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Abstract

Despite the many useful applications of power indices, the literature on
power indices is raft with counterintuitive results or paradoxes, as well as
real-life institutions that exhibit these behaviors. This has led to a cataloging
of sorts where new and different paradoxes are calculated and then shown to
exist in nature. Even though the paradoxes sound different from one another
with names like the paradox of redistribution, the donor and transfer para-
doxes, the paradox of quarreling members, the paradox of a new member, and
the paradox of large size, they can be classified by the underlying geometric
properties that induce the counterintuitive results. Perhaps surprisingly, an-
alyzing the geometry behind the paradoxes for three voters is sufficient to
understand the geometry behind the paradoxes. Voting power induces a par-
tition on games where two games are in the same part if each player i has
the same power in each game. The paradoxes are a result of three geometric
ideas and how they interact with the partition: a point passing a hyperplane
thereby changing parts, moving hyperplanes that change the size or number
of parts in a partition, and changing the dimension of the space by adding or
subtracting a voter.

Key words : Voting Power, Paradoxes, Geometry

Power indices are used to measure the a priori distribution of power among voters
under a given voting rule. Many of these power indices uniquely satisfy different sets
of axioms, including the most commonly used indices by Penrose (1946), Shapley and
Shubik (1954) and Banzhaf (1965), as well as others. Such axiomatic approaches
have been used to create new indices, as well as to champion one power index
over others. Generalized power indices, such as semivalues (Carreras, Freixas, and
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Puente, 2003, Laruelle and Valenciano, 2003a, and Saari and Sieberg, 2001), measure
power in broader classes of cooperative games, often following the same axiomatic
development.

As a tool, power indices have been used to examine weighted voting in insti-
tutions including the International Monetary Fund (Dreyer and Schotter, 1980 and
Leech, 2002c), the Electoral College (Mann and Shapley, 1964), the European Union
Council of Ministers (Johnston, 1995 and Leech, 2002b), and the Israeli Knesset
(Laruelle, 2001). Not only have power indices been used to analyze existing institu-
tions, but they have been part of the debate about the design of new institutions.
For example, Turnovec (1996) and Widgren (1994) use power indices to model the
effects of institutional reforms on, and the introduction of new members into, the
European Union. Because power indices rarely agree on the measure of power for a
voter, let alone on the ranking of the power of voters (cf. Saari and Sieberg, 2001),
the selection of a power index is paramount. Although a productive way to generate
power indices, the axiomatic approach has not been successful in comparing how
the power indices differ and when one power index is more applicable than another.

Despite the many useful applications of power indices, the literature on power
indices is raft with counterintuitive results or paradoxes, as well as real-life institu-
tions that exhibit these behaviors. This has led to a cataloging of sorts where new
and different paradoxes are calculated and then shown to exist in nature. Felsen-
thal and Machover (1995, 1998) divide power indices according to their ability to
measure ‘P -power’ (the power to share a purse) and ‘I-power’ (the power to influ-
ence) and use the paradoxes (often described as postulates, when an index is not
susceptible to the paradox) as a way to compare power indices. They cast doubt on
the importance of some paradoxes, offer new perspectives on other paradoxes, and
generate new paradoxes. Laruelle and Valenciano (2003b) also distinguish between
power indices by introducing two measures (factual success and decisiveness) that
utilize the voting rule, as well as voters’ behavior.

Even though the paradoxes sound different from one another with names like the
paradox of redistribution (Dreyer and Schotter, 1980 and Schotter, 1981), the donor
and transfer paradoxes (Felsenthal and Machover, 1998), the paradox of quarreling
members (Kilgour, 1974), the paradox of a new member (Brams, 1975 and Brams
and Affuso, 1976), the paradox of large size (Brams, 1975 and Shapley, 1973), the
fattening paradox (Felsenthal and Machover, 1998), etc., they can be classified by
the underlying geometric properties that induce the counterintuitive result.

To provide a geometric setting, the discrete space of simple weighted-voting
games are viewed as points on a simplex. The voting rule partitions the simplex
into different regions or parts where the power of all games in a part yield the same
power index. The counterintuitive results described as paradoxes can be classified
according to three geometric properties: a change in the simple weighted-voting
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game causes the game to switch to another part of the partition (geometrically,
a point passes a hyperplane that partitions the space), the voting rule changes or
restrictions are placed on what coalitions can form (geometrically, the size and/or
shape of the parts of the partition change), and voters are introduced, consolidated,
or deleted from the game (geometrically, the dimension changes by adding or sub-
tracting a voter). Combining these geometric ideas in succession results in other
paradoxes, e.g., fattening paradox (Felsenthal and Machover, 1998).

