

Measuring Tie-Strength in Implicit Social Networks

Tina Eliassi-Rad

tina@eliassi.org

Joint with Mangesh Gupte (Rutgers \rightarrow Google)

Problem Definition

 Given a bipartite graph with people as one set of vertices and events as the other set, measure tie strength between each pair of individuals

- Assumption
 - Attendance at mutual events implies an implicit weighted social network between people

Motivation

- Most real-world networks are 2-mode and are converted to a 1-mode (e.g., AA^T)
- Explicitly declared friendship links can suffer from a low signal-to-noise ratio (e.g., Facebook friends)
- **Challenge:** Detect which of links in the 1-mode graph are important
- **Goal:** Infer the implicit weighted social network from people's participation in mutual events

Tie Strength

- A measure of tie strength induces
 - a ranking on all the edges, and
 - a ranking on the set of neighbors for every person
- Example of a simple tie-strength measure

 Common neighbor measures the total number of common events to a pair of individuals

Decisions, Decisions

- There are many different measures of tie-strength
 - 1. Common neighbor
 - 2. Jaccard index
 - 3. Max
 - 4. Linear
 - 5. Delta
 - 6. Adamic and Adar
 - 7. Preferential attachment
 - 8. Katz measure
 - 9. Random walk with restarts
 - 10. Simrank
 - 11. Proportional
 - 12. ...

Which one should you choose?

Outline

- An axiomatic approach to the problem of inferring implicit social networks by measuring tie strength
- A characterization of functions that satisfy all our axioms
- Classification of prior measures according to the axioms that they satisfy
- Experiments
- Conclusions

Running Example

Axioms

- Axiom 1: Isomorphism
- Axiom 2: Baseline
- Axiom 3: Frequency
- Axiom 4: Intimacy
- Axiom 5: Popularity
- Axiom 6: Conditional Independence of People
- Axiom 7: Conditional Independence of Events
- Axiom 8: Submodularity

Axiom 1: Isomorphism

• Tie strength between *u* and *v* is independent of the labels of *u* and *v*

Axiom 2: Baseline

 If there are no events, then tie strength between each pair u and v is 0

 $TS_{\varnothing}(u, v) = 0$

• If there are only two people *u* and *v* and a single event *P* that they attend, then their tie strength is at most 1

 $TS_{\rho}(u, v) \leq 1$

 Defines an upper-bound for how much tie strength can be generated from a single event between two people

Axiom 3: Frequency & Axiom 4: Intimacy

- Axiom 3 (Frequency)
 - More events create stronger ties
 - All other things being equal, the more events common to *u* and *v*, the stronger their tie-strength
- Axiom 4 (Intimacy)
 - Smaller events create stronger ties
 - All other things being equal, the fewer invitees there are to any particular event attended by u and v, the stronger their tie-strength

Axiom 5: Popularity

- Larger events create more ties
- Consider two events *P* and *Q*
- If |Q| > |P|, then the total tie strength created by Q is more than that created by P

Axioms 6 & 7: Conditional Independence of People and of Events

• Axiom 6: Conditional Independence of People

 A node u's tie strength to other people does **not** depend on events that u does **not** attend

• Axiom 7: Conditional Independence of Events

- The increase in tie strength between u and v due to an event P does **not** depend on other events, just on the existing tie strength between u and v
- $TS_{(G+P)}(u, v) = g(TS_G(u, v), TS_P(u, v))$
 - where g is some monotonically increasing function

Axiom 8: Submodularity

- The marginal increase in tie strength of u and v due to an event Q is at most the tie strength between u and v if Q was their only event
- If G is a graph and Q is a single event, then $TS_{(G+Q)}(u, v) - TS_G(u, v) \le TS_Q(u, v)$

Example – Mapping to Axioms

Observations on the Axioms

• Our axioms are fairly intuitive

A1: Isomorphism	A2: Baseline	A3: Frequency	A4: Intimacy
A5: Popularity	A6: Cond. Indep. of people	A7: Cond. indep. of events	A8: Submodularity

- But, several previous measures in the literature break some of these axioms
- Satisfying all the axioms is not sufficient to uniquely identify a measure of tie strength
 - One reason: inherent tension between Axiom 3 (Frequency) and Axiom 4 (Intimacy)

Inherent Tension Between Frequency & Intimacy

- Scenario #1 (intimate)
 - Mary and Susan go to 2 parties, where they are the only people there.
- Scenario #2 (frequent)
 - Mary, Susan, and Jane go to 3 parties, where they are the only people there.
- In which scenario is Mary's tie to Susan stronger?

Observations on the Axioms (cont.)

