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Problem	  Defini@on	  

•  Given	  a	  bipar@te	  graph	  with	  people	  as	  one	  set	  	  
of	  ver@ces	  and	  events	  as	  the	  other	  set,	  measure	  
!e	  strength	  between	  each	  pair	  of	  individuals	  

•  Assump@on	  

– AFendance	  at	  mutual	  events	  	  
implies	  an	  implicit	  weighted	  	  
social	  network	  between	  people	  	  
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Mo@va@on	  

•  Most	  real-‐world	  networks	  are	  2-‐mode	  and	  are	  
converted	  to	  a	  1-‐mode	  (e.g.,	  AAT)	  

•  Explicitly	  declared	  friendship	  links	  can	  suffer	  from	  a	  
low	  signal-‐to-‐noise	  ra@o	  (e.g.,	  Facebook	  friends)	  

•  Challenge:	  Detect	  which	  of	  links	  in	  the	  1-‐mode	  graph	  
are	  important	  

•  Goal:	  Infer	  the	  implicit	  weighted	  social	  network	  from	  
people’s	  par@cipa@on	  in	  mutual	  events	  
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Tie	  Strength	  

•  A measure of tie strength induces  
– a ranking on all the edges, and 
– a ranking on the set of neighbors for every 

person 

•  Example of a simple tie-strength measure 
– Common neighbor measures the total number 

of common events to a pair of individuals 
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Macbeth	  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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Decisions,	  Decisions	  
•  There	  are	  many	  different	  measures	  of	  @e-‐strength	  

1.  Common	  neighbor	  
2.  Jaccard	  index	  
3.  Max	  
4.  Linear	  
5.  Delta	  
6.  Adamic	  and	  Adar	  
7.  Preferen@al	  aFachment	  
8.  Katz	  measure	  
9.  Random	  walk	  with	  restarts	  
10.  Simrank	  
11.  Propor@onal	  
12.  …	  	  

Which	  one	  should	  
you	  choose?	  
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Outline	  

•  An	  axioma@c	  approach	  to	  the	  problem	  of	  inferring	  
implicit	  social	  networks	  by	  measuring	  @e	  strength	  

•  A	  characteriza@on	  of	  func@ons	  that	  sa@sfy	  all	  our	  
axioms	  	  

•  Classifica@on	  of	  prior	  measures	  according	  to	  the	  
axioms	  that	  they	  sa@sfy	  	  

•  Experiments	  
•  Conclusions	  
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Running	  Example	  

infer	  

a	  

b	  

c	  

d	  

e	  

P	  

Q	  

R	  

high	  

low	  (a,c),	  (a,d),	  (a,e),	  (b,e)	  

	  (b,c),	  (b,d),	  (c,e),	  (d,e)	  

	  (a,b)	   	  (c,d)	  

Input	  
People	  ×	  Event	  Bipar@te	  Graph	  

Output	  
Par@al	  Order	  of	  Tie	  Strength	  among	  People	  
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Axioms	  

•  Axiom	  1:	  Isomorphism	  
•  Axiom	  2:	  Baseline	  
•  Axiom	  3:	  Frequency	  
•  Axiom	  4:	  In@macy	  
•  Axiom	  5:	  Popularity	  
•  Axiom	  6:	  Condi@onal	  Independence	  of	  People	  
•  Axiom	  7:	  Condi@onal	  Independence	  of	  Events	  
•  Axiom	  8:	  Submodularity	  
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Axiom	  1:	  Isomorphism	  

•  Tie	  strength	  between	  u	  and	  v	  is	  independent	  of	  the	  
labels	  of	  u	  and	  v	  

b	  

c	   Q	  

d	  

e	  

R	  

c	  

e	  

R	  

b	  

d	  

Q	  

a	  

b	  

c	  

d	  

e	  

P	  

Q	  

R	  
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Axiom	  2:	  Baseline	  
•  If	  there	  are	  no	  events,	  then	  @e	  strength	  between	  each	  pair	  u	  

and	  v	  is	  0	  

TS∅(u,	  v)	  =	  0	  

•  If	  there	  are	  only	  two	  people	  u	  and	  v	  and	  a	  single	  event	  P	  that	  
they	  aFend,	  then	  their	  @e	  strength	  is	  at	  most	  1	  

TSP(u,	  v)	  ≤	  1	  

–  Defines	  an	  upper-‐bound	  for	  how	  much	  @e	  strength	  can	  be	  
generated	  from	  a	  single	  event	  between	  two	  people	  
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Axiom	  3:	  Frequency	  &	  Axiom	  4:	  In@macy	  

•  Axiom	  3	  (Frequency)	  
– More	  events	  create	  stronger	  @es	  

–  All	  other	  things	  being	  equal,	  the	  more	  	  
events	  common	  to	  u	  and	  v,	  the	  stronger	  	  
their	  @e-‐strength	  

•  Axiom	  4	  (InCmacy)	  
–  Smaller	  events	  create	  stronger	  @es	  

–  All	  other	  things	  being	  equal,	  the	  fewer	  invitees	  there	  are	  to	  
any	  par@cular	  event	  	  aFended	  by	  u	  and	  v,	  the	  stronger	  their	  
@e-‐strength	  

a	  

b	  

c	  

d	  

e	  

P	  

Q	  

R	  
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Axiom	  5:	  Popularity	  

•  Larger	  events	  create	  more	  @es	  
•  Consider	  two	  events	  P	  and	  Q	  	  	  
•  If	  |Q|	  >	  |P|,	  then	  the	  total	  @e	  	  
strength	  created	  by	  Q	  is	  more	  	  
than	  that	  created	  by	  P	  

a	  

b	  

c	  

d	  

e	  

P	  

Q	  

R	  
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Axioms	  6	  &	  7:	  Condi@onal	  Independence	  
of	  People	  and	  of	  Events	  	  

•  Axiom	  6:	  CondiConal	  Independence	  of	  People	  
–  A	  node	  u’s	  @e	  strength	  to	  other	  people	  does	  not	  depend	  on	  
events	  that	  u	  does	  not	  aFend	  

•  Axiom	  7:	  CondiConal	  Independence	  of	  Events	  

–  The	  increase	  in	  @e	  strength	  between	  u	  and	  v	  due	  to	  	  
an	  event	  P	  does	  not	  depend	  on	  other	  events,	  just	  on	  	  
the	  exis@ng	  @e	  strength	  between	  u	  and	  v	  

–  TS(G+P)(u,	  v)	  =	  g(TSG(u,	  v),	  TSP(u,	  v))	  	  
•  where	  g	  is	  some	  monotonically	  increasing	  func@on	  
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Axiom	  8:	  Submodularity	  