Perhaps surprisingly, analyzing the geometry behind the paradoxes for three
voters is sufficient to understand the geometry behind the paradoxes for any number
of voters. We review simple weighted-voting games, view power as a discrete map,
and introduce the geometry for three voters in Section 2. In Section 3, we explain
the relationship between geometry and classes of paradoxes. Because of the low
dimension and the inherent symmetry, the examples often are proof that all power
indices suffer from a particular paradox (e.g., the paradox of redistribution).

1 Simple Weighted-Voting Games, Power, and Geometry

Cooperative game theory models how groups or coalitions form to achieve a par-
ticular goal (e.g., passing legislation) and the value received if their objective is
met. Notationally, a coalition S is a subset of a finite set of voters N = {1, 2, . . . n}
and the utility derived by S is denoted as v(S) where the real-valued function v
has as its domain the power set of N and satisfies v(∅) = 0 and super-additivity
[v(S ∪ T ) ≥ v(S) + v(T )]. Intuitively, these two conditions are that a coalition of
no size has no value and that the sum of the whole is at least as great as the sum of
its parts or that two coalitions can get at least as much done together as they could
apart.

A cooperative game is simple if, for each S ⊆ N , either v(S) = 0 or v(S) = 1,
where a coalition S is viewed either as a losing coalition, i.e., v(S) = 0, or a winning
coalition, i.e., v(S) = 1. For a simple voting game, winning coalitions can pass
measures and enact legislation. These games offer a minimal number of restrictions
of what subsets can be winning coalitions. Let the collection of all winning subsets
of a finite set N of voters be denoted by W where

1. N ∈ W

2. ∅ /∈ W

3. Monotonicity: If X ∈ W and X ⊆ Y ⊆ N , then Y ∈ W.
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A priori power is determined by the structure of the institution and which subsets of
voters can coalesce to form winning or losing coalitions. This is markedly different
than looking at the voting behavior for a particular issue.

Although power can be defined for any simple voting game where the outcome
only depends on which subsets of N are winning coalitions, we will assume that each
voters’ vote has a weight associated to it. Many of the paradoxes relate changes in
weights to the corresponding change in power. A simple weighted-voting game is a
set of n voters, where voter i’s vote carries the weight wi, and a quota, a value that
if the sum of the voters’ weights in a coalition is greater than or equal to the quota,
q, then the coalition is a winning coalition. Denote a simple weighted-voting game
by [q; w1, w2, . . . , wn]. Hence,

v(S) =

{
0 if

∑
i∈S wi < q,

1 if
∑

i∈S wi ≥ q.
(1)

The wi’s are restricted usually to be nonnegative integers and the sum of the weights
w = w1 + w2 + · · ·+ wn is fixed, e.g., representing a fixed number of shares of stock
or a fixed number of seats in a senate. The weight of a voter is a crude form of
measuring how important, or how much power, an individual brings to a coalition,
whereas power indices calculate a voter’s contribution to a political process.

For simple weighted-voting games to be well-defined, q must satisfy w
2

< q ≤ w.
In words, for a coalition to pass a measure, the weights of the voters in the coalition
must be more than a majority of the total weight of all voters. Otherwise, two
coalitions with less than a majority of the total weight of voters could pass conflicting
legislation. The weights in the simple weighted-voting game [q; w1, w2, . . . , wn] can
be normalized and viewed as a point on the (n − 1)-dimensional simplex

Sn−1 =
{

(x1, x2, . . . , xn) | w1 + w2 + · · ·wn = w and xi =
wi

w
≥ 0 for all i

}
.

The quota induces the hyperplane
∑

i∈S xi =
q

w
to divide the simplex of all simple

weighted-voting games into those that have S as a winning and losing coalition (Eq.
1). The collection of all hyperplanes forms a partition of the simplex, where the
number and size of the parts of the partition depend on the quota.

Because most of the paradoxes can be understood by an analysis of simple
weighted-voting games with only three voters, we consider these games in detail. For
a game with 3 voters, the normalized weights of the three voters can be viewed as a
point on the 2-simplex. The 2-simplex is the intersection of the plane x1+x2+x3 = 1
and the positive octant where xi ≥ 0 for all i; this can be viewed as an equilateral
triangle in the plane as shown in Figure 1.

