Design for Optimizability A Case Study in Routing

Mung Chiang Electrical Engineering Department, Princeton

> DIMACS Workshop November 12, 2009

### **Internet Routing and Traffic Engineering**

Joint work with Dahai Xu and Jennifer Rexford

Most large IP networks run Interior Gateway Protocols in an Autonomous System

OSPF: a reverse shortest path method

- Take in traffic matrix (constants)
- Vary link weights (variables)
- Hope to minimize sum of link cost function (objective)
- 3 components of link-state routing for traffic engineering
- Centralized computation for setting link weights
- Distributed way of using these link weights to split traffic
- Hop-by-hop, destination-based packet forwarding

#### **Internet Routing and Traffic Engineering**



# History

- 1980s-1990s, intra-domain routing algorithms based on link weights
- 1990s, many variants of OSPF proposed and used: UnitOSPF, RandomOSPF, InvCapOSPF, L2OSPF
- Late 1990s, more complex MPLS protocols proposed. (Optimal benchmark: arbitrary splitting of flows on any links in any proportion), but they lose desirable features, eg, distributed determination of flow splitting and ease of management
- 2000, Fortz and Thorup presented local search methods to approximately solve the NP-hard problem in OSPF
- 2003, Sridharan, Guerin, and Diot proposed to select the subset of next hops for each prefix
- 2005, Fong, Gilbert, Kannan, and Strauss proposed to allow flows on non-shortest paths, but loops may be present and performance under multi-destination scenarios not clear
- 2007, Xu, Chiang, Rexford propose **DEFT** to almost achieve optimal traffic engineering

## From OSPF to PEFT

Packet forwarding still destination-based and hop-by-hop

#### A new way to use link weights:

- Use link weights to compute path weights
- Split traffic on all paths
- Exponential penalty on longer paths

Leads to a new way to compute link weights

How good can the new protocol be?

How to compute link weights in the new protocol?

#### **Problem Statement**

Given directed graph  $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ 

Given capacity  $c_{u,v}$  for each link (u,v)

Given D(s,t): traffic demand from node s and destined to node t

Link cost function:  $\Phi(f_{u,v}, c_{u,v})$  strictly increasing convex function of flow  $f_{u,v}$  on link (u,v)

Objective 1: minimize  $\max_{(u,v)} \frac{f_{u,v}}{c_{u,v}}$ 

Objective 2: minimize  $\sum_{(u,v)\in \mathbf{E}} \Phi(f_{u,v}, c_{u,v})$ 

#### **Traffic Splitting Function**

 $w_{u,v}$ : weight for link (u,v)

 $d_u^t$ : shortest distance from node u to node t

 $d_v^t + w_{u,v} {:}\ {\rm distance}\ {\rm from}\ u\ {\rm to}\ t\ {\rm when}\ {\rm routed}\ {\rm through}\ v$ 

 $h_{u,v}^t = d_v^t + w_{u,v} - d_u^t$ : gap

Link (u, v) is on the shortest path to t if and only if  $h_{u,v}^t = 0$ 

 $f_u^t$ : incoming flow at node u for destination t $f_{u,v}^t$ : flow on link (u,v) for destination t

$$f_{u,v}^t = f_u^t \frac{\Gamma(h_{u,v}^t)}{\sum_{(u,j)\in\mathbb{E}} \Gamma(h_{u,j}^t)}$$

#### **OSPF** or **PEFT**

OSPF:

$$\Gamma_O(h_{u,v}^t) = \begin{cases} 1, & \text{if } h_{u,v}^t = 0\\ 0, & \text{if } h_{u,v}^t > 0. \end{cases}$$

#### PEFT:

$$\Gamma_P(h_{u,v}^t) = \Upsilon_v^t e^{-h_{u,v}^t}$$

$$\Upsilon^t_u = \sum_{(u,v)\in\mathbb{E}} \left( e^{-h^t_{u,v}} \Upsilon^t_v \right)$$

Routers can direct traffic on non-shortest paths, with an exponential penalty on longer paths

#### Simple Routing Can Be Optimal

Theorem: Link state routing and destination-based forwarding can achieve optimal traffic engineering

Theorem: Optimal weights can be computed by a convex optimization

Gradient algorithm solves the new link weight optimization problem 2000 times faster than local search algorithm for OSPF link weight computation

## Solution Idea: Network Entropy Maximization



Constraint: flow conservation with effective capacity

Objective function: find one that picks out only link-state-realizable traffic distribution

Entropy function is the right choice, and the only one

#### **Network Entropy Maximization**

Entropy  $z(x^i_{s,t}) = -x^i_{s,t} \log x^i_{s,t}$  for source-destination pair (s,t)

$$\begin{array}{ll} \text{maximize} & \sum_{s,t} \left( D(s,t) \sum_{P_{s,t}^{i}} z(x_{s,t}^{i}) \right) \\ \text{such that} & \sum_{s,t,i:(u,v) \in P_{s,t}^{i}} D(s,t) x_{s,t}^{i} \leq \widetilde{c}_{u,v}, \forall (u,v) \\ & \sum_{i} x_{s,t}^{i} = 1, \forall (s,t) \\ \text{variables} & x_{s,t}^{i} \geq 0. \end{array}$$