•  The	  marginal	  increase	  in	  @e	  strength	  of	  u	  and	  v	  
due	  to	  an	  event	  Q	  is	  at	  most	  the	  @e	  strength	  
between	  u	  and	  v	  if	  Q	  was	  their	  only	  event	  

•  If	  G	  is	  a	  graph	  and	  Q	  is	  a	  single	  event,	  then	  
TS(G+Q)(u,	  v)−TSG(u,	  v)	  ≤	  TSQ(u,	  v)	  	  
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Example	  –	  Mapping	  to	  Axioms	  

Axiom	  2	  (Baseline)	  &	  
Axiom	  6	  (Cond.	  Indep.	  	  
of	  Ver!ces)	  &	  Axiom	  7	  
(Cond.	  Indep.	  of	  Events)	  

Axiom	  1	  
(Isomorphism)	  

Axiom	  4	  (In!macy)	  	  
&	  Axiom	  3	  (Freq)	  

infer	  

a	  

b	  

c	  

d	  

e	  

P	  

Q	  

R	  

high	  

low	  (a,c),	  (a,d),	  (a,e),	  (b,e)	  

	  (b,c),	  (b,d),	  (c,e),	  (d,e)	  

	  (a,b)	   	  (c,d)	  

Input	  
People	  ×	  Event	  Bipar@te	  Graph	  

Output	  
Par@al	  order	  of	  Tie	  Strength	  
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Observa@ons	  on	  the	  Axioms	  
•  Our	  axioms	  are	  fairly	  intui@ve	  

•  But,	  several	  previous	  measures	  in	  the	  literature	  break	  
some	  of	  these	  axioms	  

•  Sa@sfying	  all	  the	  axioms	  is	  not	  sufficient	  to	  uniquely	  
iden@fy	  a	  measure	  of	  @e	  strength	  	  

–  One	  reason:	  inherent	  tension	  between	  Axiom	  3	  
(Frequency)	  and	  Axiom	  4	  (In@macy)	  

A1:	  Isomorphism	   A2:	  Baseline	   A3:	  Frequency	   A4:	  In@macy	  

A5:	  Popularity	   A6:	  Cond.	  Indep.	  of	  
people	  

A7:	  Cond.	  indep.	  of	  
events	  

A8:	  Submodularity	  
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Inherent	  Tension	  Between	  	  
Frequency	  &	  In@macy	  

•  Scenario	  #1	  (in@mate)	  
– Mary	  and	  Susan	  go	  to	  2	  par@es,	  where	  they	  are	  	  
the	  only	  people	  there.	  

•  Scenario	  #2	  (frequent)	  
– Mary,	  Susan,	  and	  Jane	  go	  to	  3	  par@es,	  where	  they	  
are	  the	  only	  people	  there.	  

•  In	  which	  scenario	  is	  Mary’s	  @e	  to	  Susan	  
stronger?	  
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Observa@ons	  on	  the	  Axioms	  (cont.)	  

	  

•  Axioms	  are	  equivalent	  to	  a	  natural	  par@al	  order	  on	  the	  
strength	  of	  @es	  
–  Per@nent	  to	  ranking	  applica@on	  

•  Choosing	  a	  par@cular	  @e-‐strength	  func@on	  is	  equivalent	  
to	  choosing	  a	  par@cular	  linear	  extension	  of	  this	  par@al	  
order	  
– Non-‐obvious	  decision	  

A1:	  Isomorphism	   A2:	  Baseline	   A3:	  Frequency	   A4:	  In@macy	  

A5:	  Popularity	   A6:	  Cond.	  Indep.	  of	  
people	  

A7:	  Cond.	  indep.	  of	  
events	  

A8:	  Submodularity	  
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Preamble	  to	  the	  Characteriza@on	  Theorem	  

•  Let	  f(n)	  =	  total	  @e	  strength	  generated	  in	  a	  single	  event	  with	  n	  people	  
•  If	  there	  is	  a	  single	  party	  with	  n	  people,	  the	  @e	  strength	  of	  each	  @e	  is	  	  

–  Based	  on	  Axiom	  1	  (Isomorphism)	  

•  The	  total	  @e	  strength	  created	  at	  an	  event	  P	  with	  n	  people	  is	  a	  monotone	  
func@on	  f(n)	  that	  is	  bounded	  by	  

–  Based	  on	  Axiom	  2	  (Baseline)	  and	  Axiom	  4	  (In@macy)	  and	  Axiom	  5	  (Popularity)	  
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Characterizing	  Tie	  Strength	  
A	  way	  to	  explore	  the	  space	  of	  valid	  func!ons	  for	  represen!ng	  
!e	  strength	  and	  find	  which	  work	  given	  par!cular	  applica!ons	  

Theorem.(Given&a&graph&G"="(L"∪"R,"E)"and"two"vertices"u"and"v,&
if& the& tie0strength& function& TS& follows& Axioms& (108),& then& the&
function&has&to&be&of&the&form"

TSG(u,"v)"="g(h(|P1|),"h(|P2|),&…,"h(|Pk|))"
• {Pi}1≤i≤k"are&the&events&common&to&both"u"and"v"
• ℎ &is& a& monotonically& decreasing& function& bounded& by&
1 ≥ ℎ(!) ≥ !

!
!
,&!&≥&2;&ℎ 1 = 1;&ℎ 0 = 0.&

• !&is&a&monotonically&increasing&submodular&function&
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Many	  Measures	  	  
of	  Tie	  Strength	  
1.  Common	  neighbor	  
2.  Jaccard	  index	  
3.  Max	  
4.  Linear	  
5.  Delta	  
6.  Adamic	  and	  Adar	  
7.  Preferen@al	  aFachment	  
8.  Katz	  measure	  
9.  Random	  walk	  with	  restarts	  
10.  Simrank	  
11.  Propor@onal	  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
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otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }
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) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are
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with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
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.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:
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✏

|P | + (1� ✏)
TS(u, v)P
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a
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, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
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and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }
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) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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is discounted exponentially by the length of path.

TS(u, v) =
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.
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and v by recursively computing the similarity of their
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also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:
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✏

|P | + (1� ✏)
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
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2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
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in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.
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with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
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also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
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✏
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Temporal Proportional. Like the previous, but with the
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with a default value and is changed according to this
equation, where the events are ordered by time.
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=
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
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, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.
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shows that TS satisfies Axiom 1 (Baseline). Also, define
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in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1
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(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
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in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
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that both u and v attended.
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with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:
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✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a
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, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.
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n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
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in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are
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the number of paths between u and v where each path
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
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allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
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according which axioms they satisfy. If they satisfy all the
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let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)
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Adamic and Adar. This measure was introduced in [AA03].
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Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)
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Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
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Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
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P2�(u)\�(v)

1
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Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.