For 3-voter simple weighted-voting games, the hyperplanes associated with a
fixed normalized quota q where 1

2
< q < 1 partition the simplex S2 = {(x1, x2, x3) :
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Figure 1: The plane x1 +x2 +x3 = 1 and the 2-simplex {(x1, x2, x3) | x1 +x2 +x3 =
1, x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0.}

Region Ri; i = 1 − 3 Ri+3; i = 1 − 3 Ri+6; i = 1 − 3 R10

MWCs {i} N/{i} {i, j}, {i, k} {1, 2}, {1, 3}, {2, 3}∗
where i 6= j 6= k or {1, 2, 3}∗∗

Table 1: Regions and their corresponding minimal winning coalitions (MWCs). The
coalition structure for R10 depends on whether q ≤ 2

3

∗
or q > 2

3

∗∗
.

x1 + x2 + x3 = 1 and xi ≥ 0} into ten regions R1 − R10 (Table 1 and Figure 2).
The games in each region form an equivalence class because each game has the same
sets of winning and losing coalitions. For example, in Figure 2, the only winning
coalitions in games in region R7 are {1, 2, 3}, {1, 2}, and {1, 3}; this follows because

x1 + x2 + x3 ≥ q x1 + x2 ≥ q x1 + x3 ≥ q

x2 + x3 < q xi < q for all i.

Notice that the inequalities x1 +x2 ≥ q, x2 +x3 < q and x1 +x3 ≥ q can be rewritten
as x3 ≤ 1−q, x1 > 1−q, and x2 ≤ 1−q. Hence, the lines x1 = 1−q, x2 = 1−q, and
x3 = 1− q are parallel to the sides of the equilateral triangle (where x1 = 0, x2 = 0,
and x3 = 0). This holds in general: for 3-voter simple weighted-voting games with
q < 1, the hyperplanes that partition the simplex are lines parallel to the sides of
the equilateral triangle. When q = 1, there are four regions: Ri where player i is
the dictator (for i = 1 to 3) and R10 where all voters must be part of a coalition for
it to be winning.

A power index is a discrete map from the space of normalized n-voter, simple
weighted-voting games to vectors in Rn where the ith entry of the vector represents
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(right).

the power of the ith voter. For a fixed quota, let

Pq : Sn−1 → Rn (2)

represent a power index. Because there are many specialized power indices (e.g.,
Banzhaf, 1965, Coleman, 1971, Deegan and Packel, 1982, Penrose, 1946, and Shapley
and Shubik, 1954) that measure different aspects of power, I refrain from giving too
many details for specific power indices or measures. Regardless of the method of
measuring power, the geometry of the domain and the partition that slices the
simplex into parts (that indicate the winning and losing coalitions) are the same.
Also, note that we are measuring a priori power that is independent of the position
of the voters on a particular issue. It considers all possible coalitions that can
form and may weigh the outcome according to size (as semi-values do) or other
characteristics. The partitioned regions of the simplex are equivalence classes where
the voters’ powers are preserved for games in the region.

To be well defined, power indices must also satisfy certain regularity conditions.
For example, a power index should not be biased toward a voter: a permutation
of the weights of the voters should result in the same permutation of the resulting
powers. Pq must satisfy the following conditions:

1. (Invariance) If σ is a permutation of the set of voters N , then voter i’s power
in [q; x1, . . . , xn] should be the same as voter σ(i) = j in the permuted game
[q; y1, . . . , yn] where yj = xi. Equivalently,

Pq(x1, x2, . . . , xn)i = Pq(y1, y2, . . . , yn)j where σ(i) = j and yj = xσ(i) for all i.

2. (Symmetry) If two voters are members of the identical winning coalitions, then
they have the same power.
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3. (Dummy voter) If a voter a is never part of a minimal winning coalition, then
voter a’s power is 0.

Felsenthal and Machover (1998) distinguish between measures that satisfy the above
conditions and power indices that are normalized so that the elements of the resulting
power vector sum to 1.

