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Abstract. In the paper we investigate the Hoede-Bakker index - the notion which computes the
overall decisional ‘power’ of a player in a social network. It is assumed that each player has an
inclination (original decision) to say ‘yes’ or ‘no’ which, due to influence of other players, may be
different from the final decision of the player. The main drawback of the Hoede-Bakker index is
that it hides the actual role of the influence function, analyzing only the final decision in terms
of success and failure. In this paper, we further investigate the Hoede-Bakker index, proposing
an improvement which fully takes into account the mutual influence among players. A global
index which distinguishes an influence degree from a power index is analyzed. We define weighted
influence indices, in particular, a possibility influence index which takes into account any possibility
of influence, and a certainty influence index which expresses certainty of influence. We consider
different influence functions and study their properties.

Keywords: Hoede-Bakker index, weighted influence index, possibility influence index,
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1 Introduction

In cooperative game theory, a decisional power has been proposed by Hoede and Bakker
[4], and later generalized and modified by Rusinowska and de Swart [8]. The Hoede-
Bakker index computes the overall decisional ‘power’ of a player in a social network. It
is assumed that a decision of a player may be influenced by decisions of other players.
Specifically, it is considered that each player has an inclination (original decision) to say
‘yes’ (coded by +1) or ‘no’ (coded by −1). For each possible configuration i of individual
inclinations, it is supposed that after mutual influence the actual decision Bi of all players
is made. Then, a group decision gd(Bi) is given.

The main drawback of the Hoede-Bakker index is that it hides the actual role of the
influence function B, analyzing only the final decision in terms of successes and failures.
The aim is then to provide alternative ways putting into lights the role of the influence
function B.

In the paper, we propose a general form of the index which enables the analysis of
influence among players. This index fills a gap between power indices which are classical
in voting games (e.g. the Banzhaf index), and the Hoede-Bakker index. The general idea
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is to compute a weighted number of times an individual j makes another individual
k change his decision, and more generally, the number od times a group S makes an
individual k /∈ S change his decision. Two particular ways of of weighting lead to a
possibility influence index which takes into account any possibility of influence, and to a
certainty influence index which expresses certainty of influence.

Concerning conventions of notations, cardinality of sets S, T, . . . will be denoted by
the corresponding lower case s, t, . . .. We omit braces for sets, e.g., {k,m}, N \ {j}, will
be written km, N \ j, etc.

2 The Hoede-Bakker index

Let us first recapitulate the original Hoede-Bakker index as introduced in [4], and its
generalization given in [8]. The general framework is the following. We consider a social
network with the set of all players (agents, actors, voters) denoted by N = {1, ..., n}.
The players have to make a certain acceptance-rejection decision. Each player has an
inclination either to say ‘yes’ (denoted by +1) or ‘no’ (denoted by −1). An inclination
vector, denoted by i, is an n-vector consisting of ones and minus ones. Let I be the set
of all n-vectors. It is assumed that players may influence each others, and due to the
influences in the network, the final decision of a player may be different from his original
inclination. In other words, each inclination vector i ∈ I is transformed into a decision
vector Bi, where B : I → I is the influence function. The set of all influence functions will
be denoted by B. The decision vector Bi is an n-vector consisting of ones and minus ones
and indicating the decisions made by all players. Let B(I) denote the set of all decision
vectors. Furthermore, the group decision function gd : B(I) → {+1,−1} is introduced,
having the value +1 if the group decision is ‘yes’, and the value −1 if the group decision
is ‘no’. The set of all group decision functions will be denoted by G.

The following definition has been introduced ([4]):

Definition 1 Given B ∈ B and gd ∈ G, the decisional power index (the Hoede-Bakker
index) HB : B × G → [0, 1]n is given by

HBk(B, gd) :=
1

2n−1

∑
{i|ik=+1}

gd(Bi) for k ∈ N. (1)

In [8], a certain generalization of the Hoede-Bakker index has been proposed:

Definition 2 Given B ∈ B and gd ∈ G, the generalized Hoede-Bakker index GHB :
B × G → [0, 1]n is given by

GHBk(B, gd) :=
1

2n

 ∑
{i|ik=+1}

gd(Bi)−
∑

{i|ik=−1}

gd(Bi)

 for k ∈ N. (2)

