
© 2008 Avaya Inc.

Little Experiments on Algorithms

Jon Bentley
Avaya Labs Research

Bentley – Little Experiments – p. 2

Outline
Introduction

A Classic Tiny Experiment
Themes

A Collection of Little Experiments
Conclusions

Bentley – Little Experiments – p. 3

Jumbo Engineering: The Challenger
A Big Project A Big Problem A Big Clue

O-rings
Their job: Expand so that

no flames escape
Could they have failed?

Bentley – Little Experiments – p. 4

A Tiny Experiment
Facts

The O-rings worked successfully in all previous launches
January 28, 1986, was a cold Florida day: 29°F
All earlier launches were on warmer days (≥53°F)

Hypothesis
O-ring expansion at 29°F

is substantially slower
than at higher temps

Testing the Hypothesis
The O-ring material, a C-clamp,
a glass of ice water, and
one Nobel laureate

Bentley – Little Experiments – p. 5

Themes of this Workshop
1. Extrapolation to Asymptopia
2. Fair Comparisons
3. Drawing Robust Conclusions
4. Data Overload
5. Components of Running Time
6. Comparing Convergence Histories
7. Optimizing Parameter Settings
8. Sampling Streams
9. Run Time Uncertainty
0. Experiment Design My own axe to grind

No problem is so big that it
can’t be run away from.

A little bit.

Bentley – Little Experiments – p. 7

The (Pretty) Good Old Days
Two paragraphs from Bentley, Weide and Yao,

“Optimal Expected Time Algorithms for Closest
Point Problems”, ACM TOMS 6, 4, Dec. 1980:

“Our Pascal implementation of the cell nearest neighbor algorithm
required 11 lines to place the points in cells and 34 lines to search.

The optimal number of points per cell was 3; densities ranging from
1 to 9, however, decreased the running time by only 10 percent.

The average running time for nearest neighbor searching was the
constant 2765 microseconds per search, on a PDP-KL10. This
compares with 52n microseconds required by the linear search;
the break-even point is at n = 53. To find all nearest neighbors in a
1000-point planar set, the linear-expected-time cell method
required less than 2.8 seconds while the quadratic algorithm
required 52 seconds.

2. Fair Comparison (to other algs)

7. Parameter Setting: cell size (quite smooth)

3. Conclusions Robust across non-uniform inputs?

1. (Casual) Extrapolation to Asymptopia

Bentley – Little Experiments – p. 8

Cells, Cont.
“We ran the program on two data sets representing the

population centroids of political areas. The first set
represented all census tracts in San Diego County and
was fairly uniform over about half of a square; the
second set represented all precincts in the (roughly
square) State of New Mexico and was very clustered in
the few large cities in the state.”

San Diego

New Mexico
Number of points

318

1122
Quadratic algorithm

Predicted secs

5.25

65.5
Observed secs

5.35

66.5
Cell algorithm

Predicted secs

0.88

3.11
Observed secs

1.40

7.56
Optimum cell density

1.7

3.0

3. Robust Conclusions

7. Parameter Settings (no longer smooth)

+75% +143%

+2% +2%

Bentley – Little Experiments – p. 9

A Simpler Problem Today
Which sort algorithm is faster: Quicksort or Heap sort?

Both are known to be Θ(N lg N) for shuffled inputs
Assume both have run times of c N lg N

Run each at one value to determine each’s constant
Assume c1

N lg N + c2

N
Run each at two values to determine both constants
Alternative: Plot a graph

What kind?

N (log scale)

Run time/N

N

Run time

Bentley – Little Experiments – p. 10

CPU Times for Sorting

Some possible linesWhat happens at n=1?

Bentley – Little Experiments – p. 11

Sorting on Other Machines

Bentley – Little Experiments – p. 12

Workshop Themes
1. Extrapolation to Asymptopia

Not there yet –
disk is right around the
corner

2. Fair Comparisons
3. Drawing Robust

Conclusions
5. Components of Running

Time
9. Run Time Uncertainty

Why the hiccup near
10,000,000?

0. Experiment Design
Is there a better way?

Bentley – Little Experiments – p. 13

A Cost Model for Memory
Goal: A little experiment to estimate memory costs

Remove sorting to get to the essence of caching
The critical loop (n is array size, d is delta)

for (i = 0; i < count; i++) {
sum += x[j];
j += d;
if (j >= n)

j -= n;

}

The complete MemEx program is ~30 lines of C

Bentley – Little Experiments – p. 14

Results of the Model

Bentley – Little Experiments – p. 15

Other Machines

An insight that can explain and predict.

