exist finite sets V , E of rational vectors such that K = conv(V )+ cone(E) and such that

each of the vectors in V and E has encoding length at most ν. We will use the following well-known lemma

that relates the facet complexity and the vertex complexity of a polyhedron.

Lemma 3.8 (Grötschel et al. 1988, 6.2.4). Let K ⊆ Rn be a polyhedron.

(a) If K has facet complexity at most ϕ, then K has vertex complexity at most 4n2ϕ.

(b) If K has vertex complexity at most ν, then K has facet complexity at most 3n2ν.

We define Q to be the feasible region of the optimization problem (LC):

Q = {x ∈ RN , z ∈ R : x(N ) = v(N ), x(S) ≤ v(S)+ z for all S ⊆ N , S 6= ∅, N }.

In addition, for any fixed γ ≥ 0, let

Qγ = {x ∈ RN : x(N ) = v(N ), x(S) ≤ v(S)+ γ for all S ⊆ N , S 6= ∅, N }.

We define the strong approximate separation problem and approximate non-emptiness problem for Qγ using

Qργ as its “approximation:”

Strong approximate separation problem for Qγ (S-APP-SEP-Qγ ).

Given x ∈ QN such that x(N ) = v(N ), either

(i) assert x ∈ Qργ or

(ii) find a hyperplane separating x and Qγ .
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Approximate non-emptiness problem for Qγ (APP-NEMPT-Qγ ).

Either

(i) find x ∈ Qργ or

(ii) assert Qγ is empty.

Using techniques from Grötschel et al. (1988) and Jansen (2003), we can show the following theorem.

We provide the proof in Appendix A.

Theorem 3.9. Fix γ so that its encoding length is polynomially bounded by n and log v(N ). Suppose S-

APP-SEP-Qγ can be solved in time polynomial in n and log v(N ). Then APP-NEMPT-Qγ can be solved in

time polynomial in n and log v(N ).

The following lemma is a consequence of Theorem 3.9 and the fact that an approximation algorithm for

the x-maximally violated constraint problem can be used to solve the approximate separation problem for x

and Qγ .

Lemma 3.10. Fix γ so that its encoding length is polynomially bounded by n and log v(N ). Suppose (N , v)

is a cooperative game, and there exists a ρ-approximation algorithm for the x-maximally violated constraint

problem for (N , v), for all cost allocations x such that x(N ) = v(N ). Then APP-NEMPT-Qγ can be solved

in time polynomial in n and log v(N ).

Proof. Fix some cost allocation x such that x(N ) = v(N ). Suppose we run a ρ-approximation algorithm

for the x-maximally violated constraint problem for (N , v), and it outputs S̄. If f x(S̄) ≤ γ , then for all

S ⊆ N , S 6= ∅, N , we have that

x(S)− v(S) ≤ max
S⊆N

S 6=∅,N

f x(S) ≤ ρ f x(S̄) ≤ ργ,

and therefore x ∈ Qργ . Otherwise, f x(S̄) > γ , and for all y ∈ Qγ we have that

x(S̄)− v(S̄) > γ ≥ y(S̄)− v(S̄).

So using a ρ-approximation algorithm for the x-maximally violated constraint problem for (N , v) allows us

to solve S-APP-SEP-Qγ in time polynomial in n and log v(N ), which by Theorem 3.9, allows us to solve
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APP-NEMPT-Qγ in time polynomial in n and log v(N ).

Finally, we are ready to prove Theorem 3.6. We do this by showing that using a polynomial-time

algorithm for APP-NEMPT-Qγ in conjunction with binary search yields an appropriate cost allocation and

approximation to the least core value of (N , v).

Proof of Theorem 3.6. Suppose that (N , v) is a supermodular cost cooperative game, and A is an algorithm

that solves APP-NEMPT-Qγ in time polynomial in n and log v(N ) for every γ ≥ 0 whose encoding length

is polynomially bounded by n and log v(N ). Since we assume that a ρ-approximation algorithm for the x-

maximally violated constraint problem for (N , v) exists for every cost allocation x such that x(N ) = v(N ),

by Lemma 3.10, such an algorithm A exists.

Consider the following algorithm:

Input: supermodular cost cooperative game (N , v) with v integer-valued; algorithm A that

solves APP-NEMPT-Qγ for every γ ≥ 0 whose encoding length is polynomially bounded

by n and log v(N ).

Output: a feasible solution (x, z) to the least core optimization problem (LC) for (N , v).

1. Set the following values:

m = 4(n + 1)2(2(n + 1)+ dlog(v(N )+ 1)e + 1), (3.1a)

M = 2m, (3.1b)

ε = (2M)−2. (3.1c)

2. Using A, find γ̄ ∈ Q by binary search on [0, v(N )] such that Q γ̄−ε is empty, but Qργ̄ is

non-empty. Denote the vector that A finds in Qργ̄ by x̄ .

3. Find p, q ∈ Z such that

1 ≤ q ≤ 2M and
∣∣∣γ̄ − p

q

∣∣∣ < 1
2Mq

. (3.2)

Use A to solve APP-NEMPT-Qp/q . If A finds a vector in Qρp/q , denote that vector by x̂ .

4. Output:

• IfA finds a vector x̂ ∈ Qρp/q in Step 3, and p/q < γ̄ , then output (x, z) = (x̂, ρp/q).
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• Otherwise, output (x, z) = (x̄, ργ̄ ).

First, we establish that the above algorithm is well-defined, by proving the following claims:

1. The binary search interval prescribed in Step 2 is valid. Consider the uniform cost allocation x where

xi = v(N )/n for all i ∈ N . Since v is nonnegative, (x, v(N )) is feasible for (LC): for any S ⊆ N ,

S 6= ∅, N , we have that v(S) + v(N ) ≥ |S|v(N )/n = x(S). Therefore, z∗ ≤ v(N ). Since v is

supermodular and v(∅) = 0, it follows that z∗ ≥ 0. So, the least core value of (N , v) lies in the

interval [0, v(N )].

2. Every trial value of γ̄ in the binary search of Step 2 has encoding length polynomially bounded by

n and log v(N ). Since the binary search of Step 2 is on the interval [0, v(N )], the numerator and

denominator of any trial value of γ̄ is nonnegative. In addition, the binary search of Step 2 undergoes

dlog v(N )
ε
e + 1 iterations. This implies that the denominator of any trial value of γ̄ is at most

2dlog v(N )
ε e+1

≤ 22+log v(N )
ε =

4v(N )
ε

.

Since the binary search is performed on the interval [0, v(N )], the numerator of any trial value of γ̄

is at most 4v(N )2/ε. By (3.1a)-(3.1c), the claim follows.

