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Abstract

In voting theory, the result of a paired comparison method as the one suggested
by Condorcet can be represented by a tournament, i.e., a complete asymmetric di-
rected graph. When there is no Condorcet winner, i.e., a candidate preferred to any
other candidate by a majority of voters, it is not always easy to decide who is the
winner of the election. Different methods, called tournament solutions, have been
proposed to define the winners. They differ by their properties and usually lead to
different winners. Among these properties, we consider in this survey the algorithmic
complexity of the most usual tournament solutions: for each one of these methods,
we give its complexity.

Keywords : voting theory, tournament solutions, majority tournament, Copeland
solution, maximum likelihood, self-consistent choice rule, Markovian solution, un-
covered set, Banks solution, Slater solution, complexity, polynomial problems, NP -
hardness

1 Introduction

A tournament T = (X, A) is a complete asymmetric directed graph: for any vertex x and
any vertex y with x �= y, there exists exactly one of the two arcs (i.e., oriented edges)
(x, y) or (y, x). This kind of graphs may represent for instance the result of a paired
comparison method, as the one suggested by Condorcet [4] at the end of the 18th century
as a voting procedure. In such a situation, X is the set of candidates; for each pair {x, y}
of distinct candidates, we compute the number mxy of voters who prefer x to y; if we
have mxy > myx, x is preferred to y by a majority of voters. It is usual to represent
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the result of this method by a graph T = (X, A) of which the vertex set is the set of
candidates and such that, for any vertex x and any vertex y with x �= y, there is an arc
(x, y) if x is preferred to y by a majority of voters (i.e. if mxy > myx). If there is no
tie (or, equivalently, if we have a tie-breaking rule), then T = (X, A) is a tournament,
called the majority tournament. In the following, we keep this illustration arising from
the voting theory, though paired comparison methods may occur in other contexts (sports,
psychology, statistics, and so on).

If the tournament T is transitive, then it is a linear order which gives a collective
ranking of the candidates. Even if T is not transitive, it may happen that a vertex x is
collectively preferred to any other vertex; from a graph theoretic point of view, it means
that all the arcs adjacent to x go from x towards the other vertices or, equivalently, that
the out-degree of x is equal to n− 1, where n denotes the number of vertices of T . When
such a vertex exists, there are good reasons to consider it as the winner. Such a winner is
called a Condorcet winner. If a Condorcet winner exists, it is unique. When there is no
Condorcet winner in T , deciding who is the winner of the election may be a difficult task.

Different methods, called tournament solutions have been proposed to compute such
a winner (see [16] for the definitions and the properties of the tournament solutions con-
sidered below). They differ by their axiomatic properties and usually lead to different
winners. In this paper, we study the complexities of the most usual tournament solutions.
From a practical point of view, the complexity of a method plays an essential role; for
instance for an election, it is quite important to be able to declare who is the winner in
a “reasonable” time. With this respect, polynomial methods (i.e., methods of which the
algorithmic complexity is upper bounded by a polynomial function in the size of the data)
appear usually as preferable to exponential methods (i.e., methods of which the algorith-
mic complexity is not upper bounded by a polynomial function in the size of the data),
though this complexity is expressed for the worst case. When a problem is NP-hard (or
NP-complete if we deal with a decision problem, i.e. a problem in which a question is set
with “yes” or “no” as its answer), the only methods known nowdays to solve the problem
exactly are exponential. Hence the interest in the complexity of the tournament solutions
(for the theory of NP-completeness, see for instance [10] or [3]).

2 Tournament solutions and their complexities

We give now the definitions of the considered tournament solutions and their complexi-
ties. In the sequel, T = (X, A) will denote a tournament; n will denote the number of
vertices of T ; the out-degree of any vertex x ∈ X is called the (Copeland) score of x and
is noted s(x). When T is not connected, it is possible to decompose it into its strongly
connected components; because of the structure of tournament, there exists a strongly
connected component, sometimes called the Top Cycle TC(T ) of T , such that all the
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arcs with one extremity inside TC(T ) and the other outside are oriented from TC(T ) to-
wards X \ TC(T ). It is easy to compute TC(T ) polynomialy (more precisely in O(n2))
for instance thanks to the application of a depth-first search procedure (see for instance
[7]). Notice that, when a Condorcet winner exists in T , TC(T ) contains only this vertex;
in this case, all the solutions below select the Condorcet winner as their unique winner.
More generally, all the tournament solutions considered below select the winners of T in
TC(T ); so we may restrict ourselves in searching the winners inside TC(T ), which in-
duces a strongly connected subtournament of T . For this reason, we assume from now on
that T is strongly connected (as a consequence, T does not admit any Condorcet winner).