A1: Isomorphism	A2: Baseline	A3: Frequency	A4: Intimacy
A5: Popularity	A6: Cond. Indep. of people	A7: Cond. indep. of events	A8: Submodularity

- Axioms are equivalent to a natural partial order on the strength of ties
 - Pertinent to ranking application
- Choosing a particular tie-strength function is equivalent to choosing a particular linear extension of this partial order
 - Non-obvious decision

Preamble to the Characterization Theorem

- Let f(n) = total tie strength generated in a <u>single</u> event with *n* people
- If there is a <u>single</u> party with *n* people, the tie strength of each tie is

$\frac{f(n)}{\binom{n}{2}}$

- Based on Axiom 1 (Isomorphism)
- The total tie strength created at an event *P* with *n* people is a monotone function *f*(*n*) that is bounded by

$$1 \le f(n) \le \binom{n}{2}$$

- Based on Axiom 2 (Baseline) and Axiom 4 (Intimacy) and Axiom 5 (Popularity)

Characterizing Tie Strength

A way to explore the space of valid functions for representing tie strength and find which work given particular applications

Theorem. Given a graph $G = (L \cup R, E)$ and two vertices u and v, if the tie-strength function TS follows Axioms (1-8), then the function has to be of the form

 $TS_G(u, v) = g(h(|P_1|), h(|P_2|), ..., h(|P_k|))$

- $\{P_i\}_{1 \le i \le k}$ are the events common to both u and v
- *h* is a monotonically decreasing function bounded by $1 \ge h(n) \ge \frac{1}{\binom{n}{2}}, n \ge 2; h(1) = 1; h(0) = 0.$
- g is a monotonically increasing submodular function

Many Measures of Tie Strength

- 1. Common neighbor
- 2. Jaccard index
- 3. Max
- 4. Linear
- 5. Delta
- 6. Adamic and Adar
- 7. Preferential attachment
- 8. Katz measure
- 9. Random walk with restarts
- 10. Simrank
- 11. Proportional

$$TS(u,v) = |\Gamma(u) \cap \Gamma(v)|$$
$$TS(u,v) = \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$
$$TS(u,v) = \max_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|P|}$$
$$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|P|}$$
$$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|P|}$$
$$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|O|}$$

$$TS(u,v) = |\Gamma(u)| \cdot |\Gamma(v)|$$

$$TS(u,v) = \sum_{q \in \text{ path between } u,v} \gamma^{-|q|}$$

$$TS(u,v) = \begin{cases} 1 & \text{if } u = v \\ \gamma \cdot \frac{\sum_{a \in \Gamma(u)} \sum_{b \in \Gamma(v)} TS(a,b)}{|\Gamma(u)| \cdot |\Gamma(v)|} & \text{otherwise} \end{cases}$$

$$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{\epsilon}{|P|} + (1-\epsilon) \frac{TS(u,v)}{\sum_{w \in \Gamma(u)} TS(u,w)}$$

Non Self-Referential Tie Strength Measures

Common neighbor

The total # of common events that both u and v attended

• Jaccard Index

- Similar to common neighbor
- Normalizes for how "social" u and v are
- Adamic and Adar [2003], Delta, and Linear
 - Tie strength increases with the number of events
 - Tie strength is 1 over a simple function of event size
- Max
 - Tie strength does not increase with the number of events
 - Tie strength is the maximum tie strength from all common events

Self-Referential Tie-Strength Measures

• Katz measure [Katz,1953]

 Tie strength is the number of paths between u and v, where each path is discounted exponentially by the length of the path

• Random walk with restarts

- A non-symmetric measure of tie strength
- Tie strength is the stationary probability of a Markov chain process
- With probability α , jump to a node u; and with probability 1- α , jump to a neighbor of a current node.

• Simrank [Jeh & Widom, 2002]

- Tie strength is captured by recursively computing the tie strength of neighbors
- Proportional
 - Tie strength increases with # of events
 - People spend time proportional to their tie-strength at a party

Measures of Tie-Strength that Satisfy All the Axioms

A1: Isomorphis	sm	A2: Baseline					A3: Frequency			A4: Intimacy
A5: Popularity		A6: Cond. indep. of P				A	A7: Cond. indep. of E			A8: Submodularity
									,	
	A1	A2	A3	A4	A5	A6	A7	A8	g(a ₁ ,, a	a_k) $h(P_i) = a_i$
Common Neighbors	1	1	1	1	~	1	1	1	$g(a_1,, a_n)$ h(n) = 1	$(a_k) = \Sigma a_i$
Delta	1	1	1	1	1	1	1	~	$g(a_1,, a_k) = \Sigma a_i$ $h(n) = 2(n(n-1))^{-1}$	
Adamic & Adar	1	1	1	1	1	~	1	1	g(a ₁ ,, a h(n) = (lo	$a_k) = \Sigma a_i$ g(n)) ⁻¹
Linear	1	1	1	1	~	1	1	1	$g(a_1,, a_n)$ $h(n) = n^{-1}$	$(a_k) = \Sigma a_i$
Max	1	1	1	1	1	1	1	1	$\begin{vmatrix} g(a_1,, a_n) \\ h(n) = n^{-1} \end{vmatrix}$	a_k) =max{ a_i }