3. The integers p and q computed in Step 3 have encoding lengths polynomially bounded by n and

log v(N ). By (3.2), and since M ≥ 1 and γ̄ ∈ [0, v(N )], we have that

p < γ̄ q +
1

2M
≤ 2Mv(N )+ 1,

p > γ̄ q −
1

2M
≥ −

1
2
.

Therefore, |p| < 2Mv(N )+ 1. Since |q| ≤ 2M , the claim follows by (3.1a)-(3.1c).

Next, we analyze the running time of the above algorithm. The algorithm makes a total of O(log v(N )
ε
)

calls toA, which runs in time polynomial in n and log v(N ) each time it is called. It follows by (3.1a)-(3.1c)

that the total running time of A throughout the algorithm is polynomial in n and log v(N ). By using the

method of continued fractions (Grötschel et al. 1988, pp. 134-137), finding integers p and q to satisfy (3.2)

in Step 3 of the algorithm can be done in time polynomial in n and log v(N ). Therefore, the above algorithm

runs in time polynomial in n and log v(N ).

Finally, we analyze the quality of the solution returned by the above algorithm. We start by showing that
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min{p/q, γ̄ } ≤ z∗ by considering two cases:

1. γ̄ − ε < z∗ < γ̄ . Consider p, q computed in Step 3 of the algorithm. Since v is integer-valued,

nonnegative, and supermodular with v(∅) = 0, z∗ = r/s for some r ∈ Z≥0 and s ∈ Z>0. Note

that since v is nonnegative, supermodular, and v(∅) = 0, the facet complexity of Q is at most ϕ =

2(n + 1)+ dlog(v(N )+ 1)e + 1. Therefore, the vertex complexity of Q is at most m = 4(n + 1)2ϕ,

and so s ∈ (0, 2m) = (0,M). Since

γ̄ −
r
s
= γ̄ − z∗ < ε =

1
(2M)2

≤
1

2Mq
,

it follows that ∣∣∣∣ p
q
− z∗

∣∣∣∣ = ∣∣∣∣ p
q
−

r
s

∣∣∣∣ < ∣∣∣∣ p
q
− γ̄

∣∣∣∣+ ∣∣∣γ̄ − r
s

∣∣∣ < 1
Mq

<
1

sq
.

Therefore, z∗ = p
q . It follows that min{p/q, γ̄ } ≤ z∗.

2. z∗ ≥ γ̄ . Clearly, min{p/q, γ̄ } ≤ z∗.

With this fact in hand, we now show that the solution (x, z) computed in Step 4 of the above algorithm is

feasible in the optimization problem (LC), and that z ≤ ρz∗. We consider the following cases:

1. p/q < γ̄ . In this case, we have that p/q ≤ z∗. Consider the output of A in Step 3 of the algorithm:

(a) A finds x̂ ∈ Qρp/q . Therefore, (x, z) = (x̂, ρp/q) is feasible in (LC), and z = ρp/q ≤ ρz∗.

(b) A asserts that Qp/q is empty. Therefore, z∗ > p/q . By the arguments above, we have that

z∗ ≥ γ̄ . So, (x, z) = (x̄, ργ̄ ) is feasible in (LC), and z = ργ̄ ≤ ρz∗.

2. p/q ≥ γ̄ . In this case, we have that z∗ ≥ γ̄ . So, (x, z) = (x̄, ργ̄ ) is feasible in (LC), and z ≤ ρz∗.

4 A special case from single-machine scheduling

In this section, we study a particular supermodular cost cooperative game. Consider a situation where agents

each have a job that needs to be processed on a machine, and any coalition of agents can potentially open

their own machine. Suppose each agent i ∈ N has a job whose processing time is pi > 0 and weight is

wi ≥ 0. Jobs are independent, and are scheduled non-preemptively on a single machine, which can process

at most one job at a time. A schedule planning game is a cooperative game (N , v) where the cost v(S) to a

coalition S is the minimum sum of weighted completion times of jobs in S. The least core value of schedule

planning games has a natural interpretation: it is the amount we need to charge any coalition for opening a
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new machine in order to achieve cooperation.

Various cooperative games that arise from scheduling situations have been studied previously. In se-

quencing games (e.g. Curiel et al. 1989), agents—each with a job that needs to be processed—start with

a feasible solution on a fixed number of machines, and the profit assigned to a coalition of agents is the

maximal cost savings the coalition can achieve by rearranging themselves. Schedule planning games have

received somewhat limited attention in the past; several authors have developed axiomatic characterizations

of various cost sharing rules for these games (Maniquet 2003, Mishra and Rangarajan 2005).

From Corollary 2.2, it follows that schedule planning games are indeed supermodular cost cooperative

games, and the results from Section 3 apply. We will apply the results of Section 3.2, in which approximation

is based on fixing a cost allocation, to finding the least core value of schedule planning games. Before doing

so, however, we establish some useful and interesting properties of the least core of schedule planning

games. These properties will in turn help us determine the computational complexity of this special case,

and choose a specific cost allocation x̄ in Bv with especially nice features. In particular, we will be able

to design approximation algorithms for the x̄-maximally violated constraint problem for schedule planning

games, as well as show a stronger translation between the approximability of the x̄-maximally violated

constraint problem and the approximability of the least core value of these games.

4.1 Key properties of the least core of schedule planning games

The structure of the cost function for schedule planning games allows us to explicitly express an element of

the least core of schedule planning games and recast the least core optimization problem as the maximization

of a set function defined solely in terms of the cost function v.

Smith (1956) showed that scheduling jobs in nonincreasing order of wj/pj minimizes the sum of

weighted completion times on one machine. To simplify the analysis, for the remainder of this paper we

assume without loss of generality that
w1

p1
≥ · · · ≥

wn

pn
.

We consider the cost allocation x̄ defined as follows:

x̄i =
1
2

(
v(Si )− v(Si−1)

)
+

1
2

(
v(N \ Si−1)− v(N \ Si )

)
(4.1)
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=
1
2
wi

i∑
j=1

pj +
1
2

pi

n∑
j=i

wj (4.2)

for i = 1, . . . , n, where Si
= {1, . . . , i} and S0

= ∅. It is straightforward to show that x̄ ∈ Bv; in fact, it is

a convex combination of two vertices of Bv. Since x̄ ∈ Bv, we have that x̄(S) ≥ v(S) for all S ⊆ N . As

it turns out, for schedule planning games, we are able to show a more precise relationship between the cost

allocation x̄(S) of a coalition S and its cost v(S).