First of all, we notice that neither in the original definition of the Hoede-Bakker
index nor in its generalization mentioned above, the functions B and gd are considered
separately. When calculating the (original or generalized) Hoede-Bakker index, only the
relation between an inclination vector i and the group decision gd(Bi) is taken into
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account. If we do not separate the two functions B and gd, we may define Success, Failure
and Decisiveness of a player starting not from the final decision of the player in question,
but from his inclination (for an analysis of success and decisiveness of a player in voting
situations, see [6]). Consequently, we may say that a player is successful if his inclination
coincides with the group decision. Adopting such a definition of being successful, if all
inclination vectors are equally probable, then the generalized Hoede-Bakker index is a
kind of a ‘net’ Success (see [7]), i.e., it is equal to ‘Success − Failure = Decisiveness’,
where Success, Decisiveness, and Failure of a player are defined as a probability that
the player is successful, is decisive, and fails, respectively. Consequently, if a successful
player is defined as a player having the inclination equal to the group decision, and if
all inclination vectors are equally probable, then the generalized Hoede-Bakker index
coincides with the absolute Banzhaf index; see [8].

3 The influence indices

In order to take fully into account the mutual influence among players and to separate
the functions B and gd in the Hoede-Bakker setting, we introduce

global index = (d, φ) (3)

where d determines the influence degree and φ is the power index. We will investigate
these two components separately.
When analyzing the ‘influence part’, the first question may appear how to measure a
degree of influence of a player (or a coalition) on the other voters. The answer is not
necessarily that straightforward if we can just observe the inclinations and the final
decisions of the players in a multi-player social network. Suppose the final decision of
player A is different from his inclination, but this decision coincides with the inclinations
of two other players in the network, say, agents B and C. Was voter A’s decision different
from his inclination because of the unique influence of player B, or the unique influence
of player C, or maybe A voted like this only because he faced an influence of the strong
two-party coalition? These are the questions that not always can be answered univocally
if apart from knowing the function B, we are not able to observe a ‘real act of influencing
among players’. Consequently, we introduce a family of influence indices.

Before doing this, we introduce several notations for convenience. Let for each S ⊆ N
and j ∈ N

IS→j := {i ∈ I | ∀k ∈ S [ik = −ij]} (4)

I∗S→j(B) := {i ∈ IS→j | ij = −(Bi)j} = {i ∈ I | ∀k ∈ S [ik = −ij = (Bi)j]}. (5)

IS→j and I∗S→j(B) denote the set of all inclination vectors of potential influence of coalition
S on player j, and the set of all inclination vectors of observed influence of S on j under
given B ∈ B, respectively. Of course,

|IS→j| = 2n−s.

For every i ∈ IS→j, we put iS := ik, for some k ∈ S, and we also introduce

n∗(i, S) := |{m ∈ N | ∀k ∈ S [im = ik]}| ≥ s. (6)

It is the number of players with the same inclination as players of S under i ∈ IS→j

(including the players from S).
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3.1 The possibility influence index

Definition 3 Given B ∈ B, for each S ⊆ N and j ∈ N , the possibility influence index
of coalition S on player j is defined as

d(B, S → j) :=
|I∗S→j|
|IS→j|

. (7)

For each S ⊆ N , j ∈ N , B ∈ B

d(B, S → j) ∈ [0, 1], and d(B, S → j) = 0 for j ∈ S.

d(B, S → j) measures a degree of influence player k has on player j, taking into
account any possibility of influence.

3.2 The certainty influence index

Switching to another extreme way of calculating influence degree gives us the definitions
of the certainty influence index.

Definition 4 Given B ∈ B, for each S ⊆ N and j ∈ N , the certainty influence index of
coalition S on player j is given by

d(B, S → j) :=
|{i ∈ I∗S→j | ∀p /∈ S [ip = ij]}|

2
. (8)

d(B, S → j) ∈ {0, 1
2
, 1} expresses certainty of influence, i.e., it measures a degree of a

certain influence player k has on player j.