Notice that, as the number of arcs of T is equal to n(n − 1)/2, we need at least
n(n − 1)/2 bits to encode T . On the other hand, encoding T by its adajency matrix
requires n2 bits; thus, the (binary) size of T is Θ(n2) and we may consider in the following
that T is encoded by its adjacency matrix. So a method is polynomial with respect to the
size of the instance given by T if and only if it is polynomial with respect to n. It is with
respect to this parameter n that we are going to state the complexity of the tournament
solutions described below.

2.1 Maximum scores: Copeland solution

An easy method to find the winners is the solution proposed by Copeland ([6]), leading
to the Copeland winners.

Definition 1 A Copeland winner of the tournament T = (X, A) is any vertex with a
maximum score.

Then Copeland solution is obviously polynomial:

Theorem 1 Copeland winners can be computed in O(n2).

Proof. To get the Copeland winners of T , it is sufficient to compute the scores of the n
vertices of T , what can be done in O(n2) by summing up the binary values of each row of
the adjacency matrix of T , then to compute the maximum value of these scores, what can
be done in O(n), last to compare each score to this maximum value, what can be done
also in O(n). Hence the result. �

Notice that this method can give all the Copeland winners with the same complexity.
Notice also that, if we assume that the out-degrees, i.e. the scores, are known, then the
complexity is only O(n). Last, notice also that ranking the vertices according to the
decreasing values of the scores gives a preorder P of which the maximal elements are the
Copeland winners; if we want to rank the vertices according to a linear order, then we
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may adopt any linear extension of P ; in this case anyway, the number of rankings may be
very large (for instance,when n is odd, if all the scores are equal to (n− 1)/2, then the n!
linear orders are relevant rankings) and the method is no longer polynomial.

2.2 Maximum likelihood: Zermelo solution

Zermelo designed the following method in 1929 [22]. A positive “strength” σ(x) is asso-
ciated with each vertex x; for instance, σ(x) may be interpreted as the popularity rating of
the candidate x. Assume that these strengths are known. Then it would be natural to rank
the candidates according to the decreasing values of these strengths, and the candidates
with the greatest strength would be the Zermelo winners. So, the question is: how to
compute these strengths ?

To answer this question, Zermelo considers that the probability p(x, y) that a candidate
x is preferred to a candidate y by a majority of voters is given by

p(x, y) =
σ(x)

σ(x) + σ(y)
.

If we assume moreover that these collective preferences are independent the ones from
the others when we consider all the possible pairs of candidates (what is not obviously
the case in practice), then the conditional probability p(T/σ) to get T = (X, A) as the
majoritary tournament knowing σ is given by:

p(T/σ) =
∏

(x,y)∈A

σ(x)

σ(x) + σ(y)
.

So, the maximum likelihood method proposed by Zermelo consists in computing the
positive strengths σ(x) for x ∈ X maximizing p(T/σ) with

∑
x∈X σ(x) = 1.

Though the strengths are not necessarily proportional to the Copeland scores, it is
possible to show that the Zermelo winners and the Copeland winners are the same (more
precisely, the ranking induced by the strenghts is the same as the ranking induced by the
scores). Consequently, because of the previous theorem, we get:

Theorem 2 Zermelo winners can be computed in O(n2) but the enumeration of all the
rankings compatible with the maximum likelihood rule may require an exponential time.

2.3 Self-consistent choice rule, or Markovian solution

The self-consistent choice rule is due to Levchenkov [17], [11], but the following presen-
tation has been proposed by Laslier [15]. We start with a vertex x0 randomly chosen, and
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we generate a series {xk} of elements belonging to X as follows. At each step k, a vertex
x is randomly chosen with a uniform distribution over X . If (x, xk) is an arc of T , then
we set xk+1 = x; otherwise, we keep xk: xk+1 = xk. Then we repeat the same process.
This random walk leads to the different vertices with different probabilities, depending
on their “attractiveness”. These probabilities may be used to sort the vertices and thus to
define the winners.

More precisely, we way associate a Markov chain with this random walk. The graph
G = (X, B) describing this Markov chain has the same vertex set as T , i.e. X , but
the arcs of G, defining the possible transitions from the current state (i.e., the current
vertex) to another one, are exactly the arcs which do not belong to T , including the loops:
B = X × X \ A. The transition probabilities p are defined as follows: for x ∈ X and
y ∈ X with x �= y and (x, y) ∈ B (hence (y, x) ∈ A), the transition probability p(x, y) to
go from x to y is equal to 1

n−1
; for a loop (x, x), the transition probability p(x, x) to stay

on x is equal to s(x)
n−1

, where s(x) still denotes the score of x in T . Then, at each step k
of this process, we may define a probability distribution vector πk giving the probability
to be on each vertex of T : for any integer k ≥ 0 and any vertex x ∈ X , πk(x) gives the
probability to be on vertex x at step k. Let P = (pxy)(x,y)∈X2 denote the matrix of the
transition probabilities: pxy = p(x, y) if (x, y) ∈ B and pxy = 0 otherwise. Then the
expression of πk+1 for k ≥ 0 is πk+1 = πk × P , or also πk+1 = π0 × P k+1, where π0

is the vector with only 0’s as components, except for the component associated with the
starting vertex x0, equal to 1.