Non	  Self-‐Referen@al	  Tie	  Strength	  Measures	  

•  Common	  neighbor	  
–  The	  total	  #	  of	  common	  events	  that	  both	  u	  and	  v	  aFended	  

•  Jaccard	  Index	  
–  Similar	  to	  common	  neighbor	  
–  Normalizes	  for	  how	  “social”	  u	  and	  v	  are	  

•  Adamic	  and	  Adar	  [2003],	  Delta,	  and	  Linear	  
–  Tie	  strength	  increases	  with	  the	  number	  of	  events	  
–  Tie	  strength	  is	  1	  over	  a	  simple	  func@on	  of	  event	  size	  

•  Max	  
–  Tie	  strength	  does	  not	  increase	  with	  the	  number	  of	  events	  
–  Tie	  strength	  is	  the	  maximum	  @e	  strength	  from	  all	  common	  events	  
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Self-‐Referen@al	  Tie-‐Strength	  Measures	  

•  Katz	  measure	  [Katz,1953]	  
–  Tie	  strength	  is	  the	  number	  of	  paths	  between	  u	  and	  v,	  where	  each	  path	  is	  

discounted	  exponen@ally	  by	  the	  length	  of	  the	  path	  	  
•  Random	  walk	  with	  restarts	  

–  A	  non-‐symmetric	  measure	  of	  @e	  strength	  
–  Tie	  strength	  is	  the	  sta@onary	  probability	  of	  a	  Markov	  chain	  process	  
–  With	  probability	  α,	  jump	  to	  a	  node	  u;	  and	  with	  probability	  1-‐α,	  jump	  to	  a	  

neighbor	  of	  a	  current	  node.	  
•  Simrank	  [Jeh	  &	  Widom,	  2002]	  

–  Tie	  strength	  is	  captured	  by	  recursively	  compu@ng	  the	  @e	  strength	  of	  
neighbors	  

•  ProporConal	  
–  Tie	  strength	  increases	  with	  #	  of	  events	  
–  People	  spend	  @me	  propor@onal	  to	  their	  @e-‐strength	  at	  a	  party	  
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Measures	  of	  Tie-‐Strength	  that	  
Sa@sfy	  All	  the	  Axioms	  

A1	   A2	   A3	   A4	   A5	   A6	   A7	   A8	   g(a1,	  …,	  ak)	  	  	  	  	  	  	  	  	  	  h(|Pi|)	  =	  ai	  

Common	  
Neighbors	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   g(a1,	  …,	  ak)	  =Σai	  

h(n)	  =	  1	  

Delta	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   g(a1,	  …,	  ak)	  =Σai	  
h(n)	  =	  2(n(n-‐1))-‐1	  

Adamic	  &	  
Adar	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   g(a1,	  …,	  ak)	  =Σai	  

h(n)	  =	  (log(n))-‐1	  

Linear	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   g(a1,	  …,	  ak)	  =Σai	  
h(n)	  =	  n-‐1	  

Max	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   ✓	   g(a1,	  …,	  ak)	  =max{ai}	  
h(n)	  =	  n-‐1	  

A1:	  Isomorphism	   A2:	  Baseline	   A3:	  Frequency	   A4:	  In@macy	  

A5:	  Popularity	   A6:	  Cond.	  indep.	  of	  P	   A7:	  Cond.	  indep.	  of	  E	   A8:	  Submodularity	  
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Measures	  of	  Tie-‐Strength	  that	  	  
Do	  Not	  Sa@sfy	  All	  the	  Axioms	  

A1	   A2	   A3	   A4	   A5	   A6	   A7	   A8	   g(a1,	  …,	  ak)	  	  	  	  	  	  	  	  	  	  h(|Pi|)	  =	  ai	  

Jaccard	  Index	   ✓	   ✓	   ✓	   ✓	   ✓	   ✗	   ✗	   ✗	   ✗	  

Katz	  Measure	   ✓	   ✗	   ✓	   ✓	   ✓	   ✓	   ✗	   ✗	   ✗	  

Preferen@al	  
AFachment	   ✓	   ✓	   ✗	   ✓	   ✓	   ✓	   ✗	   ✗	   ✗	  

RWR	   ✓	   ✗	   ✗	   ✗	   ✓	   ✓	   ✗	   ✗	   ✗	  

Simrank	   ✓	   ✗	   ✗	   ✗	   ✗	   ✗	   ✗	   ✗	   ✗	  

Propor@onal	   ✓	   ✗	   ✗	   ✓	   ✗	   ✓	   ✗	   ✗	   ✗	  

A1:	  Isomorphism	   A2:	  Baseline	   A3:	  Frequency	   A4:	  In@macy	  

A5:	  Popularity	   A6:	  Cond.	  indep.	  of	  V	   A7:	  Cond.	  indep.	  of	  E	   A8:	  Submodularity	  

26	  



Tie	  Strength	  and	  Orderings	  
•  Let	  TS	  be	  a	  func@on	  that	  sa@sfies	  Axioms	  1-‐8	  

	  
•  TS	  induces	  a	  total	  order	  on	  the	  edges	  that	  is	  a	  linear	  

extension	  of	  the	  par@al	  order	  on	  the	  node-‐@e	  pairs	  

(1)	  Isomorphism	   (2)	  Baseline	   (3)	  Frequency	   (4)	  In@macy	  

(5)	  Popularity	   (6)	  Cond.	  indep.	  of	  P	   (7)	  Cond.	  indep.	  of	  E	   (8)	  Submodularity	  
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•  aaa	  

Definition 7 (Total Order). Given a set S and a binary
relation O on S, O = (S,O) is called a total order if
and only if it satisfies the following properties (i Total). for
every u, v 2 S, u O v or v O u (ii Anti-Symmetric).
u O v and v O u =) u = v (iii Transitive). u O v
and v O w =) u O w

A total order is also called a linear order.

Consider a measure TS that assigns a measure of tie strength
to each pair of nodes u, v given the events that all nodes
attend in the form of a graph G. Since TS assigns a real
number to each edge and the set of reals is totally ordered,
TS gives a total order on all the edges. In fact, the function
TS actually gives a total ordering of N⇤. In particular, if we
fix a vertex u, then TS induces a total order on the set of
neighbors of u, given by the increasing values of TS on the
corresponding edges.

4.2.1 The Partial Order on N⇤

Definition 8 (Partial Order). Given a set S and a binary
relation P on S, P = (S,P) is called a partial order if and
only if it satisfies the following properties (i Reflexive). for
every u 2 S, u P u (ii Anti-Symmetric). u P v and v P
u =) u = v (iii Transitive). u P v and v P w =)
u P w

The set S is called a partially ordered set or a poset.

Note the di↵erence from a total order is that in a partial
order not every pair of elements is comparable. We shall
now look at a natural partial order N = (N⇤,N ) on the
set N⇤ of all finite sequences of natural numbers. Recall that
N⇤ = [kNk. We shall think of this sequence as the number
of common events that a pair of users attend.