To demonstrate possible paradoxes, it is helpful to have specific examples. I
review two of the most commonly used power indices: the Banzhaf and Shapley-
Shubik power indices. In 1965, Banzhaf introduced his power index in a lawsuit
while examining the fairness of voting involving the Nassau County (NY) Board of
Supervisors (Banzhaf, 1965). The Banzhaf index counts the number of times that
a voter is necessary to be part of a coalition for a measure to pass. This is referred
to as a critical voter. The ith component of the Banzhaf power index is given by

Bq(x)i =
∑

S⊆N

[v(S) − v(S/{i})] . (3)

The Shapley-Shubik power index (Shapley and Shubik, 1954) extends the Shap-
ley value (Shapley, 1953) to simple weighted-voting games. The ith component of
the Shapley-Shubik power index is given by

Sq(x)i =
∑

S⊆N

[v(S) − v(S/{i})] (|S| − 1)! (4)

Intuitively, Shapley-Shubik power index measures the power of a voter given every
sequence of ‘yes’ votes. The notion is that the voters could join the coalition in any
order and in (|S| − 1)! of these orders, voter i joined last and made the coalition
a winning coalition. Voter i is often referred to as the pivotal voter. Under the
Shapley-Shubik power index, a voter i has to be critical in the Banzhaf sense above,
but the value of being critical depends on the number of elements in S. For both
indices, the power of voter i depends on the number and/or size of the winning
coalitions for which i is critical or pivotal (when v(S) − v(S/{i}) = 1). For three
voters with fixed weights, the Shapley-Shubik and Banzhaf power indices agree on
the relative ranking of the voters’ power (Saari and Sieberg, 2001). To get a sense
of the calculation for a 3-voter game, consider the following example.

Example 1. The simple weighted-voting game [3; 2, 1, 1] normalizes to [3
4
; 1

2
, 1

4
, 1

4
]

and has winning coalitions {1, 2, 3}, {1, 2}, and {1, 3}. Hence, voter 1’s power is
determined by potentially nonzero terms v(S) − v(S/{i}) in Eq. 3 (so, v(S) must
be 1 for the difference to be nonzero) and

B 3
4

(
1

2
,
1

4
,
1

4

)

1

= [v({1, 2, 3})− v({2, 3})] + [v({1, 2})− v({2})]

+ [v({1, 3}) − v({3})] = 1 + 1 + 1 = 3.
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Similarly, voter 2 has Banzhaf power

B 3
4

(
1

2
,
1

4
,
1

4

)

2

= [v({1, 2, 3})− v({1, 3})] + [v({1, 2})− v({1})] = 0 + 1 = 1.

And, by symmetry, voter 3’s power is also 1. And, B 3
4
(1

2
, 1

4
, 1

4
) = (3, 1, 1). The

normalized Banzhaf power index is 3
5
:1
5
:1
5
. It follows from Eq. 4 that S 3

4
(1

2
, 1

4
, 1

4
) =

(4, 1, 1). The normalized Shapley-Shubik power index is then 4
6
:1
6
:1
6
.

Due to the superadditivity assumption, only the minimal winning coalitions are
necessary to generate all winning coalitions. From Example 1, the coalition of voters
1 and 2 is a minimal winning coalition because both are necessary (to vote “yes”) to
pass a measure. However, the grand coalition of all voters is not minimal because
either voter 2 or voter 3 could exit the coalition (thereby voting “no”) and the
remaining voters could still pass the measure.

2 Geometry of Paradoxes of Voting Power

For games with more voters, higher dimensional simplices represent the domain of
power indices. Similarly, the quota partitions the simplex into regions where the
voters’ powers are constant. When a simple weighted-voting game is in the interior
of the partition, then a small perturbation may not cause the power to change. Only
by changing parts in the partitions can the power change. Changing parts requires
passing a hyperplane, the boundary of the part.

2.1 Domain Effects

The paradox of redistribution compares the change in a voter’s weight to the corre-
sponding change in the voter’s power. The counterintuitive outcome is that a voter’s
weight may increase, yet its power decreases, or a voter’s weight may decrease, yet
its power increases, or both of these situations may occur. For three voters, only the
one-sided paradox can occur, not both. The geometry of the simplex readily explains
why even the more general paradox is true. Because simple weighted-voting games
are domain points on the simplex, a change in one voter’s weight (or coordinate)
must be met with changes in at least another voter’s weight, too. As described,
there is a lot of freedom in how the other voters’ weights can be adjusted. So, the
paradox may not seem too remarkable.