Bentley – Little Experiments – p. 16

Simon’s Parable of the Ant
“We watch an ant make his laborious way across a wind-

 and wave molded beach. He moves ahead, angles to
the right to ease his climb up a steep dunelet, detours
around a pebble, …. I sketch his path on a piece of
paper….

“I show the unlabeled sketch to a friend. Whose path is
it? An expert skier, perhaps, slaloming down a steep
and somewhat rocky slope. Or a sloop, beating upwind
in a channel dotted with islands or shoals….

“An ant, viewed as a behaving system, is quite simple.
The apparent complexity of its behavior over time is
largely a reflection of the complexity of the environment
in which it finds itself.”

MemEx is a simple program in a complex environment

Bentley – Little Experiments – p. 17

Statistical Questions
How can I {explain, formalize, reason about} experiments

across memory domains?
How can I reason about large experiments built on this

infrastructure?
Tukey, EDA, 6C: “We can make many good uses of a close

fit, whether or not it is ‘a basic law’.”
How can I talk about the components of a computation?

How can I design experiments to get the most insight
bang for the least computational buck?

This tiny experiment did well; how should I design an
experiment on cell-based NN searching?

How can I design algorithms for this environment?
How ought I deal with hiccups?

Bentley – Little Experiments – p. 18

Statements about Sorting?
In memory systems with

equal costs for random
and sequential access,
this Heap sort is about
30%-50% slower than
this Quicksort

In memory systems with
random access a factor
of K more expensive
than sequential access,
the dominant term of
this Heap sort is about a
factor of 1.3K greater
than the dominant term
of this Quicksort

Bentley – Little Experiments – p. 19

A Tale of Two Sorts
Heap sort is O(n log n) in the worst case

Pretty fast on the average
Quicksort is expected O(n log n)

Faster yet on the average (30% or more)
Frequently used to implement the C qsort
Θ(n2) in the worst case

Bentley – Little Experiments – p. 20

A Great Bug Report
We [Wilks & Becker] found that qsort is unbearably slow

on “organ-pipe” inputs like “0123443210”:

main(int argc, char **argv)

{ int n=atoi(argv[1]), i, x[100000];

for (i = 0; i < n; i++)

x[i] = i;

for (; i < 2*n ; i++)

x[i] = 2*n-i-1;

qsort(x, 2*n, sizeof(int), intcmp);

}

(Continued …)

Bentley – Little Experiments – p. 21

Wilks and Becker, Cont.
Here are the timings on a Pentium:

$ time a.out 2000
real 5.85s
$ time a.out 4000
real 21.65s
$ time a.out 8000
real 85.11s
$

This is clearly quadratic behavior –

each time we double
the input size, the run time goes up by a factor of four.

A simple experiment to reveal that a sort that should be
O(n log n) is in fact quadratic

Distilled from a huge program (hundreds of thousands of
lines of code)

Bentley – Little Experiments – p. 22

Where Does the Time Go?
Observation

The run time of the little program is quadratic
Explanations?

A flaw in qsort itself
Expensive underlying structures

Memory management: caching?
Memory allocation: malloc?

Bentley – Little Experiments – p. 23

A Production Malloc
A malloc driver

void main(int argc, char *argv[])
{ int n = atoi(argv[1]), m = atoi(argv[2]);

while (n-- > 0)
malloc(m);

}

Some runs for 16-byte nodes
$ time a.out 50000 16
1.8u
$ time a.out 100000 16
8.5u
$ time a.out 200000 16
38.3u
$

McIlroy’s explanation

Bentley – Little Experiments – p. 24

How Firm a Foundation?
Bumps so far

Memory hierarchy
Caching, paging

Memory management
Storage allocation

Additional traps lurking
Software: Compiler optimizations
Hardware: Deep pipelines
Multiprocessing, Networks, Parallel computation, …

Simon’s Parable of the Ant suggests that simple
experiments may provide a powerful way to explore
complex environments

Bentley – Little Experiments – p. 25

Return to Qsort
Becker and Wilks observed quadratic CPU time

Many potential sources
Critical operations

Comparisons and swaps
Add to the code

int c = 0;

int intcmp (int *i, int *j)

{ c++; return *i - *j; }

printf("comps: %d\n", c);

Bentley – Little Experiments – p. 26

A Hypothesis About Qsort
A sequence of runs

$ a.out 1000

comps: 1000000

$ a.out 2000

comps: 4000000

$ a.out 4000

comps: 16000000

Next Steps
Why n2

time to sort 2n elements?
A better qsort

1. Extrapolation
3. Robust Conclusions
5. Components –

comps
or overhead?