Definition 9 (Partial order on N⇤). Let a, b 2 N⇤ where
a = (ai)

1iA and b = (bi)
1iB. We say that a �N b if

and only if A � B and ai  bi : 1  i  B. This gives the
partial order N = (N⇤,N ).

The partial order N corresponds to the intuition that more
events and smaller events create stronger ties. In fact, we
claim that this is exactly the partial order implied by the
Axioms (1-8). Theorem 11 formalizes this intuition along
with giving the proof. What we would really like is a total
ordering. Can we go from the partial ordering given by the
Axioms (1-8) to a total order on N⇤? Theorem 11 also
suggest ways in which we can do this.

4.2.2 Partial Orderings and Linear Extensions
In this section, we connect the definitions of partial order
and the functions of tie strength that we are studying. First
we start with a definition.

Definition 10 (Linear Extension). L = (S,L) is called the
linear extension of a given partial order P = (S,P) if and
only if L is a total order and L is consistent with the ordering
defined by P, that is, for all u, v 2 S, u P v =) u L v.

We are now ready to state the main theorem which char-
acterizes functions that satisfy Axioms (1-8) in terms of a

partial ordering on N⇤. Fix nodes u and v and let P
1

, . . . , Pn

be all the events that both u and v attend. Consider the
sequence of numbers (|Pi|)

1ik that give the number of
people in each of these events. Without loss of general-
ity assume that these are sorted in ascending order. Hence
|Pi|  |Pi+1

|. We associate this sorted sequence of numbers
with the tie (u, v). The partial order N induces a partial
order on the set of pairs via this mapping. We also call
this partial order N . Fixing any particular measure of tie
strength, gives a mapping of N⇤ to R and hence implies fix-
ing a particular linear extension of N , and fixing a linear
extension of N involves making non-obvious decisions be-
tween elements of the partial order. We formalize this in
the next theorem.

Theorem 11. Let G = (L [ R,E) be a bipartite graph of
users and events. Given two users (u, v) 2 (L ⇥ L), let
(|Pi|)

1ik 2 R be the set of events common to users (u, v).
Through this association, the partial order N = (N⇤,N ) on
finite sequences of numbers induces a partial order on L⇥L
which we also call N .

Let TS be a function that satisfies Axioms (1-8). Then TS
induces a total order on the edges that is a linear extension
of the partial order N on L⇥ L.

Conversely, for every linear extension L of the partial order
N , we can find a function TS that induces L on L⇥ L and
that satisfies Axioms (1-8).

Proof. TS : L⇥L ! R. Hence, it gives a total order on the
set of pairs of user. We want to show that if TS satisfies
Axioms (1-8), then the total order is a linear extension of
N . The characterization in Theorem 6 states that given a
pair of vertices (u, v) 2 (L ⇥ L), TS(u, v) is characterized
by the number of users in events common to u and v and
can be expressed as TSG(u, v) = g(h(|Pi|))

1ik where g
is a monotone submodular function and h is a monotone
decreasing function. Since TS : L ⇥ L ! R, it induces a
total order on all pairs of users. We now show that this is
a consistent with the partial order N . Consider two pairs
(u

1

, v
1

), (u
2

, v
2

) with party profiles a = (a
1

, . . . , aA) and b =
(b

1

, . . . , bB).

Suppose a �N b. We want to show that TS(u
1

, v
1

) �
TS(u

2

, v
2

). a �N b implies that A � B and that ai 
bi : 81  i  B.

TS(u
1

, v
1

)

= g(h(a
1

), . . . , h(aA))

� g(h(a
1

), . . . , h(aB)) (Since g is monotone and A � B)

� g(h(b
1

), . . . , h(bB)) (Since g is monotone and

h(ai) � h(bi) since ai  bi)

= TS(u
2

, v
2

)

This proves the first part of the theorem.

For the converse, we are given an total ordering L = (N⇤,L
) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !
R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We

	  	  	  	  	  	  Tie	  Strength	  &	  Orderings	  
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Data	  Sets	  

Graphs	   #	  of	  People	   #	  of	  Events	  

Southern	  Women	   18	   14	  

The	  Tempest	   19	   34	  

A	  Comedy	  of	  Errors	   19	   40	  

Macbeth	   38	   67	  

Reality	  Mining	  Bluetooth	   104	   326,248	  

Enron	  Emails	   32,471	   371,321	  
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Degree	  Distribu@ons	  
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Completeness	  of	  Axioms	  1-‐8	  
(Number	  of	  Ties	  Not	  Resolved	  by	  the	  Par@al	  Order)	  

	  
	  
	  
•  %	  of	  @e-‐pairs	  where	  different	  @e-‐strength	  func@ons	  can	  differ	  

–  Smaller	  is	  beFer	  
–  Generally,	  percentages	  are	  small	  
–  Large	  real-‐world	  networks	  have	  more	  unresolved	  @es	  

Dataset	   Tie	  Pairs	   Incomparable	  Pairs	  (%)	  
Southern	  Women	   11,628	   683	  (5.87)	  
The	  Tempest	   14,535	   275	  (1.89)	  

A	  Comedy	  of	  Errors	   14,535	   726	  (4.99)	  
Macbeth	   246,753	   584	  (0.23)	  

Reality	  Mining	   13,794,378	   1,764,546	  (12.79)	  
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Take-‐away	  point	  #1	  	  
%	  of	  Ce	  pairs	  on	  which	  different	  
Ce	  strength	  funcCons	  can	  differ	  
is	  small.*	  	  

*	  This	  is	  for	  ranking	  applica@on	  and	  @e	  strength	  func@ons	  sa@sfying	  the	  axioms.	  



Two	  Tie-‐Strength	  Func@ons	  that	  	  
Do	  Not	  Sa@sfy	  the	  Axioms	  

•  Jaccard	  Index	  
–  Normalizes	  for	  how	  “social”	  u	  and	  v	  are	  

	  
	  
•  Temporal	  ProporConal	  

–  Increases	  with	  number	  of	  events	  
–  People	  spend	  @me	  propor@onal	  to	  their	  @e-‐strength	  in	  a	  party	  
–  Events	  are	  ordered	  by	  @me	  

For the converse, we are given an total ordering L = (N⇤,L
) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !
R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 2 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [Karzanov and Khachiyan, 1991]. We leave
the analysis of the analytical properties and its viability as
a strength function in real world applications as an open
research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of tie-strength measures discussed
in previous literature. We review the most popular of them
here and classify them according to the axioms they satisfy.
In this section, for an event P , we denote by |P | the number
of people in the event P . The size of P ’s neighborhood is
represented by |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index, which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta. Tie strength increases with the number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [Adamic
and Adar, 2003].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Katz, 1953]. It

counts the number of paths between u and v, where
each path is discounted exponentially by the length of
path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce three new measures of tie strength.
In a sense, g =

P
is at one extreme of the range of functions

allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
TS is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. This is similar to Proportional,
but with a temporal aspect. TS is not a fixed point,
but starts with a default value and is changed accord-
ing to the following equation, where the events are
ordered by time.