Lemma 4.1. Suppose (N , v) is a schedule planning game. Then, the cost allocation x̄ as defined in (4.2)

satisfies

x̄(S)− v(S) =
1
2

(
v(N )− v(S)− v(N \ S)

)
for all S ⊆ N.

Proof. Since jobs are assumed to be indexed according to nonincreasing weight-to-processing time ratio,

by Smith’s rule we know that for any S ⊆ N ,

v(S) =
∑
i∈S

i∑
j=1
j∈S

wi pj .

Therefore,

2
(
x̄(S)− v(S)

)
=

∑
i∈S

i∑
j=1

wi pj +
∑
i∈S

n∑
j=i

piwj − 2
∑
i∈S

i∑
j=1
j∈S

wi pj

=

∑
i∈S

i∑
j=1

wi pj +
∑
i∈S

n∑
j=i

piwj −
∑
i∈S

i∑
j=1
j∈S

wi pj −
∑
i∈S

n∑
j=i
j∈S

piwj

=

∑
i∈S

i∑
j=1

j∈N\S

wi pj +
∑
i∈S

n∑
j=i

j∈N\S

piwj (4.3)

=

∑
i∈S

i∑
j=1

j∈N\S

wi pj +
∑

i∈N\S

i∑
j=1
j∈S

wi pj

=

∑
i∈N

i∑
j=1

wi pj −
∑
i∈S

i∑
j=1

wi pj −
∑

i∈N\S

i∑
j=1

wi pj
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+

∑
i∈S

i∑
j=1

j∈N\S

wi pj +
∑

i∈N\S

i∑
j=1
j∈S

wi pj

=

∑
i∈N

i∑
j=1

wi pj −
∑
i∈S

i∑
j=1
j∈S

wi pj −
∑

i∈N\S

i∑
j=1

j∈N\S

wi pj

= v(N )− v(S)− v(N \ S).

With this lemma in hand, we can show the following key properties of the least core of schedule planning

games.

Theorem 4.2. Suppose (N , v) is a schedule planning game.

(a) The cost allocation x̄ as defined in (4.2) is an element of the least core of (N , v).

(b) The least core value of (N , v) is

z∗ =
1
2

max
S⊆N

S 6=∅,N

{
v(N )− v(S)− v(N \ S)

}
. (4.4)

Proof. Let z̄ be the value of the right-hand side of (4.4). First, we show that (x̄, z̄) is a feasible solution to

(LC). By Lemma 4.1, we have that x̄(N ) = v(N ), and for any S ⊆ N , S 6= ∅, N ,

z̄ ≥
1
2

(
v(N )− v(S)− v(N \ S)

)
= x̄(S)− v(S).

Now suppose (x∗, z∗) is an optimal solution to (LC). As in the proof of Theorem 3.1, we obtain the

following lower bound on 2z∗:

2z∗ ≥ v(N )− v(S)− v(N \ S) for all S ⊆ N , S 6= ∅, N .

Therefore, z∗ ≥ z̄. It follows that x̄ is an element of the least core of (N , v), and the least core value of

(N , v) is z̄.

In addition to being an element of the least core, it happens that the cost allocation x̄ as defined in (4.2)

is the Shapley value of schedule planning games (Mishra and Rangarajan 2005). This is quite special: in the

cooperative game (N , v) defined in Example 4.3, the cost function v is supermodular, but the Shapley value
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is not necessarily an element of the least core of (N , v).

One might wonder if the cost allocation x̄ as defined in (4.1) is an element of the least core for general

supermodular cost cooperative games. Note that the definition of x̄ in (4.1) depends on the ordering of N .

For a given permutation σ : N 7→ N where σ(i) denotes the position of player i ∈ N , we define the cost

allocation x̄σ as follows:

x̄σ
σ−1(i) =

1
2

(
v(Si )− v(Si−1)

)
+

1
2

(
v(N \ Si−1)− v(N \ Si )

)
for i = 1, . . . , n, where Si

= {σ−1(1), . . . , σ−1(i)}, and S0
= ∅. The cooperative game (N , v) defined in

Example 4.3 is an instance of a cooperative game with v nonnegative and supermodular (in particular, of

the form (2.1)), for which the cost allocation x̄σ is not a least core element of (N , v), for all permutations

σ of N . We can also show that when (N , v) is a schedule planning game, not every cost allocation in Bv is

necessarily an element of the least core of (N , v).

Example 4.3. Consider the cooperative game (N , v) defined as follows. There are four players: N =

{1, 2, 3, 4}. Each agent i ∈ N has a processing time pi = i . The cost v(S) to a coalition S is the optimal

value of the scheduling problem P2 | |
∑

C j , restricted to jobs in S. By Corollary 2.2, v is supermodular.

The Shapley value of this game is φ1 = 3/2, φ2 = 17/6, φ3 = 23/6, and φ4 = 29/6, and the optimal value

of the φ-maximally violated constraint problem for this game is maxS⊆N ,S 6=∅,N f φ(S) = 5/3. However, the

least core value of this game is 3/2. It is also straightforward to check that maxS⊆N ,S 6=∅,N f x̄σ (S) = 2 for

all permutations σ of N .

4.2 Computational complexity

Although computing the least core value of supermodular cost cooperative games is strongly NP-hard, it is

still unclear if this remains the case for schedule planning games. In the previous subsection, we showed

that we can efficiently compute an element of the least core of schedule planning games. In fact, we have

an explicit formula for a least core element. Computing the least core value of schedule planning games,

however, remains NP-hard.

Theorem 4.4. Computing the least core value of scheduling planning games is NP-hard, even whenwj = pj

for all j ∈ N.
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Proof. By Theorem 4.2, the least core value of schedule planning games is

z∗ =
1
2

max
S⊆N

S 6=∅,N

{
v(N )− v(S)− v(N \ S)

}
=

1
2
v(N )−

1
2

min
S⊆N

S 6=∅,N

{
v(S)+ v(N \ S)

}
.

Note that the minimization problem above is equivalent to the problem of minimizing the sum of weighted

completion times of jobs in N , with weight wj and processing time pj for each job j ∈ N , on two identical

parallel machines. Bruno et al. (1974) showed that this two-machine problem is NP-hard, even when wj =

pj for all jobs j ∈ N .

The above result is in stark contrast to the underlying problem defining the costs in schedule planning

games—minimizing the sum of weighted completion times on a single machine—for which any order is

optimal when each job has its weight equal to its processing time.

