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Abstract. The notion of a decisive family of voters has played an impor-

tant role in the analysis of various consensus functions defined on preference

profiles. This role remains when the domain shifts to profiles of hierarchical

classifications. The main result of this paper is a characterization of consen-

sus rules defined on herarchies where the output clusters are determined by a

decisive family of sets.

1. Introduction

In the classical theories of social choice and voting theory, the notions of deci-

siveness and decisive families play an important role. For example, game theoretic

studies of voting as well as many proofs of Arrow’s Theorem utilize these ideas.

In this context, each voter contructs a preference binary relation (usually a weak

order) on a given set of alternatives, by using some unspecified internal process.

The situation involving classifications is somewhat different. Here a “voter” is often

an algorithm that operates on information about the alternatives (usually involving

similarity between alternatives) to produce a collection of subsets (the clusters) of

the alternatives. These output set systems might be, for example, partitions (and

hence have non-intersecting clusters), hierarchical classifications (with a tree-like

structure), and weak hierarchies (that allow non-trivial overlapping). In each of

these cases, consensus rules where the consensus output is determined by a family

of decisive sets form important classes of consensus functions. (see [7], [4], [5] re-

spectively) In this paper we focus on some work of Neumann [9] where he proved

that a consensus rule C on hierarchies is determined by a semidecisive family of sets

if and only if C satisfies an axiom of neutrality. Neumann’s version of neutrality,

which was renamed decisive neutrality in [2] in order to fit into a larger terminology
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scheme, is based on a standard view of a hierarchy as a set of clusters. Another

view of a hierarchy is that of a ternary relation and thus consists of a set of triples,

or triads. We will explore an analog to decisive neutrality from this point of view

and give another characterization of consensus rules where the output clusters are

determined by a decisive family of sets.

2. Terminology and notation

Let S be a finite set with n ≥ 5 elements. A hierarchy on S is a collection

H of nonempty subsets of S such that S ∈ H, {x} ∈ H for all x ∈ S, and

A ∩ B ∈ {A,B, ∅} for all A,B ∈ H. We will denote the set of all hierarchies on

S by H and call a set X in a hierarchy H for which 1 < |X| < n a non-trivial

cluster of H. H∅ will denote the hierarchy with no non-trivial clusters. For any

nontrivial subset X of S let HX = H∅ ∪ {X}, so HX ∈ H with X as the only

nontrivial cluster of HX .

For each hierarchy H there is an associated ternary relation rH on S defined

by (a, b, c) ∈ rH if and only if there exists X ∈ H, such that a, b ∈ X and c /∈ X

[1]. This relation is meant to capture the notion that a and b are more similar to

each other than either element is to c, with respect to the hierarchy H. We will

often write ab |H c instead of (a, b, c) ∈ rH . The notation abc |H will be used if

{(a, b, c), (c, a, b), (b, c, a)} ∩ rH = ∅. In general, the ordered triple (a, b, c) is called

a triad, or simply a triple.

The function that maps a hierarchy H on S to the ternary relation rH is injective

[6]. In fact, a subset X of S belongs to H if and only if (a, b, c) ∈ rH for all a, b ∈ X

and c 6∈ X. Thus by identifying H with rH , a hierarchy is precisely collection of

triads.

A consensus function (on H) is a map C : Hk → H where k ≥ 2. Elements of

Hk, the k-fold Cartesian product, are called profiles and the conventional notation

for profiles is P = (H1, ...,Hk), P ′ = (H ′
1, ...,H

′
k), and so on.

If H ∈ H and X is a proper subset of S, then H|X denotes the hierarchy whose

nontrivial clusters are the nonempty distinct elements of {A∩X : A is a nontrivial

cluster of H and 1 < |A ∩ X| < n}. In addition, H|X − X is the hierarchy H|X
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without the cluster X. Note that

ab |H c if and only if H|{a,b,c} − {a, b, c} = H{a,b}.

This notion of restriction extends to profiles in a natural way. Specifically, for any

profile P = (H1, . . . ,Hk) and subset X of S,

P |X = (H1|X , . . . ,Hk|X)

and

P |X −X = (H1|X −X, ...,Hk|X −X).

Let K = {1, . . . , k}. For any consensus function C on H, profile P , cluster X,

and triple (a, b, c) let

KX(P ) = {i ∈ K : X ∈ Hi},

K(a,b,c)(P ) = {i ∈ K : ab |Hi
c},

and let

UC = {I : I = K(a,b,c)(P ) and ab |C(P ) c for some profile P and triple (a, b, c)}.