TS(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

For the converse, we are given an total ordering L = (N⇤,L
) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !
R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 2 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [Karzanov and Khachiyan, 1991]. We leave
the analysis of the analytical properties and its viability as
a strength function in real world applications as an open
research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of tie-strength measures discussed
in previous literature. We review the most popular of them
here and classify them according to the axioms they satisfy.
In this section, for an event P , we denote by |P | the number
of people in the event P . The size of P ’s neighborhood is
represented by |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index, which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta. Tie strength increases with the number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [Adamic
and Adar, 2003].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Katz, 1953]. It

counts the number of paths between u and v, where
each path is discounted exponentially by the length of
path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce three new measures of tie strength.
In a sense, g =

P
is at one extreme of the range of functions

allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
TS is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. This is similar to Proportional,
but with a temporal aspect. TS is not a fixed point,
but starts with a default value and is changed accord-
ing to the following equation, where the events are
ordered by time.

TS(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise
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Soundness	  of	  Axioms	  1-‐8	  
(Number	  of	  Conflicts	  Between	  the	  Par@al	  Order	  and	  
Tie-‐Strength	  Func@ons	  Not	  Sa@sfying	  the	  Axioms)	  

	  
•  %	  of	  @e-‐pairs	  in	  conflict	  with	  the	  par@al	  order	  	  

– Smaller	  is	  beFer	  
– Generally,	  percentages	  are	  small	  	  
– They	  decrease	  as	  the	  dataset	  increases	  

Dataset	   Tie	  Pairs	   Jaccard	  (%)	   Temporal	  (%)	  
Southern	  Women	   11,628	   1,441	  (12.39)	   665	  (5.72)	  
The	  Tempest	   14,535	   488	  (3.35)	   261	  (1.79)	  

A	  Comedy	  of	  Errors	   14,535	   1,114	  (7.76)	   381	  (2.62)	  
Macbeth	   246,753	   2,638	  (1.06)	   978	  (0.39)	  

Reality	  Mining	   13,794,378	   290,934	  (0.02)	   112,546	  (0.01)	  
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More	  on	  Soundness	  
•  QuesCon	  1:	  

Are	  the	  number	  of	  conflicts,	  between	  the	  par@al	  order	  and	  	  
@e-‐strength	  func@ons	  not	  sa@sfying	  the	  axioms,	  small	  because	  
most	  of	  the	  @e-‐strengths	  are	  zeros	  (sparsity	  of	  real	  graph)?	  

•  Answer:	  
•  This	  is	  parCally	  true.	  
•  For	  some	  pairs,	  the	  @e-‐strength	  being	  set	  to	  zero	  is	  caused	  by	  

the	  axioms.	  	  
•  It	  may	  or	  may	  not	  be	  true	  that	  all	  these	  pairs	  have	  @e-‐strength	  

zero	  in	  the	  actual	  func@on	  used.	  	  
–  For	  example,	  this	  won’t	  be	  true	  for	  some	  self-‐referen@al	  

func@ons	  like	  Simrank,	  Random	  Walk	  with	  Restart,	  etc.	  	  
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Even	  More	  on	  Soundness	  
•  QuesCon	  2:	  How	  do	  the	  conflict	  numbers	  change	  if	  we	  only	  looked	  

at	  @e	  pairs	  that	  have	  nonzero	  @e-‐strengths?	  
•  Answer:	  The	  percentages	  go	  up	  but	  not	  by	  much.	  

36	  

Dataset	  	   Tie	  Pairs	   Tie	  Pairs	  	  
(excluding	  TS=0)	   Jaccard	   Temporal	  

Southern	  Women	   11,628	   11,537	   1,441	   665	  

The	  Tempest	   14,535	   10,257	   488	   261	  

A	  Comedy	  of	  Errors	   14,535	   11,685	   1,114	   381	  

Macbeth	   246,753	   74,175	   2,638	   978	  

Reality	  Mining	   13,794,378	   12,819,272	  	   290,934	   112,546	  
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Take-‐away	  point	  #2	  
%	  of	  conflicts	  between	  our	  axioms	  
and	  Ce-‐strength	  funcCons	  not	  
saCsfying	  our	  axioms	  is	  small.*	  

*	  This	  is	  for	  ranking	  applica@on.	  
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Take-‐away	  point	  #1	  	  
%	  of	  @e	  pairs	  on	  which	  
different	  @e-‐strength	  
func@ons	  can	  differ	  is	  
small.	  	  
	  

Take-‐away	  point	  #2	  
%	  of	  conflicts	  between	  
our	  axioms	  and	  @e-‐
strength	  func@ons	  not	  
sa@sfying	  our	  axioms	  is	  
small.	  

Take-‐away	  point	  #3	  	  
If	  your	  applicaCon	  is	  ranking,	  just	  pick	  
the	  most	  computaConally	  efficient	  Ce-‐
strength	  measure	  (e.g.	  common	  
neighbor).	  



Tie	  Strength	  Measures	  Used	  in	  	  
Rank	  Correla@on	  Experiments	  

Tie	  Strength	  Measure	   Formula	  

Common	  Neighbor	  

Max	  

Linear	  

Delta	  

Adamic-‐Adar	  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
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1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].
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Linear. Tie strength increases with number of events

TS(u, v) =
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Preferrential attachment.
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Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
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Adamic and Adar. This measure was introduced in [AA03].
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P2�(u)\�(v)

1
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Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
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Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
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the number of paths between u and v where each path
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =
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1 if u = v
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
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.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
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, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
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and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }
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) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.
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Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt
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|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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Kendall	  τ	  Coefficient	  

•  	  It	  is	  a	  measure	  of	  rank	  correla@on	  
– The	  similarity	  of	  the	  orderings	  of	  the	  data	  when	  
ranked	  by	  each	  of	  the	  quan@@es	  

τ =
(# of concordant pairs) - (# of discordant pairs)

1
2 n(n−1)

41	  



Adamic-‐Adar,	  Delta,	  &	  Linear	  produce	  
TS	  rankings	  that	  are	  highly	  correlated	  
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Observations on Axioms 
•  Satisfying all the axioms is not sufficient to uniquely identify a measure of tie 

strength (because of tension between frequency and intimacy). 

•  Axioms are equivalent to a natural partial order on the strength of ties. 