The paradox of redistribution was first noted by Fischer and Schotter (1978).
Schotter (1981) uses simplices to determine the likelihood of the paradox for the
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Figure 3: The paradox of redistribution as an effect of passing a hyperplane. When
Ga → Gb, voter 1’s weight decreases but its power increases. When Gb → Ga, voter
1’s weight increases but its power decreases.

Banzhaf and Shapley-Shubik power indices. However, the paradox is not an artifact
of the particular power index used, as described in the following example.

Example 2. (The ubiquity of the paradox of redistribution) Consider the effect of
voter 1’s weight increasing from 1

3
to 5

16
in the games Ga = [7

8
; 1

3
, 1

3
, 1

3
] and Gb =

[14
16

; 5
16

, 1
16

, 10
16

]. Figure 3 shows how with the quota fixed at 7
8
, changing the weights

of the voters results in passing a hyperplane into another part of the partition.
Specifically, the game moves from region R10 (using the notation from Figure 2) into
R5. Notice that because all three voters are necessary to form a winning coalition
in Ga, the normalized power index for Ga is 1

3
:1
3
:1
3
, regardless of the specific power

index. This is due to the invariance under of permutations of the voters. Similarly,
because voters 1 and 3 are part of all the same winning coalitions in Gb and voter 2
is a dummy voter (her vote never changes a losing coalition to a winning coalition),
the power index is 1

2
:0:1

2
. Due to symmetry, every power index will exhibit this

paradox under these changes (cf. Felsenthal and Machover, 1998).

Felsenthal and Machover (1998) consider a more surprising version of the paradox
of redistribution called the donation paradox. They show that if the power index
doesn’t satisfy a monotonicity condition, then it is possible for a voter to donate some
of its weight to another voter and the donor’s power increases while the recipient’s
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Figure 4: As the quota decreases from q1 = 8
11

(left), q2 = 7
11

(middle), and q3 = 6
11

(right) point on the simplex representing the weights
(

5
11

, 4
11

, 2
11

)
is in region R6, R7,

and R10, respectively.

power decreases. Although this requires a nonmonotone power index, the geometry
behind the paradox remains the same: a perturbation in the weights of the voters
causes the game to pass a hyperplane.

2.2 Partition Effects

So far we have considered the effect of changing the voters’ weights in the simple
weighted-voting game. However, it is possible to achieve paradoxical outcomes by
leaving the weights fixed and changing the shape and number of partitions. Figure 2
and Table 1 indicate a geometric consequence to changing the value of the quota: the
size, shape, and characteristics of partitions of the simplex may change. Institutions
that have changed or considered changing their requirements for a measure to pass
(by changing q) have been analyzed. For example, Dreyer and Schotter (1980)
consider quota effects on the distribution of power in the International Monetary
Fund.

In general, the quota affects the size and number of parts in the partition of the
simplex. It seems as if lowering the quota benefits the voter whose vote has the
largest weight. Winning coalitions from before the changed quota will be retained.
However, the critical voters may change. And, new winning coalitions may form. We
see from Figure 2 that a point may fall into different regions as the quota changes.
The voter with the largest weight may benefit from such a change or not. The
following example demonstrates two scenarios where the same weights are used to
show how the quota affects the voter with the largest weight.

Example 3. (The Shapley-Shubik power index and the quota paradox) Consider

10
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the effect of the quota decreasing from 8
11

to 7
11

to 6
11

for the game with voters 1-3
with weights 5

11
, 4

11
, 2

11
, respectively. Under the Shapley-Shubik power index, these

three games (with quota decreasing) have resulting power indices of 1
2
:1
2
:0, 4

6
:1
6
:1
6

and
1
3
:1
3
:1
3
. The voter with the largest weight initially benefits from a decrease in the

quota, but a further decrease in the quota lowers voter 1’s power. The quota effect
appears in Figure 4. The fixed game is in regions R6, R7, and R10 as the quota
decreases.

Realize that the Shapley-Shubik power index is not the only paradox susceptible
to this quota effect. Due to symmetry, the normalized power index for the games[

8
11

; 5
11

, 4
11

, 2
11

]
and

[
6
11

; 5
11

, 4
11

, 2
11

]
always is 1

2
:1
2
:0 and 1

3
:1
3
:1
3
. A decrease in the quota

has adversely affected the voter with the largest weight. However, a decrease in the
quota can also have a positive effect on the voter with the largest weight. For a
general power index, this occurs when the quota decreases from 8

11
to 7

11
resulting

in the game
[

7
11

; 5
11

, 4
11

, 2
11

]
, as long as the index gives more power to voter 1 which

is reasonable as voter 1 is in two minimal winning coalitions while voters 2 and 3
are each in one minimal winning coalition.