4.3 Tighter bounds on approximation based on fixing a cost allocation

In Section 3.2, we showed that for any supermodular cost cooperative game (N , v) and a cost alloca-

tion x in Bv, a ρ-approximation algorithm for the x-maximally violated constraint problem implies a 2ρ-

approximation algorithm for computing the least core value of (N , v). It is reasonable to believe, though,

that for schedule planning games, we may be in a position to do better, since the cost allocation x̄ as defined

in (4.2) is in Bv, and is in fact an element of the least core. This is indeed the case: from Lemma 4.1 and

Theorem 4.2, it follows that

z∗ = max
S⊆N

S 6=∅,N

{
x̄(S)− v(S)

}
= max

S⊆N
S 6=∅,N

f x̄(S).

This is exactly the x̄-maximally violated constraint problem for schedule planning games! Therefore, we

obtain the following strengthening of Theorem 3.4.

Theorem 4.5. Suppose there exists a ρ-approximation algorithm for the x̄-maximally violated constraint

problem for schedule planning games, where the cost allocation x̄ is as defined in (4.2). Then there exists a

ρ-approximation algorithm for computing the least core value of schedule planning games.

In the following section, we show that we can design such ρ-approximation algorithms for the x̄-

maximally violated constraint problem for schedule planning games with small values of ρ.
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4.4 Approximately solving x̄-MVC for schedule planning games

Some proofs from the previous subsections give us insight into how to design oracles that approximately

solve x̄-MVC for schedule planning games. By carefully looking at the proof of Lemma 4.1, we can show

that x̄-MVC for schedule planning games is actually a special case of finding a maximum weighted cut in a

complete undirected graph. In the proof of Theorem 4.4, we see that x̄-MVC for schedule planning games

is actually equivalent (with respect to optimization) to the scheduling problem P2 | |
∑
wj C j , implying that

we might be able to use or modify existing algorithms to approximately solve x̄-MVC.

4.4.1 A maximum-cut based approximate oracle

By (4.3), we have that

f x̄(S∗) =
1
2

max
S⊆N

S 6=∅,N

∑
j∈S

∑
i∈N\S

µi j

 where µi j =


wj pi if i < j

wi pj if i > j

for all i 6= j . Observe that µi j = µj i . So f x̄(S∗) is proportional to the value of the maximum cut on

a complete undirected graph with node set N and capacity µi j for arc {i, j}. Therefore, if we have a ρ-

approximation algorithm for the maximum cut problem, then by Theorem 4.5, we have a ρ-approximation

algorithm for finding the least core value of schedule planning games. For example, using the approxi-

mation algorithm of Goemans and Williamson (1995) based on a semidefinite relaxation of the maximum

cut problem yields a 1.1382-approximation algorithm for finding the least core value of schedule planning

games. However, using the algorithm of Goemans and Williamson does not exploit the special structure

of this particular maximum cut problem, since their method applies for maximum cut problems on general

undirected graphs.
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4.4.2 A fully polynomial-time approximation scheme based on two-machine scheduling

In this subsection, we provide a fully polynomial time approximation scheme7 (FPTAS) for the x̄-maximally

violated constraint problem for schedule planning games. By Theorem 4.2, we know that x̄-MVC is in fact

max
S⊆N

S 6=∅,N

f x̄(S) =
1
2

max
S⊆N

S 6=∅,N

{
v(N )− v(S)− v(N \ S)

}
.

For simplicity of exposition, we consider maximizing g(S) = 2 f x̄(S) for the remainder of this subsection.

As mentioned earlier, maximizing g(S) is equivalent to minimizing the sum of weighted completion

times of jobs in N on two identical parallel machines. This problem is denoted by P2 | |
∑
wj C j in the

notation of Graham et al. (1979). P2 | |
∑
wj C j is NP-complete (Bruno et al. 1974), and has an FPTAS

(Sahni 1976). Although the two problems are equivalent from the optimization perspective, as is often

the case with equivalent minimization and maximization problems, it is not immediately obvious if they

are equivalent in terms of approximability. We present a dynamic program that solves x̄-MVC exactly for

schedule planning games in psuedopolynomial time, and then convert this dynamic program into an FPTAS.

This development is inspired by the FPTAS for P2 | |
∑
wj C j by Sahni (1976). The analysis is similar to

the analysis of the FPTAS for P2 | |Cmax by Schuurman and Woeginger.

We think of determining the maximizer S∗ by scheduling the jobs in N on two machines: the jobs

scheduled on machine 1 will form S∗, and the jobs scheduled on machine 2 will form N \ S∗. As usual,

we consider the jobs in order of nonincreasing weight-to-processing-time ratios (i.e. 1, . . . , n). We can

partition the jobs into S∗ and N \ S∗ sequentially using the following dynamic program. The state space E is

partitioned into n disjoint sets, E1, . . . , En . A schedule σ for jobs {1, . . . , k} on two machines corresponds

to a state (a, b, c) ∈ Ek . The first coordinate a is the sum of processing times of all jobs scheduled by σ on

machine 1. The second coordinate b is the sum of processing times of all jobs scheduled by σ on machine 2.

The third coordinate c is the running objective value: v({1, . . . , k}) minus the sum of weighted completion

times on two machines for σ .

Suppose jobs 1, . . . , k − 1 have already been scheduled, and job k is under consideration. If job k is

scheduled on machine 1, then the running objective value increases bywk(a+b+ pk)−wk(a+ pk) = wkb. If

job k is scheduled on machine 2, then the running objective value increases bywk(a+b+ pk)−wk(b+ pk) =

7A fully polynomial time approximation scheme is an algorithm that finds a solution whose objective function value is within a
factor (1+ ε) of the optimal value for any ε > 0, and whose running time is polynomial in the input size and 1/ε.
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wka. This suggests the following dynamic programming algorithm.

Algorithm 4.6. (Exact dynamic program)

Input: schedule planning game (N , v) with weights wi , processing times pi for all i ∈ N .

Output: the optimal value of x̄-MVC for schedule planning games, f x̄(S∗).

E1 = {(p1, 0, 0), (0, p1, 0)}

For k = 2, . . . , n

For every vector (a, b, c) ∈ Ek−1

Put (a + pk, b, c + wkb) and (a, b + pk, c + wka) in Ek

Find (a, b, c) ∈ En with maximum c value, c∗

Return f x̄(S∗) = 1
2 g(S∗) = 1

2 c∗

Let P =
∑n

i=1 pi and W =
∑n

i=1wi . Each state corresponds to a point in {(a, b, c) ∈ Z3 : 0 ≤ a ≤ P, 0 ≤

b ≤ P, 0 ≤ c ≤ W P}. Note that for any state (a, b, c) ∈ Ek for a given k = 1, . . . , n, if a is known, b is

already determined, and vice-versa. Therefore, the running time of this dynamic program is O(nW P2).