•  Pertinent to ranking application 

•  Choosing a particular tie-strength function is equivalent to choosing a particular 
linear extension of this partial order. 

 

Characterizing Tie Strength 
Theorem. Given a graph G = (L ∪ R, E) and two vertices u and v, if the tie 
strength function TS follows Axioms (1-8), then the function has to be of the form 

TSG(u,v) = g(h(|P1|), h(|P2|), …, h(|Pk|)) 

•  {Pi}1≤i≤k are the events common to both u and v 

•  h is a monotonically decreasing function: h(0)= 0, h(1) = 1, and for n ≥ 2,  
h(n) ∈ [ 2 ⁄ n(n−1), 1] 

•  g is a monotonically increasing submodular function 
 

Measures of Tie-Strength & the Axioms they Satisfy 

� Current affiliation: Google  

Tempest 

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

Macbeth 

Axiom 2 (Baseline) & 
Axiom 6 (Cond. Indep.  
of Vertices) & Axiom 7 

(Cond. Indep. of Events) 

Axiom 1 
(Isomorphism) 

Axiom 4 (Intimacy)  
& Axiom 3 (Frequency) 

infer 

a 

b 

c 

d 

e 

P 

Q 

R 

high 

low (a,c), (a,d), (a,e), (b,e) 

 (b,c), (b,d), (c,e), (d,e) 

 (a,b)  (c,d) 

Input 
People × Event Bipartite Graph 

Output 
Partial order of Tie Strength among People 

Our Axioms 
1.  Isomorphism: Tie strength between u and v does not depend on the labels 

of u and v. 

2.  Baseline: (a) If there are no events, then tie strength between every pair u 
and v is 0.  (b) If there are only two people u and v and a single event P 
which they attend, then their tie strength is 1. 

3.  Frequency: More events create stronger ties. 

4.  Intimacy: Smaller events create stronger ties. 

5.  Popularity: Larger events create more ties. 

6.  Conditional independence of (people) vertices: A node u’s tie strength to 
other people does not depend on events that u does not attend. 

7.  Conditional independence of events: The increase in tie strength between 
u and v due to an event P does not depend on other events, just on the 
existing tie strength between u and v. 

8.  Submodularity: The marginal increase in tie strength of u and v due to an 
event Q is at most the tie strength between u and v if Q was their only event. 

Problem Definition 
•  Given a set of people and a set of events attended by them, measure tie 

strength between each pair of persons. 

•  Assumption: Attendance at mutual events implies an implicit weighted social 
network between people.  

Motivation 
•  Explicitly declared friendship links can suffer from a low signal-to-noise ratio 

(e.g., Facebook friends). 

•  Challenge: Detect which of these links are important. 

•  Goal: Infer the implicit weighted social network from people’s participation in 
mutual events. 

Which one 
should you 

choose? 
An axiomatic 
approach will 
sort this out.  

Tie Strength 
•  A measure of tie strength induces  

•  a ranking on the edges, and 

•  a ranking on the set of neighbors for every person. 

•  There are many different measures of tie-strength. 

•  Common neighbor 

•  Jaccard index 

•  Max 

•  Linear 

•  Delta 

•  Adamic and Adar 

 

 
•  Preferential attachment 

•  Katz measure 

•  Random walk with restarts 

•  Simrank 

•  Proportional 

•  …  

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Jaccard 
Index ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 

Katz 
Measure ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 

Preferential 
Attachment ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 

RWR ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 

Simrank ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Proportional ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ 

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Common 
Neighbors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = 1 

Delta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = 2(n(n-1))-1 

Adamic & 
Adar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = (log(n))-1 

Linear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = n-1 

Max ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =max{ai} 
h(n) = n-1 

Graphs # of People # of Events 
Southern Women 18 14 
The Tempest 19 34 
A Comedy of Errors 19 40 
Macbeth 38 67 
Reality Mining Bluetooth 104 326,248 
Enron Emails 32,471 371,321 

Dataset Tie Pairs Incomparable Pairs (%) 
Southern Women 11,628 683 (5.87) 

The Tempest 14,535 275 (1.89) 
A Comedy of Errors 14,535 726 (4.99) 

Macbeth 246,753 584 (0.23) 
Reality Mining 13,794,378 1,764,546 (12.79) 

Dataset Tie Pairs Jaccard (%) Temporal (%) 
Southern Women 11,628 1,441 (12.39) 665 (5.72) 

The Tempest 14,535 488 (3.35) 261 (1.79) 
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62) 

Macbeth 246,753 2,638 (1.06) 978 (0.39) 
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01) 

Soundness of Our Axioms 
(% Conflicts Between the Partial Order & Tie-

Strength Functions that Do Not Satisfy Our Axioms 

Completeness of Our Axioms 
(% Ties Not Resolved by the Partial Order) 

Kendall τ Correlation Coefficient  

Take-away point #1:  
% of tie pairs on which 
different tie strength 
functions can differ is 
small. 
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Take-away point #2:  
% of conflicts between 
our axioms and tie-
strength functions not 
satisfying our axioms  
is small. 
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Take-away point #3: 
Kendall τ correlations  
on rankings produced 
by tie-strength 
functions (that satisfy 
our axioms) highlight 
three groups: (1) 
{Adamic-Adar, Delta, 
Linear}, (2) {Common 
Neighbor}, and (3) 
{Max}. 

Take-away point #4: Axiomatic approaches to various measures on networks (such as 
tie-strength measures in this study) enable us to systematically study existing measures 
and characterize functions that satisfy our axioms. 



Common	  Neighbor	  &	  Max	  produce	  TS	  
rankings	  that	  are	  mostly	  uncorrelated	  

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

Comedy% Macbeth% Tempest% Reality% Enron% S.%Women%

Ke
nd

al
l'T
au

'C
or
re
la
-o

n'

Datasets'

(CN,%Max)%

43	  

An Axiomatic Approach to Tie-Strength Measures 
Mangesh Gupte 
Rutgers University* 

mangesh@cs.rutgers.edu 

Tina Eliassi-Rad 
Rutgers University 
tina@eliassi.org 

 

Observations on Axioms 
•  Satisfying all the axioms is not sufficient to uniquely identify a measure of tie 

strength (because of tension between frequency and intimacy). 

•  Axioms are equivalent to a natural partial order on the strength of ties. 

•  Pertinent to ranking application 

•  Choosing a particular tie-strength function is equivalent to choosing a particular 
linear extension of this partial order. 