3.3 The weighted influence index

Finally, we propose a more general definition of the influence index.
For each S ⊆ N , j ∈ N \ S and i ∈ IS→j, we introduce a weight αS→j

i ∈ [0, 1] of
influence of coalition S on j /∈ S under the inclination vector i ∈ IS→j. We assume that

for each S ⊆ N and j ∈ N \ S there exists i ∈ IS→j such that αS→j
i > 0. We assume

that the weights αS→j
i of influence of coalition S on j /∈ S do not depend on the influence

function, but they only depend on n∗(i, S). In particular, for each S ⊂ N , j /∈ S and
i ∈ IS→j,

αS→j
i = αS→j

−i . (9)

Definition 5 Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted influence index of
coalition S on player j is defined as

dα(B, S → j) :=

∑
i∈I∗S→j(B) α

S→j
i

|{i ∈ IS→j | αS→j
i > 0}|

. (10)

The possibility and certainty influence indices are recovered as follows. For each S ⊆ N ,
j ∈ N \ S and B ∈ B

d(B, S → j) = dα(B, S → j), where αS→j
i = 1 for each i ∈ IS→j (11)
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d(B, S → j) = dα(B, S → j), where for each i ∈ IS→j

αS→j
i =

{
1 if ∀p /∈ S [ip = ij]
0 otherwise

. (12)

Apart from the possibility and certainty influence indices, we specify the equidis-
tributed influence index. Given B ∈ B, for each S ⊆ N , j ∈ N \ S

d∗(B, S → j) = dα∗(B, S → j), where α∗S→j
i =

1

2n∗(i,S) − 1
for each i ∈ IS→j. (13)

For each S ⊆ N and j /∈ S, we introduce:

Dα(S → j) := max
B∈B

dα(B, S → j) (14)

in particular,
D∗(S → j) := max

B∈B
d∗(B, S → j) (15)

3.4 Influential null player

We introduce the following definition:

Definition 6 Player k ∈ N is said to be an influential null player under B ∈ B if

∀j ∈ N \ k ∀i ∈ Ik→j [(Bi)j = (Bi−k)j], (16)

where i−k is given by

i−k
m =

{
im if m 6= k
−im if m = k

for each m ∈ N. (17)

Fact 1 If k ∈ N is an influential null player under B ∈ B, and B both satisfies
B(1, . . . , 1) = (1, . . . , 1) and B(−1, . . . ,−1) = (−1, . . . ,−1), then

∀j ∈ N [d(B, k → j) = 0]. (18)

Let us consider the following monotonicity condition:

∀i, i′ ∈ I [i ≤ i′ ⇒ Bi ≤ Bi′] (19)

where
Bi ≤ Bi′ ⇐⇒ {k ∈ N | (Bi)k = +1} ⊆ {k ∈ N | (Bi′)k = +1}. (20)

This condition will be violated, for instance, if there is a kind of ‘opposite influence’ (‘My
vote is (always) different from your inclination’). Nevertheless, one may suppose that in
many situations the condition (19) holds.

Fact 2 If k̃ ∈ N is an influential null player under B ∈ B, and condition (19) is satisfied,
then for each j ∈ N

k̃ = arg min
k∈N\j

dα(B, k → j) (21)
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4 The influence functions

Let us study some properties of the influence functions B ∈ B. Before we focus of the
influence functions, we remark properties of some related concepts. First, we introduce
for any ∅ 6= S ⊆ N the set

IS := {i ∈ I | ∀k, j ∈ S [ik = ij]}. (22)

We denote by iS the value ik for some k ∈ S, i ∈ IS. The following properties are
immediate.

(i) Ik = I = 2N for all k ∈ N .
(ii) Letting I∅ := 2N , I : 2N → 22N

is an antitone function.
(iii) For any S, T 6= ∅: IS∩T ⊇ IS ∪ IT ⊇ IS ∩ IT ⊇ IS∪T and

IS∩T = IS ∪ IT iff ( min
K∈{S,T}

|K| = 1 or S ⊆ T or T ⊆ S) (23)

IS ∪ IT = IS ∩ IT iff ( max
K∈{S,T}

|K| = 1 or S = T ) (24)

IS ∩ IT = IS∪T iff S ∩ T 6= ∅. (25)

Definition 7 Let ∅ 6= S ⊆ N and B ∈ B. The set of followers of S under B is defined
as

FB(S) := {j ∈ N | ∀i ∈ IS [(Bi)j = iS]}. (26)

The set of anti-followers of S under B is defined as

FB(S) := {j ∈ N | ∀i ∈ IS, (Bi)j = −iS}. (27)

Letting FB(∅) := ∅, FB is a mapping from 2N to 2N .