The theory of Markov chains [8] shows that, as T is assumed to be strongly connected,
the series of the probability distributions πk’s tends towards a limit π∗, and this limit is
independent of π0. This distribution allows to define the self-consistent choice rule:

Definition 2 The self-consistent choice winners of T (i.e., the winners according to the
self-consistent choice rule) are the vertices x∗ verifying:

π∗(x∗) = max
x∈X

π∗(x).

Lemma 1 The self-consistent choice winners can be computed within the same comple-
xity as the multiplication of two (n × n)-matrices.

Proof. Still from the theory of Markov chains [8], it is easy to show that π∗ satisfies the
equality π∗ = π∗ × P . This equality is obviously not sufficient to characterize the values
of π∗(x) for all the vertices x. But, because T is strongly connected, the linear system
defined by π∗ = π∗ × P and

∑
x∈X π∗(x) = 1 admits a unique solution. Moreover, still

because T is strongly connected, we may remove any row of the system π∗ = π∗ × P
in such a way that the new system given by the remaining n − 1 rows, along with the
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equation
∑

x∈X π∗(x) = 1 still admits a unique solution. It yields that the computation
of the self-consistent choice winners may be done by the resolution of a linear system
with n variables and n equations admitting a unique solution. Hence the complexity of
the self-consistent choice rule, since the resolution of such a linear system has the same
complexity as the multiplication of two (n × n)-matrices (see [7] for instance). �

Theorem 3 The self-consistent choice winners can be computed in O(n2.38).

Proof. The complexity O(n2.38) is a consequence of the previous lemma and of the
fact that it is possible to multiply two (n × n)-matrices in O(n2.38) [7]. �

2.4 The uncovered set

Let x and y be two distinct vertices. We say that x covers y if any successor of y is also a
successor of x:

∀z ∈ X, (y, z) ∈ A ⇒ (x, z) ∈ A.

Notice that, because of the asymmetry of a tournament (what involves that T is irre-
flexive), if x covers y, then (x, y) is an arc of T . A vertex is said to be uncovered if
none vertex covers it; the uncovered set of T is noted UC(T ). Adopting the elements of
UC(T ) as the winners of T has been independently suggested by Fishburn in 1977 [9]
and by Miller in 1980 [18]. This method is polynomial:

Lemma 2 Computing the uncovered elements can be done within the same complexity as
the multiplication of two (n × n)-matrices.

Proof. It is well-known that a vertex x is uncovered if and only if, for any other vertex
y, there exists a directed path with one or two arcs from x to y (it is the so-called “two
steps principle”, see [19]). If M denotes the adjacency matrix of T , the entries m2

x,y

of M2 give the numbers of paths with two arcs from x to y. Thus, to know whether x
is uncovered, it is sufficient to compute the row of M 2 + M + I (where I denotes the
identity matrix) associated with x: x is uncovered if and only of there is no entry of this
row equal to 0. As the complexity of this process is the same as the one of the computation
of M2 (the other steps are negligible), we may compute simultaneously all the uncovered
vertices within the same complexity as the multiplication of M by itself. �

Theorem 4 Computing the uncovered elements can be done in O(n2.38).
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Proof. The complexity O(n2.38) is a consequence of the previous lemma and of the
fact that it is possible to multiply two (n × n)-matrices in O(n2.38) [7]. �

A variant of this solution consists in computing the series UC k(T ) defined as follows:
UC1(T ) is equal to UC(T ); for k > 0, UCk+1(T ) is the uncovered set of the subtour-
nament of T induced by UCk(T ). The elements belonging to UCk(T ) for 2 ≤ k ≤ n
(notice that the sets UCk(T ) cannot evolve any longer for exponents greater than n) may
be proposed as the winners of T (though some basic properties are not satisfied by this
method; see [15] or [16]). Because of the polynomiality of UC and as it is possible to
build a subtournament induced by a subset of vertices in polynomial time, we get the
following result about the generalization of UC:

Theorem 5 For 1 ≤ k ≤ n, computing the winners according to UCk can be done in
polynomial time.