 

Characterizing Tie Strength 
Theorem. Given a graph G = (L ∪ R, E) and two vertices u and v, if the tie 
strength function TS follows Axioms (1-8), then the function has to be of the form 

TSG(u,v) = g(h(|P1|), h(|P2|), …, h(|Pk|)) 

•  {Pi}1≤i≤k are the events common to both u and v 

•  h is a monotonically decreasing function: h(0)= 0, h(1) = 1, and for n ≥ 2,  
h(n) ∈ [ 2 ⁄ n(n−1), 1] 

•  g is a monotonically increasing submodular function 
 

Measures of Tie-Strength & the Axioms they Satisfy 
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We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

Macbeth 

Axiom 2 (Baseline) & 
Axiom 6 (Cond. Indep.  
of Vertices) & Axiom 7 

(Cond. Indep. of Events) 

Axiom 1 
(Isomorphism) 

Axiom 4 (Intimacy)  
& Axiom 3 (Frequency) 

infer 

a 

b 

c 

d 

e 

P 

Q 

R 

high 

low (a,c), (a,d), (a,e), (b,e) 

 (b,c), (b,d), (c,e), (d,e) 

 (a,b)  (c,d) 

Input 
People × Event Bipartite Graph 

Output 
Partial order of Tie Strength among People 

Our Axioms 
1.  Isomorphism: Tie strength between u and v does not depend on the labels 

of u and v. 

2.  Baseline: (a) If there are no events, then tie strength between every pair u 
and v is 0.  (b) If there are only two people u and v and a single event P 
which they attend, then their tie strength is 1. 

3.  Frequency: More events create stronger ties. 

4.  Intimacy: Smaller events create stronger ties. 

5.  Popularity: Larger events create more ties. 

6.  Conditional independence of (people) vertices: A node u’s tie strength to 
other people does not depend on events that u does not attend. 

7.  Conditional independence of events: The increase in tie strength between 
u and v due to an event P does not depend on other events, just on the 
existing tie strength between u and v. 

8.  Submodularity: The marginal increase in tie strength of u and v due to an 
event Q is at most the tie strength between u and v if Q was their only event. 

Problem Definition 
•  Given a set of people and a set of events attended by them, measure tie 

strength between each pair of persons. 

•  Assumption: Attendance at mutual events implies an implicit weighted social 
network between people.  

Motivation 
•  Explicitly declared friendship links can suffer from a low signal-to-noise ratio 

(e.g., Facebook friends). 

•  Challenge: Detect which of these links are important. 

•  Goal: Infer the implicit weighted social network from people’s participation in 
mutual events. 

Which one 
should you 

choose? 
An axiomatic 
approach will 
sort this out.  

Tie Strength 
•  A measure of tie strength induces  

•  a ranking on the edges, and 

•  a ranking on the set of neighbors for every person. 

•  There are many different measures of tie-strength. 

•  Common neighbor 

•  Jaccard index 

•  Max 

•  Linear 

•  Delta 

•  Adamic and Adar 

 

 
•  Preferential attachment 

•  Katz measure 

•  Random walk with restarts 

•  Simrank 

•  Proportional 

•  …  

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Jaccard 
Index ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 

Katz 
Measure ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 

Preferential 
Attachment ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 

RWR ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 

Simrank ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Proportional ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ 

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Common 
Neighbors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = 1 

Delta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = 2(n(n-1))-1 

Adamic & 
Adar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = (log(n))-1 

Linear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = n-1 

Max ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =max{ai} 
h(n) = n-1 

Graphs # of People # of Events 
Southern Women 18 14 
The Tempest 19 34 
A Comedy of Errors 19 40 
Macbeth 38 67 
Reality Mining Bluetooth 104 326,248 
Enron Emails 32,471 371,321 

Dataset Tie Pairs Incomparable Pairs (%) 
Southern Women 11,628 683 (5.87) 

The Tempest 14,535 275 (1.89) 
A Comedy of Errors 14,535 726 (4.99) 

Macbeth 246,753 584 (0.23) 
Reality Mining 13,794,378 1,764,546 (12.79) 

Dataset Tie Pairs Jaccard (%) Temporal (%) 
Southern Women 11,628 1,441 (12.39) 665 (5.72) 

The Tempest 14,535 488 (3.35) 261 (1.79) 
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62) 

Macbeth 246,753 2,638 (1.06) 978 (0.39) 
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01) 

Soundness of Our Axioms 
(% Conflicts Between the Partial Order & Tie-

Strength Functions that Do Not Satisfy Our Axioms 

Completeness of Our Axioms 
(% Ties Not Resolved by the Partial Order) 

Kendall τ Correlation Coefficient  

Take-away point #1:  
% of tie pairs on which 
different tie strength 
functions can differ is 
small. 
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Take-away point #2:  
% of conflicts between 
our axioms and tie-
strength functions not 
satisfying our axioms  
is small. 
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Take-away point #3: 
Kendall τ correlations  
on rankings produced 
by tie-strength 
functions (that satisfy 
our axioms) highlight 
three groups: (1) 
{Adamic-Adar, Delta, 
Linear}, (2) {Common 
Neighbor}, and (3) 
{Max}. 

Take-away point #4: Axiomatic approaches to various measures on networks (such as 
tie-strength measures in this study) enable us to systematically study existing measures 
and characterize functions that satisfy our axioms. 
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Take-‐away	  point	  #4	  	  
Kendall	  τ	  correlaCons	  on	  rankings	  
produced	  by	  Ce-‐strength	  funcCons	  
(that	  saCsfy	  our	  axioms)	  highlight	  
three	  groups:	  (1)	  {Adamic-‐Adar,	  
Delta,	  Linear},	  (2)	  {Common	  
Neighbor},	  and	  (3)	  {Max}.	  	  



Scalability	  Issue	  

•  	  	  
•  Enron	  has	  32,471	  
•  #	  of	  @e	  pairs	  in	  Enron	  ≈	  138	  quadrillion	  

•  Ignore	  zero	  @e-‐strengths	  

at the same time. We obtain the strengths between characters
from three Shakespearean plays using the tie-strength mea-
sure Linear. Note that the inference is only based on people
occupying the stage at the same time and not on any seman-
tic analysis of the text. Figure 2 shows the inferred weighted
social network for The Tempest. For brevity, we have omit-
ted the networks for Macbeth and A Comedy of Errors. The
inferred weights (i.e., tie strengths) are consistent with the
stories. For example, the highest tie strengths are between
Ariel and Prospero in The Tempest. We also observed that the
highest tie strengths were between Macbeth and Lady Mac-
beth in the play Macbeth and between Dromio of Syracuse
and Antipholus of Syracuse in A Comedy of Errors. This ex-
periment demonstrates that using only event information can
capture the underlying tie strength between individuals.

Completeness of the Axioms
In Section “Axioms of Tie Strength,” we discussed axioms
governing tie strength and characterized the axioms in terms
of a partial order in Theorem 11. We shall now conduct an
experiment to determine the completeness of our set of ax-
ioms. Given a dataset, we measure completeness in terms of
the number of tie-pairs that are ranked by the partial order.
This will give us an empirical measure of how many tie-pairs
are unresolved by a tie-strength function that satisfies Axioms
1 through 8.