Proposition 1 Let B ∈ B. Then the following holds:

(i) Whenever S ∩ T = ∅, FB(S) ∩ FB(T ) = ∅.
(ii) FB is an isotone function. Consequently, if FB(N) = ∅, then FB ≡ ∅.
(iii) For each j̃ ∈ FB(S) \ S

j̃ = arg max
j∈N\S

dα(B, S → j). (28)

Moreover,
d(B, S → j̃) = d(B, S → j̃) = 1 (29)

d∗(B, S → j̃) =
1

2n−s−1

n−s−s∑
p=0

(
n− s− 1

p

)
1

2p+s − 1
. (30)

Assume FB is not identically the empty set. Then the kernel of B is the following
collection of sets:

K(B) := {S ∈ 2N | FB(S) 6= ∅, and S ′ ⊂ S ⇒ FB(S ′) = ∅}.

The kernel is well defined due to isotonicity. It it the set of “true” influential coalitions.
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Definition 8 Let S, T be two disjoint subsets of N . B is said to be a purely influential
function of S upon T if it satisfies for all i ∈ IS:

(Bi)j =

{
iS, if j ∈ T
ij, otherwise.

(31)

The set of such functions is denoted BS→T .

Note that these functions are arbitrary on I \ IS.
In each BS→T , there are 3 particular members. The minimal one is such that Bi = −1N

for all i ∈ I \ IS, the maximal one is such that Bi = 1N for all i ∈ I \ IS. More interesting
is the one which is the identity function on I \IS. We call it the canonical pure influential
function of S upon T , and we denote it by BS→T .

Proposition 2 Let S, T be two disjoint subsets of N . Then the following holds:

(i) For all B ∈ BS→T , FB(S) = S ∪ T .
(ii) For each B ∈ BS→T , j ∈ N \ S

dα(B, S → j) =

{
Dα(S → j) if j ∈ T
0 if j ∈ N \ (S ∪ T )

(32)

where
Dα(S → j) := max

B∈B
dα(B, S → j).

(iii) For each B ∈ B there exist two disjoint S, T ⊂ N such that B /∈ BS→T

Lastly, we define several influence functions B ∈ B as illustration.

(i) Majority function - Let n ≥ t ≥ bn
2
c+ 1, and introduce

i+ := |{k ∈ N | ik = +1}| (33)

We define B ∈ B such that for each i ∈ I

Bi :=

{
1N if i+ ≥ t

−1N if i+ < t
(34)

(ii) Dictatorship - Let k̃ ∈ N . We define B ∈ B such that for each i ∈ I and j ∈ N

(Bi)j = iek (35)

(iii) The identity function (no influence), i.e., for each i ∈ I

Bi = i (36)

(iv) Let t ∈ [0, n]. Functions satisfying for each i ∈ I

if i+ ≥ t, then i ≤ Bi (37)

(effect of mass psychology when i has a sufficient number of +1)
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(v) Let t ∈ [0, n]. Functions satisfying for each i ∈ I

if i+ ≤ t, then i ≥ Bi (38)

(effect of the empty restaurant when i has a low number of +1)
(vi) Let t ∈ (0, n]. Functions mixing the last two cases, i.e., satisfying for each i ∈ I

i ≤ Bi iff i+ ≥ t, and i ≥ Bi iff i+ < t (39)

We have investigated properties of these influence functions. Due to space limitations, we
limit ourselves to the two first cases.

Proposition 3 Let n ≥ t ≥ bn
2
c + 1 and the influence function B be defined by (34).

Then the following holds:

(i) For each ∅ 6= S ⊆ N and j ∈ N \ S

dα(B, S → j) =


Dα(S → j) if s ≥ t
Dα(S→j)

2
if s < t = nP

i∈I+
S→j,≥t

αS→j
i +

P
i∈I−

S→j,<t
αS→j

i

|{i∈IS→j |αS→j
i >0}|

if s < t < n

(40)

(ii) For each S ⊆ N

FB(S) =

{
N if s ≥ t

∅ if s < t
(41)

Consequently, the kernel is K(B) = {S | |S| = t}.