Bentley – Little Experiments – p. 27

String Reversal in Awk
How do algorithms on English words perform right-to-left, rather

than left-to-right?
1.) Rewrite a suite of programs
2.) Reverse the words in the English input files

A “Production” Program
function rev1(s, len, i, t) {

len = length(s)
t = ""
for (i = 1; i <= len; i++)

t = substr(s, i, 1) t
return t

}
{ print rev1($1)
}

A “Theoretical” Question
How much time to reverse a string?
Is there a better way?

abcd →
<null>
a
ba
cba
dcba

A quick and insightful experiment

Bentley – Little Experiments – p. 28

Faster String Reversal?
A Divide-and-Conquer Algorithm

function rev2(s, len, m) {
len = length(s)
if (len <= 1)

return s
m = int(len/2)
return rev2(substr(s, m+1)) \

rev2(substr(s, 1, m))
}

Questions
Correct?
How fast compared to rev1?

abcdefgh →
efgh abcd
gh ef cd ab
hg fe dc ba

Bentley – Little Experiments – p. 29

Summary of Reversal
Data

Hypotheses
Alg 1 is quadratic
Alg 2 is O(N log N)
Comparing Algs 1 and 2

Alg 2 is faster (for values of N in this neighborhood)
Alg 1 takes 7 lines of code; Alg 2 takes 8 lines

Alg N Secs

1 64,000 2.53

1 128,000 11.38

2 256,000 3.51

2 512,000 6.99

A tiny “horse race”

Bentley – Little Experiments – p. 30

Complete Experimental Apparatus
awk '
function rev1(s, len, i, t) {

len = length(s)
t = ""
for (i = 1; i <= len; i++)

t = substr(s, i, 1) t
return t

}

function rev2(s, len, m) {
len = length(s)
if (len <= 1)

return s
m = int(len/2)
return rev2(substr(s, m+1)) \

rev2(substr(s, 1, m))
}

{ alg = $1
n = $2
s = "a"
while (length(s) < n)

s = s s
if (alg == 1)

s = rev1(s)
else

s = rev2(s)
print alg, length(s)

}
' $*

time reverse <<End
1 64000
End
time reverse <<End
1 128000
End
time reverse <<End
2 256000
End
time reverse <<End
2 512000
End

2.533
11.376
3.515
6.989

1. Extrapolation
2. Comparisons
3. Robust Conclusions
5. Components

(string costs)

Bentley – Little Experiments – p. 31

Compressing American Names
General Idea: Store unique large items in a master

table, and then represent them elsewhere by small
indices into that table

Application to Last Names
Idea

Represent Smith by 1, Johnson by 2, etc.

Performance
Are names nonuniform?

How often do frequent names appear?

How to phrase a precise question?

Bentley – Little Experiments – p. 32

Data on Last Names
From www.census.gov/genealogy/names

SMITH 1.006 1.006 1

JOHNSON 0.810 1.816 2

WILLIAMS 0.699 2.515 3

…
HOLLAND 0.042 27.786 256

…
BOBECK 0.000 88.093 65536

1 byte encodes 28%; 2 bytes encode 88%
This data is not dispositive, but may be typical

Top name accounts for 1%
of the 1990 US population

Top 256 names account
for 28% of the population

Top 65,536 names account
for 88% of the population

Bentley – Little Experiments – p. 33

Data on Male First Names
From www.census.gov/genealogy/names

JAMES 3.318 3.318 1

JOHN 3.271 6.589 2

ROBERT 3.143 9.732 3

…
GEORGE 0.927 28.939 16

…
DWAYNE 0.059 76.480 256

1 nybble encodes 29%; 1 byte encodes 76%

Top name accounts for
3.3% of the population

Top 16 names account
for 29% of the population

Top 256 names account
for 76% of the population

Bentley – Little Experiments – p. 35

Where Does The Time Go?
A Built-In Profiler

Detailed counts on the time spent in each function give the
complete distribution

Dunlavey’s Call-Stack Sampling
Run the program under a debugger, halt it with a “pause”

button, and examine the call stack. Make a record of the
call stacks observed.