Measures of Tie-Strength that Do Not Satisfy All the Axioms

A1: Isomorphism	A2: Baseline	A3: Frequency	A4: Intimacy
A5: Popularity	A6: Cond. indep. of V	A7: Cond. indep. of E	A8: Submodularity

	A1	A2	A3	A4	A5	A6	A7	A8	$g(a_1,, a_k)$ $h(P_i) = a_i$
Jaccard Index	1	1	1	1	1	×	×	×	×
Katz Measure	1	×	1	1	1	1	×	×	×
Preferential Attachment	1	1	×	1	1	1	×	×	×
RWR	1	×	×	×	1	1	×	×	×
Simrank	1	X	X	X	X	X	X	X	×
Proportional	1	X	X	1	X	1	X	X	×

Tie Strength and Orderings

• Let *TS* be a function that satisfies Axioms 1-8

(1) Isomorphism	(2) Baseline	(3) Frequency	(4) Intimacy
(5) Popularity	(6) Cond. indep. of P	(7) Cond. indep. of E	(8) Submodularity

• *TS* induces a **total order** on the edges that is a linear extension of the partial order on the node-tie pairs

Tie Strength & Orderings

Theorem 11. Let $G = (L \cup R, E)$ be a bipartite graph of users and events. Given two users $(u, v) \in (L \times L)$, let $(|P_i|)_{1 \leq i \leq k} \in R$ be the set of events common to users (u, v). Through this association, the partial order $\mathcal{N} = (\mathbb{N}^*, \leq_{\mathcal{N}})$ on finite sequences of numbers induces a partial order on $L \times L$ which we also call \mathcal{N} .

Let TS be a function that satisfies Axioms (1-8). Then TS induces a total order on the edges that is a linear extension of the partial order \mathcal{N} on $L \times L$.

Conversely, for every linear extension \mathcal{L} of the partial order \mathcal{N} , we can find a function TS that induces \mathcal{L} on $L \times L$ and that satisfies Axioms (1-8).

Data Sets

Graphs	# of People	# of Events	
Southern Women	18	14	
The Tempest	19	34	
A Comedy of Errors	19	40	
Macbeth	38	67	
Reality Mining Bluetooth	104	326,248	
Enron Emails	32,471	371,321	

Degree Distributions

Enron & Reality Mining

Shakespeare's Plays

Completeness of Axioms 1-8 (Number of Ties **Not** Resolved by the Partial Order)

Dataset	Tie Pairs	Incomparable Pairs (%)	
Southern Women	11,628	683 (5.87)	
The Tempest	14,535	275 (1.89)	
A Comedy of Errors	14,535	726 (4.99)	
Macbeth	246,753	584 (0.23)	
Reality Mining	13,794,378	1,764,546 (12.79)	

- % of tie-pairs where different tie-strength functions can differ
 - Smaller is better
 - Generally, percentages are small
 - Large real-world networks have more unresolved ties

<u>Take-away point #1</u> % of tie pairs on which different tie strength functions can differ is small.*

* This is for ranking application and tie strength functions satisfying the axioms.

Two Tie-Strength Functions that Do **Not** Satisfy the Axioms

• Jaccard Index

Normalizes for how "social" u and v are

$$TS(u,v) = \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$

- Temporal Proportional
 - Increases with number of events
 - People spend time proportional to their tie-strength in a party
 - Events are ordered by time

$$TS(u, v, t) = \begin{cases} TS(u, v, t-1) & \text{if } u \text{ and } v \text{ do not attend } P_t \\ \epsilon \frac{1}{|P_t|} + (1-\epsilon) \frac{TS(u, v, t-1)}{\sum_{w \in P_t} TS(u, w, t-1)} & \text{otherwise} \end{cases}$$

Soundness of Axioms 1-8

(Number of Conflicts Between the Partial Order and Tie-Strength Functions **Not** Satisfying the Axioms)

Dataset	Tie Pairs	Jaccard (%)	Temporal (%)
Southern Women	11,628	1,441 (12.39)	665 (5.72)
The Tempest	14,535	488 (3.35)	261 (1.79)
A Comedy of Errors	14,535	1,114 (7.76)	381 (2.62)
Macbeth	246,753	2,638 (1.06)	978 (0.39)
Reality Mining	13,794,378	290,934 (0.02)	112,546 (0.01)

- % of tie-pairs in conflict with the partial order
 - Smaller is better
 - Generally, percentages are small
 - They decrease as the dataset increases

More on Soundness

• Question 1:

Are the number of conflicts, between the partial order and tie-strength functions not satisfying the axioms, **small** because most of the tie-strengths are zeros (sparsity of real graph)?