Proposition 4 Let k̃ ∈ N and the influence function B be defined by (35). Then the
following holds:

(i) For each ∅ 6= S ⊆ N and j ∈ N \ (S ∪ {k̃})

dα(B, S → j) =

{
Dα(S → j) if k̃ ∈ S
Dα(S→j)

2
if k̃ /∈ S

(42)

(ii) For each S ⊆ N

FB(S) =

{
N if k̃ ∈ S
∅ if k̃ /∈ S

(43)

Consequently, the kernel is K(B) = {k̃}.

5 The power indices

Let us consider the ‘power part’ of the global index. We define Success, Failure, Luck and
Decisiveness of a player starting from the final decision of the player, not as before from
the inclination. For instance, a player is said to be successful if his decision coincides with
the group decision.
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Given a probability distribution p : I → [0, 1] over all inclination vectors, and B ∈ B,
we define pB : I → [0, 1] such that for each b ∈ I

pB(b) =

{∑
{i|Bi=b} p(i) if b ∈ B(I)

0 if b /∈ B(I)
(44)

where B(I) is the set of all decision vectors. Of course,∑
b∈I

pB(b) = 1. (45)

Since some decision vectors may never appear after applying the influence function, we
define now the group decision function gd : I → {+1,−1} on the set of all n-vectors,
assigning (as before) the value +1 if the group decision is ‘yes’, and −1 if the group
decision is ‘no’. Moreover, for each b ∈ I and k ∈ N , let b−k ∈ I be given by

b−k
j =

{
bj if j 6= k
−bj if j = k

. (46)

Definition 9 Given gd ∈ G, pB : I → [0, 1], we define for each k ∈ N

– Player k’s Success

SUCk(gd, pB) := Prob(k is successful) =
∑

{b∈I|bk=gd(b)}

pB(b) (47)

– Player k’s Failure

FAILk(gd, pB) := Prob(k fails) =
∑

{b∈I|bk=−gd(b)}

pB(b) (48)

– Player k’s Decisiveness

DECk(gd, pB) := Prob(k is decisive) =
∑

{b∈I|bk=gd(b)=−gd(b−k)}

pB(b) (49)

– Player k’s Luck

LUCKk(gd, pB) := Prob(k is lucky) =
∑

{b∈I|bk=gd(b)=gd(b−k)}

pB(b) (50)

According to Barry [1], the following relation between Success, Luck, and Decisiveness
holds:

Success = Decisiveness + Luck,

and in our case, we have for each k ∈ N , pB, and gd ∈ G

SUCk(gd, pB) = DECk(gd, pB) + LUCKk(gd, pB) (51)

SUCk(gd, pB) = 1− FAILk(gd, pB). (52)

An index analogous to the Hoede-Bakker index looks now as follows:
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Definition 10 Given B ∈ B, gd ∈ G, p : I → [0, 1], we define for each k ∈ N

ψk(B, gd, p) :=
∑

{i|(Bi)k=+1}

p(i)gd(Bi)−
∑

{i|(Bi)k=−1}

p(i)gd(Bi). (53)

Fact 3 Given B ∈ B, gd ∈ G, and p : I → [0, 1], for each k ∈ N

ψk(B, gd, p) = SUCk(gd, pB)− FAILk(gd, pB) (54)

where pB : I → [0, 1] is defined by (44).

Let us notice that while ψ is equal to ‘Success − Failure’ under the new definition of
being successful (based on decisions, not as before on inclinations), in general it is not
equal to ‘Decisiveness’ anymore.

6 The global index - from influence to power

There are some trivial relations between the ‘influence part’ and the ‘power part’ of the
global index if all inclination vectors are equally probable. Let p∗ : I → [0, 1] be such that

∀i ∈ I [p∗(i) =
1

2n
]. (55)

The following fact holds:

Fact 4 If d(B, k → j) = 0 for each k ∈ N , then ψj(B, gd, p
∗) = GHBj(B, gd).