So KX(P ) and K(a,b,c)(P ) identify the hierarchies in the input that contain the

cluster X and the triad (a, b, c), respectively. The set UC contains all possible

subsets of K(a,b,c)(P ) where the triad (a, b, c) belongs to the consensus output C(P ).

3. Consensus based on semidecisive and decisive families

Definition 1. A nonempty subset Σ of 2K is called a semidecisive family on

K if, for all I, J ∈ Σ, I ∩ J 6= ∅.

A nonempty subset Σ of 2K is called a decisive family on K if it is semidecisive

and, for all I ∈ Σ, I ⊆ J ⊆ K implies J ∈ Σ.

Example 1. (i) For a fixed j ∈ K, then Σ = {I ⊆ K : j ∈ I} is a decisive family

on K, and is called a dictatorial family on K.

(ii) Let ` be an integer such that ` > k
2 . Then Σ` = {I ⊆ K : ` ≤ |I|} is a

decisive family on K, and is called a quota family on K.

(iii) Let `1 and `2 be integers such that k
2 < `1 ≤ `2 < k. Then Σ = {I ⊆ K :

`1 ≤ |I| ≤ `2} is a semidecisive family on K which is not decisive.
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We now give a precise definition of what is means for a consensus function on H

to be determined by either a semidecisive or decisive family of sets.

Definition 2. If Σ is a semidecisive family on K, then define MΣ : Hk → H as

follows: for a profile P = (H1, . . . ,Hk), a nontrivial cluster X belongs to MΣ(P ) if

and only if {i ∈ K : X ∈ Hi} ∈ Σ.

That MΣ(P ) is a well-defined hierarchy follows immediately from the definition

of semidecisive family and the fact that it is understood that S ∈ MΣ(P ) and

{x} ∈ MΣ(P ) for all x ∈ S. Note that when Σ is decisive, the set of nontrivial

clusters of MΣ(P ) can be expressed as

MΣ(P ) =
⋃
I∈Σ

[⋂
i∈I

Hi

]
.

Example 2. Let l = bk
2 c + 1. Then MΣl

= Maj, the majority-rule consensus

function on hierarchies [3]. That is, X ∈ MΣl
(P ) if and only if X belongs to a

strict majority of the hierarchies in the profile P .

Neumann [9] and McMorris & Neumann [4] characterized MΣ : Hk → H where

Σ is semidecisive and decisive respectively. The characterizing properties relied

on the cluster as the basic unit of a hierarchy. However, viewing a hierarchy as

a set of triples does not allow the properties to translate directly. For exam-

ple, the cluster based axiom called decisive neutrality (DN) (see [2, pp. 55-

56] and [8]) states that for any profiles P and P ′ and for any clusters X and

Y , KX(P ) = KY (P ) implies that X ∈ C(P ) if and only if Y ∈ C(P ′). A di-

rect translation of this axiom, where clusters are replaced by triads, doesn’t work

very well. For example, for Maj : H(S)3 → H(S), the majority rule consen-

sus function, if P = (H{a,b},H{a,b},H∅) and P ′ = (H{a,x,y},H{x,y},H∅), then

K(a,b,c)(P ) = K(x,y,z)(P ′), ab|Maj(P )c holds and xy|Maj(P ′)z fails. This example

leads us to the following analog of decisive neutrality.

Definition 3. Let C be a consensus function on H. Then C satisfies triad

neutrality (TN) if the following three conditions hold.

1. For all profiles P, P ′ and all triples (a, b, c), (x, y, z),

K(a,b,c)(P ) = K(x,y,z)(P ′) and ab|C(P )c
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imply that there exists a profile P ′′ such that

P ′′|{x,y,z} − {x, y, z} = P ′|{x,y,z} − {x, y, z} and xy|C(P ′′)z.

2. For any profiles P, P ′, nontrivial cluster X and any triple (x, y, z),

KX(P ) = K(x,y,z)(P ′) and X ∈ C(P )

imply that there exists a profile P ′′ such that

P ′′|{x,y,z} − {x, y, z} = P ′|{x,y,z} − {x, y, z} and xy|C(P ′′)z.

3. For any profiles P, P ′, nontrivial cluster X and any triple (x, y, z),

KX(P ) = K(x,y,z)(P ′) and xy|C(P ′)z

imply that X ∈ C(P ).

Our other key property is the following.