• Answer:

- This is **partially true**.
- For some pairs, the tie-strength being set to zero is caused by the axioms.
- It may or may not be true that all these pairs have tie-strength zero in the actual function used.
 - For example, this won't be true for some self-referential functions like Simrank, Random Walk with Restart, etc.

Even More on Soundness

- **Question 2:** How do the conflict numbers change if we only looked at tie pairs that have nonzero tie-strengths?
- **Answer:** The percentages go up but not by much.

Dataset	Tie Pairs	Tie Pairs (excluding TS=0)	Jaccard	Temporal
Southern Women	11,628	11,537	1,441	665
The Tempest	14,535	10,257	488	261
A Comedy of Errors	14,535	11,685	1,114	381
Macbeth	246,753	74,175	2,638	978
Reality Mining	13,794,378	12,819,272	290,934	112,546

Even More on Soundness

<u>Take-away point #2</u> % of conflicts between our axioms and tie-strength functions not satisfying our axioms is small.*

* This is for ranking application.

<u>Take-away point #1</u> % of tie pairs on which different tie-strength functions can differ is small. <u>Take-away point #2</u> % of conflicts between our axioms and tiestrength functions not satisfying our axioms is small.

Take-away point #3

If your application is ranking, just pick the most computationally efficient tiestrength measure (e.g. common neighbor).

Tie Strength Measures Used in Rank Correlation Experiments

Tie Strength Measure	Formula
Common Neighbor	$TS(u,v) = \Gamma(u) \cap \Gamma(v) $
Max	$TS(u,v) = \max_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{ P }$
Linear	$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{ P }$
Delta	$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\binom{ P }{2}}$
Adamic-Adar	$TS(u,v) = \sum_{P \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log P }$

Kendall τ Coefficient

- It is a measure of rank correlation
 - The similarity of the orderings of the data when ranked by each of the quantities

$$\tau = \frac{(\# \text{ of concordant pairs}) - (\# \text{ of discordant pairs})}{\frac{1}{2}n(n-1)}$$

Adamic-Adar, Delta, & Linear produce TS rankings that are highly correlated

Common Neighbor & Max produce TS rankings that are mostly uncorrelated

Take-away point #4 **Kendall τ correlations on rankings** produced by tie-strength functions (that satisfy our axioms) highlight three groups: (1) {Adamic-Adar, Delta, Linear}, (2) {Common Neighbor, and (3) {Max}.

Scalability Issue

• # of tie pairs =
$$\binom{\binom{n}{2}}{2}$$

- Enron has 32,471
- # of tie pairs in Enron \approx 138 quadrillion

$$\binom{\binom{32471}{2}}{2} = 138,952,356,623,361,270$$

• Ignore zero tie-strengths

Related Work

- Strength of ties
 - Spread of information in social networks [Granovetter, 1973]
 - Use external information to learn strength of tie
 - [Gilbert & Karahalios, 2009], [Kahanda & Neville, 2009]
- Very few axiomatic work approaches to graph measures
 - PageRank axiomatization [Altman & Tennenholtz, 2005]
 - Information theoretic measure of similarity [Lin, 1998]
 - Assumes probability distribution over events
- Link prediction
 - [Adamic & Adar, 2003]
 - [Liben-Nowell & Kleinberg, 2003]
 - [Sarkar, Chakrabarti, Moore, 2010 & 2011]

Conclusions

- 1. Presented an axiomatic approach to the problem of inferring implicit social networks by measuring tie strength
- 2. Characterized functions that satisfy all the axioms
- 3. Classified prior measures according to the axioms that they satisfy
- 4. Demonstrated coverage of axioms, conflict with axioms, and correlation among tie-strength measures
- 5. In ranking applications, the axioms are equivalent to a natural partial order

Take-away point #5 **Axiomatic approaches to various** measures on networks (such as tiestrength measures in this study) enable us to systematically study existing measures and characterize functions that satisfy our axioms.

Thank You!

Details @ http://eliassi.org/papers/gupte-websci12.pdf

Supported by LLNL & DTRA