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Sara López-Pintado and Juan Romo

Departamento de Estad́ıstica y Econometŕıa
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1. MOTIVATION AND BACKGROUND
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• Question: which one is the deepest function ?
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The observations

x1(t), x2(t), ..., xn(t)

are n functions defined on an interval I.
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Why considering functional data?

1. In many areas of knowledge the process generating the data provides us in a natural

way with a set of functions.

2. Many problems are better approached if the observations are treated as continuous

functions.

3. Each curve from the sample can be observed at different points and the separation

of these points can be irregular.

4. Technological advance with the development of progressively more precise and

sophisticated equipment makes possible the acquisition of a large number of data,

usually called high frequency data, that allow us to express the data as functions.
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• Goal: to introduce a definition of depth for functional data. This concept will be

used to measure the centrality of a curve with respect to a set of curves. E.g.: to

define the deepest function.

• The functional depth provides a center-outward ordering of a sample of curves.

Order statistics will be defined. (L−statistics).

• The idea of deepest point of a set of data allows to classify a new observation by

using the distance to a class deepest point.
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The notion of depth has been extensively studied in the multivariate context.

Some definitions of data depth are:

1. The Mahalanobis depth (Mahalanobis, 1936).

2. The half-space depth (Hodges, 1955, Tukey, 1975).

3. The Oja depth (Oja, 1983).

4. The simplicial depth (Liu, 1990).

5. The majority depth (Singh, 1991).

6. The projection depth (Zuo, 2003).

A definition of depth for functional observations 7



Liu (1990), and Zuo and Serfling (2000) introduce general conditions to define a

notion of statistical depth.

Key properties a concept of depth should verify:

• Affine invariance

• Maximality at center

• Monotonicity relative to deepest point

• Vanishing at infinity
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Fraiman and Muniz (2001) defined a concept of depth for functional data.

Let X1(t), ..., Xn(t) be i.i.d. stochastic processes defined on [0,1]. Let Ft be the

univariate marginal distribution of X1(t). Let Dn be any concept of depth in R.

Consider for every t ∈ [0, 1]

Dn(Xi(t)) = Zi(t),

(univariate depth of Xi(t) at t with respect to X1(t), ..., Xn(t)).

Defining

Ii =
∫ 1

0

Zi(t)dt, 1 ≤ i ≤ n,

the set of functions X1(t), ..., Xn(t) can be ordered according to the value of Ii.
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2. A NEW CONCEPT OF DEPTH FOR FUNCTIONAL DATA

Let x1(t), ..., xn(t) be a sample of functions. Define

V (xi1,..., xik) =
{

x: min
r=1,...,k

{xir(t)} ≤ x(t) ≤ max
r=1,...,k

{xir(t)} , t ∈ [0, 1]
}

(Functions whose graphs belong to the area delimited by the graphs of

xi1,xi2, ..., xik).

Equivalently,

V =
{

x(t) = αt min
r=1,...,k

{xir(t)}+ (1− αt) max
r=1,...,k

{xir(t)} , t ∈ [0, 1], αt ∈ [0, 1]
}
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The J-depth for x is:

Sn,J(x) =
J∑

j=2

Sj)
n (x),

where

Sj)
n (x) =

∑
1≤i1<i2<...ij≤n

I(x ∈ V (xi1,xi2, ..., xij))(
n
j

)
are proportions of bands containing x; this gives a center-outward ordering of the

sample of curves.

A deepest function µ̂n,J will satisfy:

µ̂n,J = arg max
x∈{x1,...,xn}

Sn,J(x)
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The population version is

SJ(x) =
J∑

j=2

Sj)(x) =
J∑

j=2

P (x ∈ V (x1, x2, ..., xj)),

and a population deepest function is a function µJ maximizing SJ(·).
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Example: Trimmed mean for functional data

The functional version of the α−trimmed mean will be the average of the n− [nα]
deepest observations:

m̂α
n,J =

n∑
i=1

I[β,+∞](Sn,J(xi))xi

n∑
i=1

I[β,+∞](Sn,J(xi))
, β > 0,

where 1
n

(
n∑

i=1

I[β,+∞](Sn,J(xi))
)
' 1− α.
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3. FINITE-DIMENSIONAL VERSION

Let F be a probability distribution in Rd; d ≥ 1. Let {y1, ..., yn} be a random

sample from F.