There are other ways to adjust the size and number of parts of the partition of the
simplex. Kilgour introduced the paradox of quarreling members where restricting
which coalitions can form increases the power of the quarreling members. Specif-
ically, if two voters quarrel, they will never both vote “yes” on a measure. Even
though they cannot be part of the same winning coalition, it is possible that one
of these voters power increases. Quarreling restricts the freedom of the quarreling
members, thereby decreasing their options. It seems paradoxical that the addi-
tional restriction can help the quarreling members. But, quarreling also restricts
the non-quarreling voters’ options, too.

Measuring the power of the voters when certain coalitions cannot form requires
modifications of the power indices. Modifying power indices can be viewed as re-
stricting the power index to the coalitions that can form. For quarreling members,
realize that we do not assume that the two quarreling members are always on op-
posite sides of a vote, but that they would not be both part of a winning coalition.
The following example demonstrates how quarreling members reduce the number of
regions in the partition.

Example 4. (The paradox of quarreling members) The simple weighted-voting
game [3

4
; 2

3
, 1

6
, 1

6
] is in region R7 in Figure 2 and has minimal winning coalitions are

{1, 2, 3}, {1, 2}, and {1, 3}. Consequently, as in Example 1, the normalized Banzhaf
power index for this game is 3

5
:1
5
:1
5
. If voters 2 and 3 quarrel, then the winning

coalition {1, 2, 3} is restricted from forming. Figure 5 indicates the coarser partition
that results from quarreling. Voter 1 is critical twice while voters 2 and 3 are each
critical once. Modifying the normalized Banzhaf power index for the restricted set
of coalitions, the game with quarreling has a power index of 1

2
:1
4
:1
4
. In this case,

11
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Figure 5: The paradox of quarreling members: Voters 2 and 3 quarrel resulting in
the removal of a hyperplane that decreases the number of parts in the partition.

the counterintuitive result is that voter 3’s power increased because of its quarreling
with voter 2.

2.3 Dimensional Effects

So far, we have only considered the geometry for simple weighted-voting games with
3 voters. To consider the effect of introducing or removing a voter from a game, we
also consider the simplex generated by 2 voters. When normalized, these games are
on the unit interval [0, 1] where x1 is represented by the distance from 0 and x2 is
represented by the distance from 1. Naturally, x1 + x2 = 1 as required. Adding a
voter to a simple weighted-voting game increases the dimension of the space. Brams
(1975) and Brams and Affuso (1976, 1985a, 1985b) consider the paradox of a new
member where a new voter is introduced into the game while the relative weights of
the other voters is constant (that is, the weights of the “old” voters are proportional),
yet an old voter’s weight increases. Felsenthal and Machover (1998) mathematically
represent this paradox in the following way: when the game [q; u1, u2, . . . , un] changes
to [q; v1, v2, . . . , vn, vn+1] where vn+1 ∈ [0, 1] and vi = (1− vn+1)ui for i = 1 to n and
one of voters 1 through n has its power increase. This seems paradoxical because the
introduction of the new voter would seem to take power away from the other voters.
Introducing a new member to an organization can have unanticipated consequences.
Researchers have applied power indices to see the effect of proposed expansion of the
European Union (e.g., Turnover, 1996 and Widgrén, 1994). The following example
demonstrates the paradox.

Example 5. (Paradox of a new member) Consider the 2-voter game [0.75; 0.7, 0.3].
Clearly, the power under any index is 1

2
:1
2

as both voters are necessary for a coalition
to be winning. The line in Figure 6 shows the possible games for which a third voter
can be added and the ratio of voter 1’s and voter 2’s weights held constant. Notice

12
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Figure 6: The paradox of a new member: Voter 1’s power increases despite the
introduction of a new voter.

that this line intersects region R7, in which case voter 1’s power increases. As a
representative game in this region, the game [0.75; 7

13
, 3

13
, 3

13
] satisfies the conditions.

Under the Shapley-Shubik power index, voter 1’s power is 4
6

in the new 3-voter game
while under the Banzhaf power index voter 1’s power is 3

5
; both are greater than 1

2
.

