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Abstract

If we generalize the Kyoto game which was presented at Lamsade-Dimacs work-
shop in 2004, we obtain a decision problem which can be described by a multilay-
ered structure. This structure represents a hidden multiobjective control problem of
a time-discrete systems with given starting and final states. The dynamics of the sys-
tem are controlled by p actors (players). Each of the players intends to minimize his
own integral-time cost of the system’s passages using a certain admissible trajectory.
At each stage (level) decisions are made by the players.

Nash Equilibria conditions can derived and algorithms for solving dynamic games
in positional form are described. The existence theorem for Nash equilibria is related
with the introduction of an auxiliary dynamic c-game.

We present the decision problem in that c-game which is defined on a special
layered structure. The algorithmic principle which exploits this special structure for
the decision processes will be described. New complexity results are presented and
first numerical results are discussed.
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1 Introduction - The General Model

In the following we describe the general underlying model for our decision problem. This
is a short summary. For details we refer to [3, 4].
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Let L be a discrete dynamical system with the set of states X ⊆ Rm. At every time-
step t = 0, 1, 2 . . . the state of L is x(t) ∈ X . Two states x0 and xf are given in X , where
x0 = x(0) represents the starting point of L and xf is the state into which the system L
must be brought, i.e. xf is the final state of L. We assume that the system L reaches the
final state xf at the time step T (xf ) such that

T1 ≤ T (xf ) ≤ T2,

where T1 and T2 are given. The dynamics of the system are described as follows

x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . .

where
x(0) = x0

and u(t) ∈ Rm represents the vector of control parameters.

For u(t) at any time step t let there be given a nonempty set Ut(x(t)) such that

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . , (1)

i.e. Ut(x(t)) is the admissible (decision) set for vector of control parameters at the time-
step t when the state of system L is x = x(t) ∈ X . We assume that the derivatives
gt(x(t), u(t)) are known and uniquely determine x(t + 1) for given x(t) and u(t) at every
moment of time t = 0, 1, 2, . . . . In addition we assume that at each point in time t the cost
ct(x(t), x(t + 1)) is known with ct(x(t), x(t + 1)) = ct(x(t), gt(x(t), u(t))) of system’s
passage from the state x(t) to the state x(t + 1).

Let
x0 = x(0), x(1), x(2), . . . , x(t), . . .

be the trajectory generated by given vectors of control parameters

u(0), u(1), . . . , u(t− 1), . . . .

Either this trajectory passes through the state xf at time T (xf ) or it does not pass through
xf . By

Fx0xf
(u(t)) =

T (xf )−1∑
t=0

ct(x(t), gt(x(t), u(t))) (2)

we denote the integral-time cost of system’s passage from x0 to xf if T1 ≤ T (xf ) ≤ T2;
otherwise we stipulate Fx0xf

(u(t)) = ∞.
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Multiobjective Control Problem
The multiobjective control problem is defined in the following way:
Minimize the function Fx0xf

(u(t)) which is defined by (2) according to (1).

Thus, we consider the discrete control problem which consists of cases with a fixed
number of stages (T1 = T2) and the number of stages is not limited (T1 = 1, T2 = ∞).

Before we deal with the decision problem we introduce in the following section the
special structure of Nash equilibria.

2 Problem Formulation for Determining a
Nash Equilibrium

In order to characterize suitable Nash equilibria we consider the dynamic system L over
discrete moments in time t = 0, 1, 2, . . . . At every time-step t the state of this L is
x(t) ∈ X ⊆ Rm. The dynamics of the system L are controlled by p players and it is
described as follows

x(t + 1) = gt(x(t), u1(t), u2(t), . . . , up(t)), t = 0, 1, 2, . . . . (3)

Here x(0) = x0 is the starting point of the system L and ui(t) ∈ Rmi represents
the vectors of control parameters of player i, i ∈ {1, 2, . . . , p}. The state x(t + 1) of the
system L at time-step t+1 is obtained uniquely if the state x(t) at the time-step t is known
and the players 1, 2, . . . , p fix their vectors of control parameters u1(t), u2(t), . . . , up(t),
respectively. For each player i, i ∈ {1, 2, . . . , p} the admissible sets U i

t (x(t)) for the
vectors of control parameters ui(t) are given, i.e.

ui(t) ∈ U i
t (x(t)), t = 0, 1, 2, . . . ; i = 1, p.

We assume that U i
t (x(t + 1)), t = 0, 1, 2, . . . ; i = 1, p, are non-empty finite sets and that

U i
t (x(t)) ∩ U j

t (x(t)) = ∅, i 6= j, t = 0, 1, 2, . . .