Definition 4. C satisfies weak independence (WI) if for any profiles P, P ′

and all triples (a, b, c),

P |{a,b,c} − {a, b, c} = P ′|{a,b,c} − {a, b, c} and ab |C(P ) c

imply

ab |C(P ′) c or abc |C(P ′).

The idea behind (WI) is that profile agreement need not imply that the outputs

agree but, at least, the output hierachies should be compatible. (Two hierarchies

are compatible if their union is a hierarchy.) This axiom was introduced in [10].

4. The Main Result

A consensus function C on H is said to be nontrivial if there exists a profile P

such that C(P ) 6= H∅. In this case, UC 6= ∅.

As mentioned above, consensus functions based on decisive families were char-

acterized by McMorris and Neumann [4] (see also Theorem 4.9 in [2]) using cluster

based axioms. Theorem 1, our main result, provides a different type of characteri-

zation with an emphasis on triads.
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Theorem 1. If Σ is a decisive family on K, then MΣ is a nontrivial consensus rule

satisfying (WI) and (TN). Conversely, if a nontrivial consensus rule C satisfies

(WI) and (TN), then C = MΣ for some decisive family Σ on K.

Part of the proof of the main result depends on showing that UC is a semidecisive

family and that C = MUC
. The following theorem shows that there is a close

connection between the axiom (WI) and the condition that UC is a semidecisive

family.

Theorem 2. If UC is a semidecisive family, then C satisfies (WI). Conversely, if

a nontrivial rule C satisfies item 1 in (TN) and (WI), then UC is a semidecisive

family.

Proof of Theorem 2. If C does not satisfy (WI), then there exist profiles

P, P ′ and a triple (a, b, c) such that

P |{a,b,c} − {a, b, c} = P ′|{a,b,c} − {a, b, c} and ab |C(P ) c

and

ac |C(P ′) b or bc |C(P ′) a.

Observe that K(a,b,c)(P ) and either K(a,c,b)(P ′) or K(b,c,a)(P ′) produce two disjoint

sets in UC contrary to the fact that UC is a semidecisive family.

For the converse, observe that UC 6= ∅ since C is nontrivial. Assume that there

exist sets I and J belonging to UC such that I ∩ J = ∅. By the definition of UC ,

there exist profiles P and P ′ and elements a, b, c, x, y, z ∈ S (may not all be distinct)

such that ab |C(P ) c, xy |C(P ′) z, I = {i ∈ K : ab |Hi
c}, and J = {i ∈ K : xy |H′

i
z}.

Construct a profile Q such that I = {i ∈ K : ab |Qi c}, J = {i ∈ K : ac |Q′
i

b}, and

Qi = H∅ for all i 6∈ I ∪ J . Since I = {i ∈ K : ab |Hi c} and ab |C(P ) c it follows

from item 1 in (TN) that there exists a profile Q′ such that

Q′|{a,b,c} − {a, b, c} = Q|{a,b,c} − {a, b, c} and ab|C(Q′)c.

Similarly, since J = {i ∈ K : xy |Hi z} and xy |C(P ′) z it follows from item 1 in

(TN) that there exists a profile Q′′ such that

Q′′|{a,b,c} − {a, b, c} = Q|{a,b,c} − {a, b, c} and ac|C(Q′′)b.
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This leads to

Q′′|{a,b,c} − {a, b, c} = Q′|{a,b,c} − {a, b, c}

such that ab|C(Q′)c and ac|C(Q′′)b contrary to (WI). 2

Proof of Theorem 1. Let Σ be a semidecisive family on K. By definition, a

semidecisive family Σ is nonempty and so MΣ is nontrivial. Our first goal is to that

MΣ satisfies (WI). Let I ∈ Σ and define a profile P as follows: Hi = H{a,b} for all

i ∈ I and Hi = H∅ otherwise. Observe that K{a,b}(P ) = I and so {a, b} ∈ MΣ(P ).

Therefore, for any c ∈ S \ {a, b}, ab |C(P ) c and so I = K{a,b}(P ) = K(a,b,c)(P ) ∈

UMΣ . Thus, Σ ⊆ UMΣ . Since Σ is a semidecisive family it follows that UMΣ is a

semidecisive family. Therefore, by Theorem 2, MΣ satisfies (WI).