Let δ = (1 + ε/(2n))−1 for some 0 < ε < 1. Note that δ ∈ (0, 1). In addition, define L = dlog1/δ Pe

and M = dlog1/δ W Pe. Consider the grid formed by the points (δ−r , δ−s, δ−t), r = 1, . . . , L , s = 1, . . . , L ,

t = 1, . . . ,M . We divide each of the state sets Ek , k = 1, . . . , n, into the boxes formed by the grid:

B(r, s, t) = {(a, b, c) ∈ R3 : δ−r+1
≤ a ≤ δ−r , δ−s+1

≤ b ≤ δ−s, δ−t+1
≤ c ≤ δ−t

}

r = 1, . . . , L , s = 1, . . . , L , t = 1, . . . ,M.

Observe that if (a1, b1, c1) and (a2, b2, c2) are in the same box,

δa1 ≤ a2 ≤
a1

δ
, δb1 ≤ b2 ≤

b1

δ
, δc1 ≤ c2 ≤

c1

δ
. (4.5)

We simplify the state sets Ek by using a single point in each box as a representative for all vectors in the

same box. We denote these simplified state sets by E δ
k . The “trimmed” dynamic program is as follows.

Algorithm 4.7. (Dynamic program with “trimmed” state space)

Input: schedule planning game (N , v) with weights wi , processing times pi for all i ∈ N .
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Output: an approximation to the optimal value of x̄-MVC for schedule planning games, f x̄(S̄).

Pick ε ∈ (0, 1), calculate δ

E δ
1 = {(p1, 0, 0), (0, p1, 0)}

For k = 2, . . . , n

For every vector (a, b, c) ∈ E δ
k−1

Put corresponding representatives of (a + pk, b, c+wkb) and (a, b+ pk, c+wka) in E δ
k

Find (a, b, c) ∈ E δ
n with maximum c value, c̄

Return f x̄(S̄) = 1
2 g(S̄) = 1

2 c̄

The key property of the “trimmed” state space used in Algorithm 4.7 is that every element in the original

state space has an element in the “trimmed” state space that is relatively close. In particular,

Lemma 4.8. For every (a, b, c) ∈ Ek , there exists a vector (a′, b′, c′) ∈ E δ
k such that

a′ ≥ δka, b′ ≥ δkb, c′ ≥ δkc.

Proof. By induction. The base case k = 1 holds by (4.5). Assume the induction hypothesis holds for

1, . . . , k − 1. Consider an arbitrary (a, b, c) ∈ Ek . The exact dynamic program puts (a, b, c) ∈ Ek when it

schedules job k. Therefore, (a, b, c) = (α + pk, β, γ +wkβ) or (a, b, c) = (α, β + pk, γ +wkα) for some

(α, β, γ ) ∈ Ek−1.

Suppose (a, b, c) = (α+ pk, β, γ +wkβ) for some (α, β, γ ) ∈ Ek−1. By the induction hypothesis, there

exists a vector (α′, β ′, γ ′) ∈ E δ
k−1 such that α′ ≥ δk−1α, β ′ ≥ δk−1β, and γ ′ ≥ δk−1γ . In the kth phase, the

trimmed dynamic program puts a state (a′, b′, c′) in E δ
k that is in the same box as (α′ + pk, β

′, γ ′ + wkβ
′).

Therefore, since δ ∈ (0, 1), there exists a vector (a′, b′, c′) ∈ E δ
k such that

a′ ≥ δ(α′ + pk) ≥ δ
kα + δpk ≥ δ

k(α + pk) = δ
ka

b′ ≥ δβ ′ ≥ δkβ = δkb

c′ ≥ δ(γ ′ + wkβ
′) ≥ δkγ + δkwkβ = δ

k(γ + wkβ) = δ
kc.

The case where (a, b, c) = (α, β + pk, γ + wkα) for some (α, β, γ ) ∈ Ek−1 follows similarly. Therefore,

the induction step is complete.
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Finally, we analyze the performance and running time of the trimmed dynamic programming algorithm.

Theorem 4.9. Algorithm 4.7 is a fully polynomial time approximation scheme for the x̄-maximally violated

constraint problem for schedule planning games.

Proof. Note that each E δ
k has at most one point from each box, or O(L2 M) points. Therefore, the running

time of this algorithm is O(nL2 M). Since log z ≥ (z − 1)/z for any z ∈ (0, 1], we can bound L and M as

follows:

L =
⌈

log P
log 1/δ

⌉
≤

⌈(
1+

2n
ε

)
log P

⌉
, M =

⌈
log W P
log 1/δ

⌉
≤

⌈(
1+

2n
ε

)
(log W + log P)

⌉
.

Therefore, the running time of this algorithm is polynomial in n, log W , log P , and 1/ε.

Now we analyze the performance of this algorithm. Let c∗ = g(S∗), the optimal value of g. Note that

there exists a vector (a∗, b∗, c∗) ∈ En . By Lemma 4.8, there exists a vector (a′, b′, c′) ∈ E δ
n such that

c′ ≥ δnc∗. Recall that δ = (1+ ε/(2n))−1 for some 0 < ε < 1. Since (1+ ε/(2n))n ≤ 1+ ε, we have that

c′ ≥ (1+ ε/(2n))−nc∗ ≥ (1+ ε)−1c∗.

Combining Theorem 4.5 and Theorem 4.9, gives us the following result.

Theorem 4.10. There exists a fully polynomial time approximation scheme for computing the least core

value of schedule planning games.

5 Submodular profits and matroid optimization

Up to this point, we have only considered cooperative games in which coalitions are assigned a cost for their

joint actions. But what about cooperative games in which agents act together to collect a reward, or profit?

Consider a cooperative game (N , v) where v(S) represents the profit allocated to the agents in S. For these

games, solution concepts should reflect the fairness of a profit allocation; for example, the core for a profit

cooperative game (N , v) is defined as

core(N , v) =
{

x ∈ RN : x(N ) = v(N ), x(S) ≥ v(S) for all S ⊆ N
}
.
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The least core for a profit cooperative game (N , v) is defined in a similar manner: it is the set of all profit

allocations x that are optimal for the problem

z∗ = minimize z

subject to x(N ) = v(N )

x(S) ≥ v(S)− z for all S ⊆ N , S 6= ∅, N .

(LC-profit)

The least core value of (N , v) is the optimal value z∗ to this optimization problem. Note that it still reflects

the minimum penalty to a coalition needed in order to encourage cooperation amongst all agents.