We assume that the players 1, 2, . . . , p fix their vectors of control parameters
u1(t), u2(t), . . . , up(t); t = 0, 1, 2, . . . ,

respectively, and the starting state x0 and final state xf of the system L are known. Then
for fixed vectors of control parameters u1(t), u2(t), . . . , up(t) either a unique trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf
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from x0 to xf exists and T (xf ) represents the time-moment when the state xf is reached,
or such trajectory from x0 to xf does not exist. We denote by

F i
x0xf

(u1(t), u2(t), . . . , up(t)) =
T−1∑
t=0

ci
t(x(t), gt(x(t), u1(t), u2(t), . . . , up(t)))

the integral-time cost of system’s passage from x0 to xf for the player i, i ∈ {1, 2, . . . , p}
if the vectors u1(t), u2(t), . . . .up(t) generate a trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf such that

ui(t) ∈ U i
t (x(t)), t = 0, 1, 2, . . . , T (xf )− 1,

and
T1 ≤ T (xf ) ≤ T2.

Otherwise we stipulate

F i
x0xf

(u1(t), u2(t), . . . , up(t)) = ∞.

Note that ci
t(x(t), gt(x(t), u1(t), u2(t), . . . , up(t))) = ci

t(x(t), x(t + 1)) represent the
costs of the system’s passage from the state x(t) to the state x(t + 1) at the stage [t, t + 1]
for the player i. Then we obtain the following problem on networks:

Problem: Decison Problem on Networks

If we find vectors of control parameters

u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗(t), . . . , up∗(t)

which satisfy the following condition

F i
x0xf

(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗(t), . . . , up∗(t)) ≤

≤ F i
x0xf

(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui(t), ui+1∗(t), . . . , up∗(t))

∀ui(t) ∈ Rmi , t = 0, 1, 2. . . . ; i = 1, p

(the expression i = 1, p is equivalent to i = {1, . . . , p}.), then we get a solution in the
sense of Nash for our control problem on a network. In the following we present a sketch
of the algorithmic principle.
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3 Algorithmic Determination - Layered Structure

If we search for an suitable algorithmic principle we can orientate on similar problems
of shortest path on a network. For that reason we present an application of Dijkstra’s
algorithm for a multiobjective version of the optimal paths problem in a weighted directed
graph. The algorithm is able to determine the stationary Pareto strategy s∗ ∈ S of the
players for the multiobjective control problem on the network (G,X, c1, c2, . . . , cp, x0, xf ,
T1, T2) with an arbitrary starting position x ∈ X and given final positions xf ∈ X . We
then obtain a tree which obtains all Pareto optimal paths from every x ∈ X to xf .

4 Complexity Results

If we consider the following

INSTANCE: [Multiobjective Decision Problem]
Let L be a dynamic system with a finite set of states X, |X| = n. We interprete these
states as nodes of a graph G(X,E) where X is now the set of nodes (i.e. the states of our
dynamic system) and E is a set of edges which have the following property:

At every discrete moment of time t = 0, 1, 2, . . . the state of the system L is x(t) ∈ X .
Note, that here we associate x(t) with an abstract element. Furthermore we have a multi-
objective control problem on the network (G,X, c1, c2, . . . , cp, x0, xf ) with p players:
The dynamics of the system L is described by a directed graph of passages in the graph
G = (X, E). Two states x0 and xf are chosen in X , where x0 is a starting point of the
system L, x0 = x(0), and xf is a final state of the system, i.e. xf is a state in which
the system L must be brought. An edge e = (x, y) signifies the possibility of passages
of the system L from the state x = x(t) to the state y = x(t + 1) at any point in time
t = 0, 1, 2, . . . , T (xf ). (We assume that the system L reaches the final state xf at the
time step T (xf )). For simplicity we assume that the graph G = (X, E) is connected. To
each edge e = (x, y) ∈ E of the graph of passages p functions c1

e(t), c
2
e(t), . . . , c

p
e(t) are

assigned, where ci
e(t) expresses the cost of system’s passage from the state x = x(t) to

the state y = x(t + 1) at the stage [t, t + 1] for the player i. For the stationary case the
functions ci

e(t) do not depend on t.

According to the algorithmic principle the existence of a partition X = X1(t) ∪
X2(t) ∪ . . . ∪ Xp(t), (X i(t) ∪ Xj) = ø, i 6= j can be proved. Here, X i(t) correspond
to the set of positions of player i at time-step t. The proposed algorithm determines the
optimal strategy s∗ which is closely related with a distinguished partition for the set X .

According to following input parameter we define the problem for the instance Multi-
objective Decision Problem:
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Instance Multiobjective Decision Problem
Input Parameter: n, p, T

PROBLEM: Determine a stationary Pareto strategy.

Then we can prove that

Theorem: Our constructive algorithm determines for the instance Multiobjective De-
cision Problem Pareto stationary strategies of the players for every given starting position
x and final position xf . The running-time of the algorithm is O(n3Tp).

5 Conclusion

Games which are defined on networks are very interesting from a practical and theoretical
point of view. We present a decision problem in the context of emissions trading. A
special structure is exploited to obtain a polynomial algorithm. First numerical results
will be discussed.
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