Characterization of optimality:

$$\frac{x_{s,t}^{i^*}}{x_{s,t}^{j^*}} = \frac{e^{-(\sum_{(u,v)\in P_{s,t}^i} w_{u,v})}}{e^{-(\sum_{(u,v)\in P_{s,t}^j} w_{u,v})}}$$

## Link Weight Computation

- 1: Compute necessary capacities  $\widetilde{\boldsymbol{c}}$  through multi-commodity flow problem
- 2:  $\mathbf{w} \leftarrow Any \text{ set of link weights}$
- 3:  $f \leftarrow \mathsf{Traffic}_\mathsf{Distribution}(\mathbf{w})$
- 4: while  $\boldsymbol{f} \neq \widetilde{\boldsymbol{c}}$  do
- 5:  $\mathbf{w} \leftarrow \text{Link_Weight_Update}(\mathbf{f})$
- 6:  $f \leftarrow \text{Traffic_Distribution}(\mathbf{w})$
- 7: end while
- 8: Return  $\mathbf{w}$  /\*final link weights\*/

# Link Weight Update Function

1: for each link (u, v) do

2: 
$$w_{u,v} \leftarrow w_{u,v} - \alpha \left( \widetilde{c}_{u,v} - f_{u,v} \right)$$

- 3: end for
- 4: Return new link weights  ${\bf w}$

## **Traffic Distribution Function**

- 1: For link weights w, construct all-pairs shortest paths and compute  $\Gamma_P(h_{u,v}^t)$
- 2: for each destination t do
- 3: Temporarily remove link (u, v) where  $d_u^t > d_v^t$
- 4: Do topological sorting on the residual network
- 5: for each source  $s \neq t$  in the decreasing topological order do

$$6: \qquad f_s^t \leftarrow D(s,t) + \sum_{x:(x,s) \in \mathbb{E}} f_{x,s}^t$$
$$7: \qquad f_{s,v}^t \leftarrow f_s^t \, \frac{\Gamma_P(h_{s,v}^t)}{\sum_{(s,j) \in \mathbb{E}} \Gamma_P(h_{s,j}^t)}$$

- 8: end for
- 9: end for

10: 
$$f_{u,v} \leftarrow \sum_{t \in \mathbb{V}} f_{u,v}^t$$
  
11: Return  $f$  /\*set of  $f_{u,v}$ \*

## Simulation

Computational software:

Optimal benchmark: computed using CPLEX 9.1 via AMPL

OSPF link weight by local search: Open source software project TOTEM 1.1 with IGP weight optimization

PEFT link weight: our algorithm

Topology and traffic matrices:

- Abilene on Nov. 15, 2005
- Those well-established in the community

### **Optimality Gap Reduction**







# **Running Time**

|         |          |        |        | Time per Iteration (second) |            |
|---------|----------|--------|--------|-----------------------------|------------|
| Net. ID | Topology | Node # | Link # | PEFT                        | OSPF       |
| abilene | Backbone | 11     | 28     | 0.002                       | 6.0~13.9   |
| hier50a | 2-level  | 50     | 148    | 0.006                       | 6.0~13.9   |
| hier50b | 2-level  | 50     | 212    | 0.007                       | 6.4~17.4   |
| rand50  | Random   | 50     | 228    | 0.007                       | 3.2~9.0    |
| rand50a | Random   | 50     | 245    | 0.007                       | 6.1~14.1   |
| rand100 | Random   | 100    | 403    | 0.042                       | 39.5~105.1 |

# **Optimality-Simplicity Tradeoff**

|                   | Commodity    | Link-State Routing |              |  |
|-------------------|--------------|--------------------|--------------|--|
|                   | Routing      | OSPF               | PEFT         |  |
| Traffic Splitting | Arbitrary    | Even               | Exponential  |  |
| Scalability       | Low          | High               | High         |  |
| Optimal TE        | Yes          | No                 | Yes          |  |
| Complexity        | Convex       |                    | Convex       |  |
| Class             | Optimization | NP Hard            | Optimization |  |

## **Optimality-Simplicity Tradeoff**

Often there is a price for revisiting assumptions

In Internet traffic engineering case, DFO provides an "nice' tradeoff



## **NEM and NUM**

|                   | Congestion Control  | Traffic Engineering |
|-------------------|---------------------|---------------------|
| Traffic type      | Elastic             | Inelastic           |
| Flow distribution | Fixed               | Variable            |
| Participants      | End user and router | Operator and router |
| Timescale         | Seconds             | Hours               |
| Framework         | NUM                 | NEM                 |
| Multipliers       | Feedback prices     | Penalty weights     |
| Implications      | Stabilized TCP      | Optimal LS routing  |



# Contacts

chiangm@princeton.edu www.princeton.edu/~chiangm