If v is nonnegative, submodular and v(∅) = 0, we call (N , v) a submodular profit cooperative game. It is

straightforward to see that all the results established for supermodular cost cooperative games in Section 3

also hold true for submodular profit cooperative games, with the following natural modifications. For a

cooperative game (N , v) with v representing profits, we define the function f x : 2N
7→ R as f x(S) =

v(S) − x(S) for any given profit allocation x such that x(N ) = v(N ), and for all S ⊆ N . We define

the polytope Bv as {x ∈ Rn : x(N ) = v(N ), x(S) ≤ v(S) for all S ⊆ N }. The x-maximally violated

constraint problem for a cooperative game (N , v) with v representing profits is still to find a subset S∗ such

that f x(S∗) = maxS⊆N ,S 6=∅,N f x(S).

In this section, we study the following game. Let (N , I) be a matroid with weights wi ≥ 0 for each

i ∈ N , and let I|S = {T ∈ I : T ⊆ S} for any subset S ⊆ N . We define v(S) as the maximum w-weight of

a basis in (S, I|S), for every subset S ⊆ N . Then (N , v) defines a cooperative game where the profits to a

coalition S is represented by v(S). We call such games matroid profit games.

Cooperative games that arise from matroid optimization have been considered previously. Nagamochi

et al. (1997) studied the computational complexity of various solution concepts for minimum base games, in

which for a given matroid (N , I), the cost v(S) to a coalition S is the minimum weight of a basis in (S, I|S).

In these games, the costs to a coalition are not necessarily supermodular, and so the results of Section 3 do

not apply.

By Theorem 2.3, matroid profit games are submodular profit cooperative games. It turns out that the

x-maximally violated constraint problem for matroid profit games is quite tractable: we show that it can be

solved exactly in polynomial time for any profit allocation x such that x(N ) = v(N ).

Theorem 5.1. Suppose (N , v) is a matroid profit game. Then for any profit allocation x such that x(N ) =
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v(N ), the x-maximally violated constraint problem for (N , v) can be solved in polynomial time.

Proof. Fix some profit allocation x such that x(N ) = v(N ), and let A = {i ∈ N : xi < 0}. Consider the

following algorithm for the x-maximally violated constraint problem for (N , v):

Input: matroid profit game (N , v) with matroid (N , I) and weights wi ≥ 0 for all i ∈ N .

Output: an optimal solution S̄ to x-MVC for (N , v).

1. Compute a maximum w̄-weight basis T ∗ of (N , I), where

w̄i =


wi if i ∈ A

wi − xi if i ∈ N \ A.

2. Let T̄ = T ∗ ∪ (A \ T ∗).

• If T̄ 6= ∅, N , output S̄ = T̄ .

• Otherwise, output S̄ = arg max{ f x(S) : S ∈ {T, N \T }} for an arbitrary T ⊆ N , T 6=

∅, N .

First, note that any optimal solution of the following relaxation of the x-maximally violated constraint

problem

max
S⊆N

f x(S) = max
S⊆N

{
v(S)− x(S)

}
(5.1)

must contain all elements of A, since v is nondecreasing. Since A is fixed, the problem (5.1) is equivalent to

max
S⊆N

{
v(S)− x(S \ A)

}
. (5.2)

We show that the basis T ∗ computed in Step 1 of the above algorithm is an optimal solution to (5.2).

Let S∗ be an optimal solution to (5.2), and suppose that v(S∗) − x(S∗ \ A) > v(T ∗) − x(T ∗ \ A). Note

that without loss of generality, S∗ is an independent set of (N , I). Otherwise, there exists some i ∈ S∗ that

is not in a maximum weight basis of (S∗, I|S∗). If xi ≥ 0, then i ∈ S∗ \ A, and can be removed without

decreasing the objective value of (5.2); if xi < 0, then i ∈ A, and removing it does not affect the objective

value of (5.2). Therefore,

w̄(S∗) = w(S∗)− x(S∗ \ A)
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= v(S∗)− x(S∗ \ A)

> v(T ∗)− x(T ∗ \ A)

= w(T ∗)− x(T ∗ \ A)

= w̄(T ∗),

which contradicts the assumption that T ∗ is a maximum w̄-weight basis of (N , I). So T ∗ is an optimal

solution to (5.2).

Using this fact, we show that the output of the above algorithm is correct. Note that

max
S⊆N

S 6=∅,N

f x(S) ≤ max
S⊆N

f x(S) (5.3a)

= max
S⊆N

{
v(S)− x(S \ A)

}
− x(A) (5.3b)

= v(T ∗)− x(T ∗ \ A)− x(A) (5.3c)

≤ v(T̄ )− x(T̄ ) (5.3d)

= f x(T̄ ). (5.3e)

We consider two cases.

1. T̄ 6= ∅, N . By (5.3a)-(5.3e), it follows that T̄ is an optimal solution to x-MVC for (N , v).

2. T̄ = ∅ or T̄ = N . In this case, f x(T̄ ) = 0. Fix some T ⊆ N , T 6= ∅, N . Since v is submodular and

v(∅) = 0, we have that

f x(T )+ f x(N \ T ) = v(T )+ v(N \ T )− v(N ) ≥ 0.

Therefore, we must have f x(T ) ≥ 0, or f x(N \ T ) ≥ 0, or both. Without loss of generality, suppose

f x(T ) ≥ 0. It follows from (5.3a)-(5.3e) that

max
S⊆N

S 6=∅,N

f x(S) ≤ 0 ≤ f x(T ).

Therefore, arg max{ f x(S) : S ∈ {T, N \ T }} for any given T ⊆ N , T 6= ∅, N is an optimal solution

to x-MVC for (N , v).
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Since the maximum weight basis of a matroid can be found in polynomial time (Rado 1957, Edmonds 1971),

it follows that the above algorithm solves the x-maximally violated constraint problem for a matroid profit

game (N , v) in polynomial time.

By the discussion earlier in this section, if (N , v) is a submodular profit cooperative game and we have a

ρ-approximation algorithm for the x-maximally violated constraint problem for (N , v) for any given profit

allocation x such that x(N ) = v(N ), then we have a ρ-approximation algorithm for computing the least core

value of (N , v). This translation in approximability is accomplished by using the ellipsoid method to find

feasible solutions to (LC-profit), with the x-maximally violated constraint problem as a separation oracle.

Therefore, by Theorem 5.1, we immediately obtain the following theorem:

Theorem 5.2. Suppose (N , v) is a matroid profit game. Then there exists a polynomial-time algorithm for

(a) computing an element of the least core of (N , v), and

(b) computing the least core value of (N , v).