A multivariate observation can be seen as a function defined on {1, 2, ..., d} : y(l) is

the l − th component of the vector y.
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For d = 2, the finite dimensional band V (y1, y2, ..., yj) is the interval in the plane

determined by the following four vertices

(
min

k=1,...,j
{yk(1)} , min

k=1,...j
{yk(2)}

)
,

(
min

k=1,...,j
{yk(1)} , max

k=1,...,j
{yk(2)}

)
(

max
k=1,...,j

{yk(1)} , max
k=1,...,j

{yk(2)}
)

,

(
max

k=1,...,j
{yk(1)} , min

k=1,...,j
{yk(2)}

)
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Example: deepest points for Sn,2(·)
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Remark: They essentially coincide with Liu’s simplicial deepest points.
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Another example: deepest points for Sn,3(·)
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How does the choice of J affect the depth?
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J = 2
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4. SOME PROPERTIES

Finite-dimensional data:

1. The deepest point in R (with SJ) coincides with the usual univariate median;

moreover, the order induced by SJ is independent of J .

2. SJ (·) is invariant under transformations of type T (y) = A ∗ y + b, where A is a

diagonal and invertible d× d matrix and b ∈ Rd :

SJ,T (Ty) = SJ(y)

3. If F is absolutely continuous and symmetric then SJ(αy) is a monotone nonin-

creasing function in α ≥ 0 for all y ∈ Rd.
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4. SJ (·) vanishes at infinity:

sup
‖y‖∞1M

SJ(y) → 0 if M →∞

5. If the marginal distributions of F are absolutely continuous then SJ (·) is continu-

ous.

6. Sn,J(·) is strongly consistent:

Sn,J(y) a.s.→ SJ(y) when n →∞, y ∈ Rd
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7. Sn,J(y) is uniformly consistent:

sup
y∈Rd

|Sn,J(y)− SJ(y)| → 0 a.s. as n →∞

8. If SJ(·) is uniquely maximized at µ, and µn is a sequence of random variables

satisfying Sn,J(µn) = sup
x∈Rd

Sn,J(x), then

µn → µ a.s. as n →∞
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Functional data:

1. Let Q ∩ [0, 1] = {q1, q2, ..., qn, ...} and xn = (x(q1), ..., x(qn)). Then:

SJ(xn) → SJ(x), when n →∞

2. SJ (·) is invariant under transformations of type T (x) = a(t) ∗ x(t) + b(t) :

SJ,T (Tx) = SJ(x)

3.

sup
‖x‖∞1M

SJ(x) → 0 if M →∞
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4. SJ (·) is continuous.

5. Sn,J(x) is a consistent estimator: for any x,

Sn,J(x) a.s.→ SJ(x) when n →∞
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5. APPLICATIONS
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• Angles in the sagittal plane formed by the hip as 39 children go through a gait

cycle. (Ramsay and Silverman, 1997)
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• Six deepest curves (J = 5).

• The index Sn,J when J increases gives the same centered-outward order.
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• Three deepest curves represented with colours red, green and yellow. The red curve

is the median function.
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• The ten less deepest curves are in red.
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• Angles in the sagittal plane formed by the knee as 39 children go through a gait

cycle. The curve in red is the deepest one.
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• Daily temperature in different weather stations in Canada during one year. The

raw data were smoothed considering a Fourier basis with 65 elements in the basis.
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6. CONCLUSIONS

• A new definition of depth for functional observations is introduced.

• This concept of depth can be particularized to the finite-dimensional case and is

an alternative definition of depth for multivariate data.

• It verifies essentially the properties established by Liu (1990) and Zuo and Serfling

(2000).

• It is convenient for high-dimensional data because regardless of the dimension of

the data, low values of J can be considered.

A definition of depth for functional observations 36



REFERENCES
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