Any statement that appears on more than one call stack
might be a time hog.

Invoking a statement less frequently (or eliminating it)
reduces execution time by the fraction of time it resided
on the call stack.

[Details in SIGPLAN Notices and Wikipedia]

Bentley – Little Experiments – p. 36

Ancient History
Programming Pearls, “The Back of the Envelope”
“Bob Martin read from a proposal for the system that his

team was building for the Olympic games, and went
through a similar sequence of calculations.

He estimated one key parameter as we spoke by
measuring the time required to send himself a one-

 character piece of mail.
His calculations showed that, under generous

assumptions, the proposed system could work only if
there were at least a hundred and twenty seconds in
each minute.”

Bentley – Little Experiments – p. 37

A Huge System
How long to send e-mail to 100,000 recipients?
Time to send to N recipients:

N Seconds
1000

11.4

2000

39.6
4000

167.1

Tukey, EDA, Section 6B
“Three points can take us a long way. If they are well

chosen, they can do very well for us.”

Bentley – Little Experiments – p. 38

Simon on Soft Science
“If I ever believed in the myth of the ‘exact sciences’ or ‘hard

sciences’, my belief was wholly dissipated by encounters with
such topics as air quality, eutrophication of lake waters, global
warming, dietary standards, effects of low-level radiation,
meteorology (for example, cloud seeding), and cold fusion. All of
these topics contain uncertainties about the facts and their
implications at least as serious as those we are accustomed to in
the social sciences.

The true line is not between ‘hard’ natural science and ‘soft’ social
sciences, but between

precise science limited to highly abstract and simple phenomena
in the laboratory and

inexact science and technology dealing with complex
phenomena in the real world.”

H. A. Simon, Models of My Life, p. 304

1968: MIX 1009

2008: microprocessors

Bentley – Little Experiments – p. 39

The Meaning of “Little”
Two Definitions

A few slides to describe
Less than an hour to conduct

Counting Time
Conducting the final experiment

From scratch: Compressing names, string reversal, MemEx,
Dunlavey’s sampling

From working code: Cell NN searching, sorting
After days of debugging: Qsort, malloc
After organizational hurdles: E-mail system

A new experiment in an existing framework
Next two stories: bin packing, k-d trees

Bentley – Little Experiments – p. 40

History: Analysis of K-d Trees
K-d trees

Nearest Neighbor search
13 August 1974

Trim the
data

The power of graphical displays
Any graph at all
A graph of the right variable

Bentley – Little Experiments – p. 41

An Old Graph
Nearest Neighbor search in K-d trees

13 Aug 1974

N

Nodes
Visited

In a
NN

Search

20 20060 2000600

20

10

0

30

Why the
bumps?

Q: Why did it take me so long to draw this graph?
A: A skim of my three Prob/Stat books

showed one scatter plot (of 8 points!)

Bentley – Little Experiments – p. 42

Later Graphs
Two separable issues

Work going down the tree: node visits
Work at the leaves: dist calcs in the buckets

The Whole Truth A Peek at Asymptopia

Plea for statistical help:
How to design this experiment?

Observations: tradeoffs
and cyclicity (binary trees)

1. Extrapolation
5. Components

of a count
3. Robust Conclusions

Bentley – Little Experiments – p. 43

Graphs of Bin Packing
Graph 1: Empty space, n = 128,000

Graph 2: Empty except last

A single packing of bins (l-to-r)

Observation: spread is about 1

Insight: ignore the final bin!

1. Extrapolation
3. Robustness
5. Components

Bentley – Little Experiments – p. 44

Zoo of Little Experiments
NN searching with cells
Sort times under caching
Memory cost model
A broken qsort
An expensive malloc
String reversal in Awk
Compressing USA names
Dunlavey’s sampling
An e-mail system
NN searching in k-d trees
Bin packing

1980
1999
2000
1991
1995
2004
2006
2007
2007
1974, 1991
1983, 2005

A third of a
century of
inducing
intraocular
trauma

Sampler of colleagues:
Friedman, Weide, Yao,
Leighton, Johnson,
McGeoch, Kernighan,
McIlroy, …

Bentley – Little Experiments – p. 45

Context: Tiny MSE
Problem from colleagues

Hashing ~20,000 100-character strings into 32-bit ints
Too many collisions?
How many should we expect?