6 Conclusion

In a cooperative game with supermodular costs, cooperation amongst agents is unlikely: as a coalition

grows, the cost of adding a particular agent increases, making the idea of sharing costs less appealing. As

we showed, these situations arise when sharing the optimal costs of a variety of combinatorial optimization

problems, especially in machine scheduling. In this paper, we considered one way of encouraging coop-

eration in these situations: the least core value of a cooperative game, or the minimum penalty we need

to charge a coalition for defecting to ensure cooperation amongst all agents. We showed that computing

the least core value of supermodular cost cooperative games is strongly NP-hard, and provided a general

framework for approximating the least core value of these games. This framework, with the appropriate

natural modifications, can also be used to approximate the least core value of submodular profit cooperative

games. Using this framework with the approximation algorithms for submodular function maximization of

Feige et al. (2007), we obtained a (3 + ε)-approximation algorithm for computing the least core value of

both supermodular cost cooperative games and submodular profit cooperative games. In addition, we used

this framework to design a fully polynomial-time approximation scheme for computing the least core value

of schedule planning games, as well as an exact polynomial-time algorithm for computing the least core
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value of matroid profit games.
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A Proof of Theorem 3.9

In this appendix, we establish a result that generalizes Theorem 3.9: an approximate separation oracle for

a given polytope, in conjunction with the ellipsoid method, can be used to either find an element in an

“approximation” of that polytope, or determine that the polytope is empty. The ideas here closely follow the

analyses found in Grötschel et al. (1988) and Jansen (2003).

A.1 Preliminaries

A well-described polyhedron is a triple (K ; n, ϕ) where K ⊆ Rn is a polyhedron with facet complexity at

most ϕ. The encoding length of a well-described polyhedron (K ; n, ϕ) is ϕ + n.

For a symmetric matrix A ∈ Rn×n , we denote the spectral norm of A as

‖A‖ = max
{
|λ| : λ is an eigenvalue of A

}
= max

{
|xT Ax | : ‖x‖ = 1

}
.

Finally, we define for any vector a ∈ Rn and positive definite matrix A, the ellipsoid

E(A, a) =
{

x ∈ Rn : (x − a)T A−1(x − a) ≤ 1
}
.

A.2 Approximate separation and non-emptiness

For this subsection, we assume that (K ; n, ϕ) is a bounded, rational, well-described polyhedron in Rn . In

other words, K ⊆ Rn is a rational polytope with facet complexity at most ϕ. Let K̄ be an “approximation”

to K . Consider the following problem:

Strong approximate separation problem (S-APP-SEP).

Given y ∈ Qn , either

(i) assert y ∈ K̄ , or

(ii) find a hyperplane that separates y from K : find c ∈ Qn such that cTy > cTx for all x ∈ K and

‖c‖∞ = 1.

Suppose we have an oracle for S-APP-SEP. We use this approximate separation oracle in the ellipsoid

method as follows.

32



Algorithm A.1 (Central-cut ellipsoid method with approximate separation oracle (APP-ELL)).

Input: ε ∈ Q such that ε ∈ (0, 1), bounded rational polyhedron K ⊆ Rn given by an oracle

for S-APP-SEP, R ∈ Q such that K ⊆ E(R2 I, 0) (where I denotes the identity matrix).

Output: either

1. y ∈ K̄ , or

2. positive definite A ∈ Qn×n , a ∈ Qn such that K ⊆ E(A, a) and vol(E(A, a)) ≤ ε.

1. Set the following values:

N = d5n| log ε| + 5n2
| log 2R|e (A.1)

p = 8N (A.2)

2. Generate the sequence of ellipsoids E(A0, a0), E(A1, a1), . . . , E(AN , aN ) as follows:

• Initialize the sequence:

a0 = 0 (A.3)

A0 = R2 I (A.4)

• For k = 0, . . . , N − 1, call S-APP-SEP oracle for K with input y = ak .

• If the S-APP-SEP oracle asserts ak ∈ K̄ , return ak . Stop.

• If the S-APP-SEP oracle returns ck ∈ Qn such that

‖ck‖∞ = 1 (A.5)

cT
k ak > cT

k x for all x ∈ K (A.6)

then compute

ak+1 ≈ ak −
1

n + 1
Akck√
cT

k Akck

(A.7)

Ak+1 ≈
2n2
+ 3

2n2

(
Ak −

2
n + 1

AkckcT
k Ak

cT
k Akck

)
(A.8)

where “≈” means the computations are done with p digits after the binary point.
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• If k = N , return aN , AN . Stop.

To prove the correctness of the algorithm, we need the following lemma.

Lemma A.2 (Grötschel et al. 1988, 3.2.8-3.2.10). Let K ⊆ Rn be a convex set such that K ⊆ E(R2 I, 0).

Let N , p be defined as in (A.1)-(A.2). Suppose Ak and ak (k = 0, 1, . . . , N ) are defined as in (A.3)-(A.4)

and (A.7)-(A.8), and ck (k = 0, 1, . . . , N ) satisfy (A.5)-(A.6). Then, the following statements hold for

k = 0, 1, . . . , N:

(a) Ak is positive definite.

(b) ‖ak‖ ≤ R2k , ‖Ak‖ ≤ R22k , and ‖A−1
k ‖ ≤ R−24k .

(c) K ⊆ E(Ak, ak).

(d) vol(E(Ak+1, ak+1)) ≤ e−
1

5n vol(E(Ak, ak)).

Using the above lemma, we can show:

Theorem A.3. Algorithm A.1 (APP-ELL) is correct.

Proof. Lemma A.2 immediately implies that Ak and ak (k = 0, 1, . . . , N ) as defined in (A.3)-(A.4) and

(A.7)-(A.8) are well-defined and have polynomial encoding lengths.

If the algorithm stops with k < N , the algorithm terminates correctly by construction. If the algorithm

returns aN and AN , then Lemma A.2 implies that K ⊆ E(AN , aN ) and

vol(E(AN , aN )) ≤ e−
N
5n vol(E(A0, a0))

≤ e−
N
5n (2R)n

< 2−
N
5n (2R)n

≤ ε.

So if k = N , the algorithm terminates correctly.

Now consider the following problem:
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Approximate non-emptiness problem (APP-NEMPT).

Either

(i) find a vector y ∈ K̄ or

(ii) assert K is empty.

We can use APP-ELL (Algorithm A.1) in conjunction with an oracle for S-APP-SEP to solve APP-

NEMPT. To show this, we need the following lemma.