Brams (1975) coined the term paradox of large size: if voters decide to form
a bloc, then the power of the bloc cannot be smaller than the sum of the power
of its members. We consider this paradox when one voter annexes another voter
(absorbsing its weight). Yet, by increasing its weight, the voter’s power decreases.
Again, 3 voters is sufficient to demonstrate that this paradox is independent of the
measurement of power. The following example considers this paradox.

Example 6. (Paradox of large size) Consider the simple weighted-voting game Ga =
[3
4
; 1

3
, 1

3
, 1

3
]. By symmetry, each voter’s power is 1

3
. If voter 1 receives the entirety of

voter 3’s weight, the resulting game is Gb = [3
4
; 2

3
, 1

3
]; as both voters are necessary

to form a winning coalition, the resulting power is 1
2

for each voter. The paradox
is that the aggregate power of voter 1 and voter 2 before becoming a single player
was 2

3
while the power of the combined voter decreases to 1

2
. Figure 7 shows that

combining voters 1 and 3 can be viewed as projecting the game in the interior to
one on the boundary (representing games where voter 2 has weight 0). Notice that

13
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Figure 7: The Paradox of large size: Voter 3 coalesces with voter 1 and their cumu-
lative power decreases.

every projection that re-allocates voter 3’s weight to voters 1 and 2 results in the
same power index 1

2
:1
2
, as both voters are necessary in the only winning coalition.

Saari and Sieberg (2001) show that complete reversals of rankings of voters under
power indices can occur when adding or subtracting a voter. When viewed as a
projection, there are many seemingly natural ways to project from the (n+1)-voter
simplex to the n-voter simplex. These different methods result in different powers
in the projected games.

2.4 Combining Geometric Elements

Felsenthal and Machover (1998) introduce the fattening paradox where increasing
a voter’s weight while keeping the other voters’ weights fixed results in a decrease
in power for the (un)lucky recipient of the extra weight. This can be viewed as
changing the position in the simplex of the weights. Consider the example where
voter 1’s weight increases from 4 in the game Ga = [8; 4, 4, 1, 1, 1] to 5, resulting
in [8; 5, 4, 1, 1, 1] (Felsenthal and Machover, 1998). Under the normalized Banzhaf
power index, voter 1’s power is 1

2
in Ga (due to symmetry, as voters 1 and 2 are the

only two critical voters). In Gb, voter 1’s power decreases to approximately 0.474
under the normalized Banzhaf power index. (Leech (2002a) provides algorithms for
computing various power indices.)

This paradox combines two geometric properties. Not only have the weights
been changed, but the normalized quota has changed too, from 8

11
to 8

12
. Decreasing
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the normalized quota results in a change in the number and/or size of parts in
the partition. This can be viewed as moving the hyperplane at the same time as
the increase in one voter’s weight redistributes the normalized weights. These two
actions cause the game to pass a hyperplane. For the above example,

[8; 4, 4, 1, 1, 1] → [8; 5, 4, 1, 1, 1]

↓ ↓
[

8

11
;

4

11
,

4

11
,

1

11
,

1

11
,

1

11

]
→

[
8

12
;

5

12
,

4

12
,

1

12
,

1

12
,

1

12

]

In general, if voter 1’s weight increases by k from x1 to x1 +k, the above diagram
becomes

[q; x1, x2, . . . , xn] → [q; x1 + k, x2, . . . , xn]

↓ ↓
[ q

X
;
x1

X
,
x2

X
, . . . ,

xn

X

]
→

[
q

X + k
;
x1 + k

X + k
,

x2

X + k
, . . . ,

xn

X + k

]

where X =
∑n

i=1 xi. The normalized quota has decreased from q
X

to q
X+k

at the
same time as the game moves proportionally in the direction of the (1, 0, . . . , 0)-
vertex of the simplex. This is comparable to adding or subtracting a player. Hence,
the fattening paradox has elements of each of the geometric properties.

3 Conclusion

The geometry that arises from the partition on the simplex of simple weighted-
voting games is a natural way to classify paradoxical outcomes in voting power.
Although the paradoxes’ names do not indicate the geometry behind the paradox,
three geometric properties: changing regions in a partition by passing a hyperplane,
altering the number and/or size of the parts of a partition, and adding or subtracting
a voter leads to the paradoxes are the basis for the paradoxes. Not only does the
geometry provide a tool to analyze paradoxes, but also to construct new ones.
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