Birthday problem
With 23 people, about a 50% chance of shared birthdays
When tossing balls into N urns, probability of 50% of shared

urn after about N½

tosses
Observe about 10 collisions after 100 hashes

Solution
A tiny horse race: testbed to count collisions for several

hash functions
A couple hours later, the best was “good enough”

Math

Science

Engineering

Bentley – Little Experiments – p. 46

Kinds of Experiments
Parameter Estimation

NN searching with cells
Sort times under caching
Memory cost model
String reversal in Awk
Compressing USA names
Bin packing
E-mail system

Hypothesis Testing
Sort times under caching
Memory cost model
Costly qsort, malloc

Functional Form
Sort times under caching
Memory cost model
Costly qsort, malloc
String reversal in Awk
E-mail system
NN searching in k-d trees
Bin packing

Horse Races
NN searching with cells
Sort times under caching
String reversal in Awk

Bentley – Little Experiments – p. 47

Lessons
Reduce a huge problem to its tiny essence

Theory: NN searching, bin packing
Practice: Broken qsort and malloc; e-mail system

A fundamental iteration
Measure run time ⇔ count key operations

Identify critical environmental issues
Caching, malloc, qsort, etc.

Draw graphs
Plot the right variables
Look at enough detail to expose the real shape

Think small

Bentley – Little Experiments – p. 48

Why Small Experiments on Algorithms?
Small is Cheap

Useful for making engineering decisions
Dunlavey’s sampling

Small is Insightful
Results are usually straightforward to interpret
Decompose a big system into critical components

Memory cost model

Small is Beautiful
Document serious flaws in real systems

Qsort, malloc, e-mail
New insights for bin packing and k-d trees

Bentley – Little Experiments – p. 49

Plea for Statistical Help
1. Statistical common sense

Few-point analyses: revise the lost art of EDA
Drawing simple graphs

Most of these graphs are cost as a function of size

More substantial issues
2. How do I reason about layered systems (such as

caching)?
What canonical tests must I perform?
What precise statements do I then make?

3. How do I design experiments to get the most insight
bang for the least computational buck?

Neil Sloane: A sequence of experiments –

given goals and
results of experiments 1 … N, how to design N+1?

Bentley – Little Experiments – p. 50

Special Bonus Material!
Probably not time in the workshop
A Normal Form for describing experiments
Feedback

Algorithms people: How can we describe little
experiments?

Statisticians: How do you adress

similar problems?

Bentley – Little Experiments – p. 51

A Small Medical Experiment
Gunn, et al. “How should an unconscious person with a suspected

neck injury be positioned?” Prehospital Disaster Med. 1995 Oct-

Dec;10(4):239-44.

Hypothesis. It is proposed that the HAINES (High Arm IN

Endangered Spine) modified recovery position reduces movement
of the neck. In this modification, one of the patient's arms is

raised
above the head to support the head and neck.

Methods. Neck movements in two healthy volunteers were
measured by video-image analysis and radiographic studies.

Results. For both subjects, the total degree of lateral flexion of the
cervical spine in the HAINES position was less than half of that

measured during use of the lateral recovery position.

Conclusion. An unconscious person with a suspected neck injury
should be positioned in the HAINES modified recovery position.
There is less neck movement than when the lateral recovery
position is used, and, therefore, HAINES use carries less risk of
spinal-cord damage.

Lesson 1: Size –

2002: 38 subjects, more analysis

Lesson 2: Format

Bentley – Little Experiments – p. 52

Sort Algorithms in the Presence of Caching
Background
Domain: Sorting algorithms
Motivation: Determine the effect
of caching on the run time of
sort algorithms
Goal: A simple model to predict
performance under caching
Algorithm
Design techniques: Implement
existing Quicksort and heapsort
algorithms
Code: ~50 lines of C

Experimental Apparatus
Overview: Single program
implementing driver and algs
Generated Input Data: Arrays of
uniformly distributed integers
Output: Run times of sorts
Analysis
Technique: Graph time per
element as a function of size (log
scale)
Results: Without caching, plots
would be linear. With caching,
linear within L1, L2 and RAM
Conclusions: Simple model
explains caching times