Lemma A.4 (Grötschel et al. 1988, pp. 175-176). Let (K ; n, ϕ) be a well-described polyhedron. In addition,

let ε = 2−48n5ϕ . Suppose K ⊆ E(A, a) where vol(E(A, a)) ≤ ε. Then there exists f ∈ Zn and g ∈ Z>0

such that f 6= 0 and K ⊆ {x ∈ Rn : f Tx = g}. Moreover, f and g can be found in time polynomial in n,

ϕ, and the encoding length of A−1.

Finally, we are ready to show the main result of this appendix.

Theorem A.5. Suppose there exists an algorithm that can solve S-APP-SEP in time polynomial in n and ϕ.

Then, there exists an algorithm that can solve APP-NEMPT in time polynomial in n and ϕ.

Proof. By assumption, K has facet complexity at most ϕ. Therefore, by Lemma 3.8, K has vertex com-

plexity at most 4n2ϕ. Apply APP-ELL (Algorithm A.1) to K with R = 24n2ϕ and ε = 2−48n5ϕ . If APP-ELL

returns a vector y ∈ K̄ , then we have solved APP-NEMPT, and we can stop. Otherwise, APP-ELL returns

an ellipsoid E ⊆ Rn such that K ⊆ E and vol(E) ≤ ε. Then, by Lemma A.4, we can find f 1
∈ Zn and

g1
∈ Z>0 such that f 1

6= 0 and K ⊆ {x ∈ Rn : ( f 1)Tx = g1
}. Without loss of generality, assume that

f 1
1 6= 0.

Suppose that we have found k linearly independent vectors f 1, . . . , f k
∈ Zn and g1, . . . , gk

∈ Z>0 such

that f i
6= 0 for i = 1, . . . , k and

K ⊆
{

x ∈ Rn : (F1 F2) x = g
}

where F1 ∈ Zk×k is upper triangular with non-zero diagonal entries and F2 ∈ Zk×(n−k) such that

(F1 F2) =


( f 1)T

...

( f k)T

 and g =


g1

...

gk

 .
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We show how to find f k+1
∈ Zn , gk+1

∈ Z>0 such that f 1, . . . , f k, f k+1 are linearly independent, f k+1
6= 0,

and

K ⊆
{

x ∈ Rn : ( f 1)Tx = g1, . . . , ( f k)Tx = gk, ( f k+1)Tx = gk+1}.
Let

Kk =

{
u ∈ Rn−k : ∃ z ∈ Rk such that

(
z
u

)
∈ K

}
.

Therefore, w ∈ Kk if and only if

(
z
w

)
∈ K ⊆

{
x ∈ Rn : (F1 F2) x = g

}
for some z ∈ Rk , which happens if and only if

(
F−1

1 g − F−1
1 F2w

w

)
∈ K .

Note that for any vertex u∗ of Kk , there exists z∗ ∈ Rk such that
(

z∗
u∗
)

is a vertex of K . Therefore, since

K has vertex complexity at most 4n2ϕ, Kk has vertex complexity at most 4n2ϕ. This implies that Kk has

facet complexity at most ϕ′ = 3n2(4n2ϕ). Apply APP-ELL to Kk with R = 24n2ϕ′ and ε = 2−48n5ϕ′ , using

the following modified approximate separation oracle for Kk :

Input: w ∈ Rn−k .

Output: either

1. assert y ∈ K̄ , where

y =
(

F−1
1 g − F−1

1 F2w

w

)
2. find c̄ ∈ Qn−k such that ‖c̄‖∞ = 1 and c̄Tw > c̄Tu for all u ∈ Kk .

1. Apply S-APP-SEP oracle for K on

y =
(

F−1
1 g − F−1

1 F2w

w

)

2. If the S-APP-SEP oracle asserts y ∈ K̄ , then assert y ∈ K̄ . Stop.

3. Otherwise, the S-APP-SEP oracle returns c ∈ Qn such that cTy > cTx for all x ∈ K . Let
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c1
∈ Qk and c2

∈ Qn−k such that

c =
(

c1

c2

)
.

Therefore,

(c1)T(F−1
1 g − F−1

1 F2w)+ (c2)Tw > (c1)T(F−1
1 g − F−1

1 F2u)+ (c2)Tu for all u ∈ K k .

Or equivalently,

((c2)T − (c1)T F−1
1 F2)w > ((c2)T − (c1)T F−1

1 F2)u for all u ∈ K k .

Return

c̄ =
c2
− (F−1

1 F2)
Tc1

‖c2 − (F−1
1 F2)Tc1‖∞

as the vector representing a hyperplane that separates w and K k . Stop.

If APP-ELL returns a vector y ∈ K̄ , then we have solved APP-NEMPT and we are done. Otherwise, APP-

ELL returns an ellipsoid Ek
⊆ Rn−k such that K k

⊆ Ek and vol(Ek) ≤ ε. Therefore, by Lemma A.4 we can

find f̄ k+1
∈ Zn−k and gk+1

∈ Z>0 such that K k
⊆ {y ∈ Rn−k : f̄ k+1 y = gk+1

}. Without loss of generality,

let f̄ k+1
1 6= 0. Let f k+1

∈ Zn such that

f k+1
=



0
...

0

f̄ k+1


.

It follows that K ⊆ {x ∈ Rn : ( f k+1)Tx = gk+1
}. By the induction hypothesis,

K ⊆ {x ∈ Rn : ( f 1)Tx = g1, . . . , ( f k)Tx = gk, ( f k+1)Tx = gk+1
}

and f 1, . . . , f k, f k+1 are linearly independent.

When k = n, we have that

K ⊆ {x ∈ Rn : ( f 1)Tx = g1, . . . , ( f n)Tx = gn
}.
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Since f 1, . . . , f n are linearly independent, K must be equal to the unique vector y in {x ∈ Rn : ( f 1)Tx =

g1, . . . , ( f n)Tx = gn
}, or empty. Running the S-APP-SEP oracle for K on y, we either determine that

y ∈ K̄ or K is empty.

By Lemma A.2(b) and Lemma A.4, we can find the vectors f 1, . . . , f n and the scalars g1, . . . , gn in

time polynomial in n and ϕ. In addition, the inputs ε and R defined above imply that the calls to APP-ELL

above run in time polynomially bounded by n, ϕ, and the running time of the S-APP-SEP oracle (which is

assumed to be polynomial in n and ϕ). Since at most n calls to APP-ELL are made, the prescribed method

above solves APP-NEMPT in time polynomial in n and ϕ.

Note that Theorem A.5 implies Theorem 3.9, since the facet complexity of Qγ is polynomially bounded

by n and the encoding length of v(N )+ γ .
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