Example 1 In order to illustrate the notions introduced in the paper, let us consider
the following example. We have a three-actor family network in which player 1 (child) is
influenced by his mother and his father (players 2 and 3, respectively). If the parents have
the same inclination, the child will follow them, but if their inclinations differ from each
other, player 1 will decide according to his own inclination. The family has to decide for a
long Sunday bicycle trip, but since the weather happens to be quite risky, the actors are
not that enthusiastic to decide for the trip. Moreover, a new attractive computer game, a
romance just bought and looking very interesting, and a telecast of an important football
match are of importance when making the decision. The inclinations of the players to say
‘yes’ are independent of each other and their probabilities are equal to 1

2
, 1

3
, and 0, for

the child, the mother and the father, respectively. The parents try not to discriminate
their child in family decision-making, and it is agreed that the family decides for the trip
if at least two family members say ‘yes’. Table 1 presents the probability distribution
over all inclination vectors, and the decision vectors, while Table 2 shows the probability
distribution over all decision vectors, and the group decisions.

Table 1. The inclination and decision vectors

i ∈ I (1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1, 1) (1,−1,−1) (−1, 1,−1) (−1,−1, 1) (−1,−1,−1)

p(i) 0 1
6

0 0 1
3

1
6

0 1
3

B(i) (1, 1, 1) (1, 1,−1) (1,−1, 1) (1, 1, 1) (−1,−1,−1) (−1, 1,−1) (−1,−1, 1) (−1,−1,−1)
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Table 2. The group decision

b ∈ B(I) (1, 1, 1) (1, 1,−1) (1,−1, 1) (−1, 1,−1) (−1,−1, 1) (−1,−1,−1)

pB(b) 0 1
6

0 1
6

0 2
3

gd(b) +1 +1 +1 −1 −1 −1

Moreover, gd(−1, 1, 1) = +1, and gd(1,−1,−1) = −1.
Based on the given information, we get the following:

∀k, j ∈ {1, 2, 3} [d(B, k → j) = 0]

∀d ∈ {d, d∗} [d(B, 1 → 2) = d(B, 1 → 3) = d(B, 2 → 3) = d(B, 3 → 2) = 0]

d(B, 2 → 1) = d(B, 3 → 1) =
1

2
, d∗(B, 2 → 1) = d∗(B, 3 → 1) =

1

6

∀d ∈ {d, d, d∗} [d(B, 12 → 3) = d(B, 13 → 2) = 0]

d(B, 23 → 1) = d(B, 23 → 1) = 1, d∗(B, 23 → 1) =
1

3

SUC1(gd, pB) = 1, SUC2(gd, pB) = SUC3(gd, pB) =
5

6

FAIL1(gd, pB) = 0, FAIL2(gd, pB) = FAIL3(gd, pB) =
1

6

DEC1(gd, pB) =
1

3
, DEC2(gd, pB) = DEC3(gd, pB) =

1

6

LUCK1(gd, pB) = LUCK2(gd, pB) = LUCK3(gd, pB) =
2

3

ψ1(B, gd, p) = 1, ψ2(B, gd, p) = ψ3(B, gd, p) =
2

3

Lastly, it can be checked that B is the canonical purely influential function B23→1.

7 Conclusions

The improvement brought in this paper emphasizes the role of the influence function
in the Hoede-Bakker index. The global form of the index proposed here fully takes into
account the mutual influence among players. In particular, we define an upper influence
index which takes into account any possibility of influence, and a lower influence index
which expresses certainty of influence. To the best of our knowledge, such influence indices
have not been proposed before, and seem to be a very useful tool, in particular, in the
theory of coalition and alliance formation, negotiations, and more generally multi-agent
systems.

There are still several other improvements we would like to bring to this framework in
the future research. One of the new research lines may be to introduce dynamic aspects.
The framework analyzed here is, in fact, a decision process after a single step of mutual
influence. In reality, the mutual influence does not stop necessarily after one step but may
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iterate. We propose to study the behavior of the series Bi,B2i, ..., Bni; to find convergence
conditions, and to study the corresponding decisional power index.

Another natural improvement would be to enlarge the set of possible decisions. The
original framework considers only a yes-no decision in a voting situation. One may enlarge
this to a yes-no-abstention scheme (ternary voting games, [2]) or, if one escapes from
voting situations, to multi-choice games [5], where each player has a totally ordered set
of possible actions, and more generally to games on product lattices [3].
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