To prove that MΣ satisfies item 1 in (TN), assume K(a,b,c)(P ) = K(x,y,z)(P ′)

and that ab|C(P )c. Then there exists X ∈ MΣ(P ) such that a, b ∈ X, c 6∈ X,

and KX(P ) ∈ Σ. Observe that KX(P ) ⊆ K(a,b,c)(P ). Define P ′′ as follows:

H ′′
i = H{x,y,w} for all i ∈ K(a,b,c)(P ) \ KX(P ) where w ∈ S \ {x, y, z} and H ′′

i =

H ′
i|{x,y,z} − {x, y, z} otherwise. Notice that K{x,y}(P ′′) = KX(P ) ∈ Σ and so

{x, y} ∈ MΣ(P ). Thus xy |C(P ′′) z. Finally , observe that P ′′|{x,y,z} − {x, y, z} =

P ′|{x,y,z} − {x, y, z}.

To prove that MΣ satisfies item 2 in (TN), assume KX(P ) = K(x,y,z)(P ′) and

X ∈ MΣ(P ). Then KX(P ) ∈ Σ. Define P ′′ by P ′′ = P ′|{x,y,z} − {x, y, z} and

observe that P ′′|{x,y,z} − {x, y, z} = P ′|{x,y,z} − {x, y, z}. Moreover, K{x,y}(P ′′) =

K(x,y,z)(P ′) = KX(P ) ∈ Σ and so {x, y} ∈ MΣ(P ′′). Thus, xy |MΣ(P ′′) z.

Up to this point it should be noted that all we needed was that Σ is a semidecisve

family. In the next part of the proof we will need to know that Σ is actually a

decisive family.

To prove that MΣ satisfies item 3 in (TN), assume KX(P ) = K(x,y,z)(P ′) and

xy |MΣ(P ′) z. Then there exists Y ∈ MΣ(P ′) such that x, y ∈ Y , z 6∈ Y , and

KY (P ′) ∈ Σ. Observe that KY (P ′) ⊆ K(x,y,z)(P ′) = KX(P ). Since KY (P ′) ∈ Σ

and Σ is a decisive family it follows that KX(P ) ∈ Σ and so X ∈ MΣ(P ).

For the converse assume that C is a nontrivial consensus rule satisfying (WI)

and (TN). By Theorem 2, we know that UC is a semidecisive family. Our goal

is to show that UC is a decisive family and that C = MUC
. Suppose X ∈ C(P )

for some profile P and nontrivial cluster X. Let (x, y, z) be any triple. Choose a
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profile P ′ such that KX(P ) = K(x,y,z)(P ′). Since X ∈ C(P ) it follows from item 2

in (TN) that there exists a profile P ′′ such that P ′′|{x,y,z}−{x, y, z} = P ′|{x,y,z}−

{x, y, z} and xy|C(P ′′)z. Notice that KX(P ) = K(x,y,z)(P ′′) = K(x,y,z)(P ′). Also,

notice that K(x,y,z)(P ′′) ∈ UC . It follows that X ∈ MUC
(P ) and so C(P ) ⊆

MUC
(P ).

Now let Y ∈ MUC
(P ) and note that KY (P ) ∈ UC . So there exists a profile P ′

and a triple (x, yz) such that KY (P ) = K(x,y,z)(P ′) and xy|C(P ′)z. It follows from

item 3 in (TN) that Y ∈ C(P ). At this stage, we know that C(P ) = MUC
(P ) for

any profile P .

The last step is to show that UC is a decisive family. Let I ∈ UC and suppose I ⊆

J ⊆ K. Define a profile P as follows: Hi = H{x,y} for all i ∈ I; Hi = H{x,y,w} for

all i ∈ J \ I; Hi = H∅ otherwise. Since K{x,y}(P ) = I ∈ UC and C(P ) = MUC
(P )

it follows that {x, y} ∈ C(P ). Therefore, xy |C(P ) z for any z ∈ S \ {x, y, w}. Since

K(x,y,z)(P ) = J it follows that J ∈ UC and we’re done. 2

It turns out that not all the conditions of Theorem 1 are independent. In fact,

it can be shown that if C is a nontrivial consensus rule satisfying items 2 and 3

in (TN), then C satisfies item 1 in (TN) and (WI). On the other hand, it is not

possible to drop either item 2 or item 3 in (TN) and still prove that C = MUC
.

We conclude with an example showing why item 3 in (TN) is needed for the

main result.

Example 3. Define C : H(S)3 → H(S) as follows: C(P ) = HX if P =

(HX ,HX ,HX) and |X| = n − 1; C(P ) = H∅ otherwise. So C outputs a non-

trivial hierarchy only at n profiles and UC = {K}. It can be verified that C satisfies

items 1 and 2 in (TN). Since UC = {K} is a semidecisive family and C satisfies

item 1 in (TN) it follows from Theorem 2 that C satisfies (WI).
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