We use Theorem 11 to conduct this experiment. For differ-
ent datasets, we consider all possible rankings that satisfy our
axioms by generating the partial order between all ties im-
plied by Theorem 11.4 We then calculate the percentage of
ties that are comparable under this partial order. A high per-
centage will indicate that most ties are actually resolved by
our axioms for real world datasets.

Each measure of tie strength gives a total order on the ties;
and, hence resolves all the comparisons between pairs of ties.
The number of tie-pairs which are left incomparable in the
partial order gives a notion of the how much room the axioms
leave open for different tie-strength functions to differ from
each other.

Table 3 shows the percentage of all ties that are not resolved
by the partial order (i.e., the percentage of the ties for which
the partial order cannot tells us if one tie is greater or if they
are equal); so a lower percentage is better. We observe that
the partial order defined by our axioms does indeed resolve
a very high percentage of the ties. Also, we see that our ax-
ioms resolve more ties in the scripted cleaner world of Shake-
spearean plays than in the real-world Reality Mining dataset.

Soundness of the Axioms
In the previous section, we looked at tie-strength functions
that satisfy the measures of tie-strength, and measured the
percentage of ties that were actually resolved by the axioms.
In this section, we consider the issue of soundness. To empir-
ically measure soundness, we look at measures of tie-strength
4The total number of tie pairs is

�(n2)
2

�
, where n = # people vertices.

This means that for Enron Emails, the total number of tie pairs is
�(324712 )

2

�
= 138, 952, 356, 623, 361, 270.

Dataset Tie Pairs Incomparable Pairs (%)
Southern Women 11,628 683 (5.87)
The Tempest 14,535 275 (1.89)
A Comedy of Errors 14,535 726 (4.99)
Macbeth 246,753 584 (0.24)
Reality Mining 13,794,378 1,764,546 (12.79)

Table 3. Number of ties not resolved by the partial order. The last col-
umn shows the percentage of tie pairs on which different tie-strength
functions can differ.

that have been used previously in literature, and find how
much they violate the axioms. To measure this, we use two
implications of Theorem 11. First, our axioms are equiva-
lent to the partial order on ties. Second, our axioms identify
functions that do not obey the partial order. So, we use the
proportion of tie-pairs in which the tie-strength order violates
the partial order predicted by the axioms. We look at two tie-
strength functions that do not obey the axioms: Jaccard Index
and Temporal Proportional. Table 4 shows the number of tie-
pairs that are actually in conflict. This experiment informs
us about how far away a measure is from the axioms. We
observe that for these datasets, Temporal Proportional agrees
with the partial order more than the Jaccard Index. We also
note that as the size of the dataset increases, the percentage of
conflicts decreases.

Dataset Tie Pairs Jaccard (%) Temporal(%)
S. Women 11,628 1,441 (12.39) 665 (5.72)
Tempest 14,535 488 (3.36) 261 (1.80)
Comedy 14,535 1,114 (7.66) 381 (2.62)
Macbeth 246,753 2,638 (1.07) 978 (0.40)
Reality 13,794,378 290,934 (2.11) 112,546 (0.82)

Table 4. Number of conflicts between the partial order and tie-strength
functions: Jaccard Index and Temporal Proportional. The second and
third columns show the percentage of tie-pairs in conflict with the partial
order.

Measuring Correlation among Tie-Strength Functions
We want to measure how close different tie-strength functions
are to each other. To do this, we calculate the correlation be-
tween the rankings generated by these functions. Figure 3
shows Kendall ⌧ correlation coefficient for our datasets. We
find that, depending on the data set, different measures of tie
strength are correlated. For instance, in the “clean” world
of Shakespearean plays Common Neighbor is the least cor-
related measure; while in the “messy” real world data from
Reality Mining and Enron emails, Max is the least correlated
measure. Moreover, we observe that Common Neighbor and
Max are mostly uncorrelated (�0.2 6 ⌧ 6 0.2); and that
Adamic-Adar, Delta, and Linear are highly positively corre-
lated (⌧ > 0.6) no matter the dataset.

CONCLUSIONS
We presented an axiomatic approach to the problem of infer-
ring implicit social networks by measuring tie strength from
bipartite person⇥event graphs. We characterized functions
that satisfy all axioms and demonstrated a range of measures
that satisfy this characterization. We showed that in ranking
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Related	  Work	  
•  Strength	  of	  @es	  

–  Spread	  of	  informa@on	  in	  social	  networks	  [GranoveFer,	  1973]	  
–  Use	  external	  informa@on	  to	  learn	  strength	  of	  @e	  

•  [Gilbert	  &	  Karahalios,	  2009],	  [Kahanda	  &	  Neville,	  2009]	  
•  Very	  few	  axioma@c	  work	  approaches	  to	  graph	  measures	  

–  PageRank	  axioma@za@on	  [Altman	  &	  Tennenholtz,	  2005]	  
–  	  Informa@on	  theore@c	  measure	  of	  similarity	  [Lin,	  1998]	  

•  Assumes	  probability	  distribu@on	  over	  events	  

•  Link	  predic@on	  
–  [Adamic	  &	  Adar,	  2003]	  
–  [Liben-‐Nowell	  &	  Kleinberg,	  2003]	  
–  [Sarkar,	  Chakrabar@,	  Moore,	  2010	  &	  2011]	  
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Conclusions	  

1.  Presented	  an	  axioma@c	  approach	  to	  the	  problem	  of	  
inferring	  implicit	  social	  networks	  by	  measuring	  @e	  
strength	  

2.  Characterized	  func@ons	  that	  sa@sfy	  all	  the	  axioms	  	  

3.  Classified	  prior	  measures	  according	  to	  the	  axioms	  that	  
they	  sa@sfy	  	  

4.  Demonstrated	  coverage	  of	  axioms,	  conflict	  with	  axioms,	  
and	  correla@on	  among	  @e-‐strength	  measures	  

5.  In	  ranking	  applica@ons,	  the	  axioms	  are	  equivalent	  to	  a	  
natural	  par@al	  order	  

47	  



48	  

Take-‐away	  point	  #5	  
AxiomaCc	  approaches	  to	  various	  

measures	  on	  networks	  (such	  as	  Ce-‐
strength	  measures	  in	  this	  study)	  
enable	  us	  to	  systemaCcally	  study	  
exisCng	  measures	  and	  characterize	  
funcCons	  that	  saCsfy	  our	  axioms.	  	  



Thank	  You!	  
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A	  Comedy	  of	  Errors	   The	  Tempest	  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

Details	  @	  hVp://eliassi.org/papers/gupte-‐websci12.pdf	  	  
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