2.5 Maximal transitive subtournaments: Banks solution

As said above, when T is transitive, there exists a unique Condorcet winner, and it is quite
natural to select it as the winner of T (notice anyway that there exist many voting proce-
dures which do not necessarily select the Condorcet winner, when such a winner exists;
it is the case for instance for the procedure applied in France to elect the President of the
Republic, or usually applied for the election of the members of the French parliament).
When T is not transitive, we may anyway consider the transitive subtournaments of T
which are maximal with respect to inclusion, and then select their Condorcet winners as
the winners of T . This defines the Banks solution [2]:

Definition 3 A Banks winner of T is the Condorcet winner of any maximal (with respect
to inclusion) transitive subtournament of T .

From the complexity point of view, this solution owns a maybe unexpected property.
Indeed, G. Wöginger recently shows the following theorem [21]:

Theorem 6 The following problem is NP-complete:

Instance: a tournament T , a vertex x of T ;

Question: is x a Banks winner of T?

Anyway the next theorem is proved in [12]:

Theorem 7 For any tournament T , computing a Banks winner is polynomial, and more
precisely, can be done in O(n2).

7



On the difficulty of computing the winners of a tournament

There is no paradox: when we compute a Banks winner, we do not (and cannot, in
the general case, if P and NP are not equal) choose the Banks winner that we would like
to get. Moreover, as there are at most n Banks winners and because of G. Woeginger’s
result, we get:

Theorem 8 Computing all the Banks winners of T is an NP -hard problem.

Proof. It is easy to design Turing transformations showing that, on one hand, checking
that a given vertex is a Banks winner, and, on the other hand, enumerating all the Banks
winners are polynomialy linked. Indeed, if we can enumerate all the Banks winners with
some complexity, then we may obviously check whether a given vertex is a Banks winner
within the same complexity. Conversely, if we can check whether a given vertex is a
Banks winner thanks to an algorithm with some complexity c(n), then we may enumerate
all the Banks winners by applying this algorithm to the n vertices of the tournament: this
gives an algorithm to solve the problem of the enumeration with n.c(n) as its complexity.
Because of this link (in fact, because of the first part of this link) and because of the NP -
completeness of the problem consisting in checking whether a given vertex is a Banks
winner, the problem of the enumeration of all the Banks winners is NP -hard. �

2.6 Linear orders at minimum distance: Slater solution

The last solution described here consists in reversing a minimum number of arcs of T
in order to get a transitive tournament O, i.e. a linear order, and then to consider the
Condorcet winner of O. This defines a Slater winner [20]:

Definition 4 Let O be a linear order defined on X . We define the distance d(T, O) bet-
ween T and O as the number of arcs of T which have a different orientation in O. A
Slater order of T is a linear order O∗ minimizing d(T, O) over the set of the linear orders
O defined on X . A Slater winner of T is the Condorcet winner of any Slater order of T .
We note i(T ) the minimum number of arcs that must be reversed in T to get a Slater order
O∗ of T : d(T, O∗) = i(T ).

The complexity of Slater solution may be derived from a recent result dealing with a
problem called the Feedback Arc Set Problem. This problem consists, given a directed
graph G, in removing a minimum number of arcs from G in order to get a graph without
any circuit. From the work by Karp [14], this problem is known to be NP -complete in the
general case. Recent results ([1] and [5]) show that this problem remains NP -complete
even when restricted to tournaments. From this, we may prove the following theorem (see
[13] for details):
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Theorem 9 For any tournament T , we have the following results:

1. the computation of i(T ) is NP -hard;

2. the computation of a Slater winner of T is NP -hard;

3. checking that a given vertex is a Slater winner of T is NP -hard;

4. the computation of a Slater order of T is NP -hard;

5. the computation of all the Slater winners of T or all the Slater orders of T is
NP -hard.

3 Conclusion

We may summarize the previous results as follows:

– some tournament solutions are polynomial with respect to the size of T : it is the
case for the Copeland solution (maximum scores), the Zermelo solution (maximum like-
lihood), the self-consistent choice rule or Markovian solution (Levchenkov, Laslier), and
the uncovered set (Fishburn, Miller);

– Banks solution (maximal transitive subtournaments) is polynomial if we consider
the computation of one (not specified) Banks winner, but NP -hard if we consider the
problem consisting in checking that a given vertex is a Banks winner or the problem
consisting in enumerating all the Banks winners;

– Slater solution (linear order at minimum distance) is NP -hard for its different vari-
ants.

From a practical point of view in the context of voting theory, these results give an
advantage to the first methods, if we want to get the issue of the election in a “reasonable”
time.
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