Bentley – Little Experiments – p. 53

A Slow Malloc
Background
Domain: C library malloc
function
Motivation: Production library
malloc was flawed
Goal: Document that the library
malloc is unreasonably slow
Algorithm
Name: Unknown storage
allocation algorithm
Design techniques: Unknown
Code: ~5 lines of driver + library
malloc

Experimental Apparatus
Overview: Simple driver to
malloc n blocks each of size m
Generated Input Data: None
Output: Run times via time(1)
Analysis
Technique: Few-point analysis
Results: Run time is quadratic
for a simple class of inputs
Conclusions: A system library
function should be rewritten
References: “With malloc
aforethought”

Bentley – Little Experiments – p. 54

A Slow Qsort
Background
Domain: C library qsort function
Motivation: Production library
sort was flawed
Goal: Document that the library
sort is unreasonably slow
Algorithm
Name: Quicksort implementation
of C qsort interface
Design techniques: Divide-and-

conquer
Code: ~10 lines of driver + ~100
lines of broken sort

Experimental Apparatus
Overview: Simple driver to
generate one input and call qsort
Generated Input Data: “Organ
pipe” input arrays of the form
012345543210
Output: Run times via time(1)
Analysis
Technique: Few-point analysis
Results: Run time is quadratic
for a plausible class of inputs
Conclusions: A system library
function should be rewritten
References: “The trouble with
Qsort”, “Engineering a sort
function”

Bentley – Little Experiments – p. 55

String Reversal in Awk
Background
Domain: Efficient string
operations in a high-level
language
Motivation: Fundamental
problem; useful algorithm
design techniques; cost models
Goal: Confirm that the cost of a
straightforward string reversal
algorithm is quadratic, and
design a more efficient algorithm
Algorithm
Design techniques: Iteration,
divide-and-conquer
Code: ~30 lines of Awk

Experimental Apparatus
Overview: Single program to
implement and exercise two
algorithms
Generated Input Data: Strings of
the form aN

Output: Run times via time(1)
Analysis
Technique: Few-point analysis
Results: Simple algorithm is
apparently Θ(N2), while divide-

and-conquer algorithm is Θ(N lg
N)
Conclusions: Divide-and-

conquer can be simple and
useful

Bentley – Little Experiments – p. 56

Representing Common Names
Background
Domain: Data compression
Motivation: Represent a
directory in an 8MB telephone
Goal: Represent a set of names
in as little space as possible
Algorithm
Design techniques: Replacing a
string by an index into a table of
strings
Code: None; measurement only
Experimental Apparatus
Overview: Examine publicly
available data on distribution of
USA first and last names

Analysis
Technique: Few-point analysis
Results: For American last
names, one byte represents 28%
and two bytes represents 88% of
the population. For American
male first names, one nybble
represents 29%, and one byte
represents 76%.
Conclusions: Simple techniques
could provide effective
compression

	Little Experiments on Algorithms
	Outline
	Jumbo Engineering: The Challenger
	A Tiny Experiment
	Themes of this Workshop
	The (Pretty) Good Old Days
	Cells, Cont.
	A Simpler Problem Today
	CPU Times for Sorting
	Sorting on Other Machines
	Workshop Themes
	A Cost Model for Memory
	Results of the Model
	Other Machines
	Simon’s Parable of the Ant
	Statistical Questions
	Statements about Sorting?
	A Tale of Two Sorts
	A Great Bug Report
	Wilks and Becker, Cont.
	Where Does the Time Go?
	A Production Malloc
	How Firm a Foundation?
	Return to Qsort
	A Hypothesis About Qsort
	String Reversal in Awk
	Faster String Reversal?
	Summary of Reversal
	Complete Experimental Apparatus
	Compressing American Names
	Data on Last Names
	Data on Male First Names
	Where Does The Time Go?
	Ancient History
	A Huge System
	Simon on Soft Science
	The Meaning of “Little”
	History: Analysis of K-d Trees
	An Old Graph
	Later Graphs
	Graphs of Bin Packing
	Zoo of Little Experiments
	Context: Tiny MSE
	Kinds of Experiments
	Lessons
	Why Small Experiments on Algorithms?
	Plea for Statistical Help
	Special Bonus Material!
	A Small Medical Experiment
	Sort Algorithms in the Presence of Caching
	A Slow Malloc
	A Slow Qsort
	String Reversal in Awk
	Representing Common Names

