
Graphical Models for Utility Elicitation

Christophe Gonzales and Patrice Perny
LIP6 – pôle IA – University Paris 6

Paris, France
{Christophe.Gonzales,Patrice.Perny}@lip6.fr

Abstract

This paper deals with preference representation and
elicitation in the context of multiattribute utility theory
under risk. Assuming the decision maker behaves ac-
cording to the EU model, we investigate the elicitation
of generalized additively decomposable utility func-
tions on a product set (GAI-decomposable utilities). We
propose a general elicitation procedure based on a new
graphical model called a GAI-network. The latter is
used to represent and manage independences between
attributes, as junction graphs model independences be-
tween random variables in Bayesian networks. It is
used to design an elicitation questionnaire based on sim-
ple lotteries involving completely specified outcomes.
Our elicitation procedure is convenient for any GAI-
decomposable utility function, thus enhancing the pos-
sibilities offered by UCP-networks.

Keywords. Decision theory, graphical representations,
preference elicitation, multiattribute expected utility,
GAI-decomposable utilities.

Introduction
Over the last few years the growing interest in decision sys-
tems has stressed the need for compact representations of in-
dividual’s beliefs and preferences, both for user-friendliness
of elicitation and reduction of memory consumption. In De-
cision under Uncertainty, the diversity of individuals behav-
iors and application contexts have led to different mathemat-
ical models including Expected Utility (EU) (von Neumann
& Morgenstern 1944; Savage 1954), Choquet EU (Schmei-
dler 1986), Qualitative EU (Dubois & Prade 1995), Gen-
eralized EU (Halpern & Chu 2003a; 2003b). The concern
in compact numerical representations of preferences being
rather recent, studies have mainly focused on EU and em-
phasized the potential of graphical models such as UCP-nets
(Boutilier, Bacchus, & Brafman 2001) or influence diagrams
(Howard & Matheson 1984; Shachter 1986).

Using EU requires both a numerical representation of the
Decision Maker’s (DM) preferences over all the possible
outcomes (a utility function) and a family of probability dis-
tributions over these outcomes. In this paper we focus on the
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assessment of utility, which is usually performed through an
interactive process. The DM is asked to answer “simple”
questions such as “do you prefer a to b?” and a numerical
representation follows.

Theoretically, the assessment of preferences over every
pair of outcomes may be needed to elicit completely the
DM’s utility, but in practice the large size of the outcome
set prevents such a procedure to be feasible. Fortunately,
preferences often have an underlying structure that can be
exploited to drastically reduce the elicitation burden. Sev-
eral structures described in terms of different independence
concepts have emerged from the multiattribute utility the-
ory community (Keeney & Raiffa 1976; Fishburn 1970;
Krantz et al. 1971) and led to different forms of utilities, the
most popular of which being the additive and the multilinear
decompositions. The particular independences both of these
decompositions assume significantly simplify the elicitation
procedures, yet as they compel the DM’s preferences to sat-
isfy very stringent constraints they are inadequate in many
practical situations.

A “good” trade-off between easiness of elicitation and
generality of the model can certainly be achieved by Gener-
alized Additive Independence (GAI) (Fishburn 1970). This
“weak” form of independence is sufficiently flexible to ap-
ply to most situations and as such deserves the elaboration
of elicitation procedures. Although introduced in the six-
ties, GAI has not received many contributions yet. In par-
ticular, elicitation procedures suggested in the literature for
GAI-decomposable utilities are not general purpose. They
assume either that the utilities satisfy constraints imposed
by CP-net structure (see UCP-nets (Boutilier, Bacchus, &
Brafman 2001)) or that utilities are random variables (the
prior distribution of which is known) and that the elicitation
consists in finding an a posteriori utility distribution (Cha-
jewska & Koller 2000; Chajewska, Koller, & Parr 2000).
We feel that these additional assumptions might not be suit-
able in a significant number of practical decision problems.
For instance, as we shall see later in this paper, there ex-
ist “simple” GAI-decomposable preferences that cannot be
compacted by UCP-nets. Similarly, the existence of prior
utility distributions is not always natural, for instance there
is not much chance that a company manager facing a given
decision problem may have a prior distribution of other man-
agers utilities at hand. Hence an elicitation procedure appli-



cable to any GAI decomposition should prove useful. The
purpose of this paper is to propose such a procedure in the
context of Decision Making under Risk. More precisely, we
assume uncertainties are handled through probabilities and
DM’s preferences are consistent with EU.

The key idea in our elicitation procedure is to take advan-
tage of a new graphical representation of GAI decomposi-
tions we call a GAI network. It is essentially similar to the
junction graphs used for Bayesian networks (Shafer 1996;
Jensen, Lauritzen, & Olesen 1990; 1990; Cowell et al.
1999). As such, it keep tracks of all the dependences be-
tween the different components of the utilities and the se-
quence of questions to be asked to the DM can be retrieved
directly from this graph.

The paper is organized as follows: the first section pro-
vides necessary background in multiattribute utility theory.
Then, a typical example showing how a GAI-decomposable
utility can be elicited is presented. The third section intro-
duces GAI networks, a graphical tool for representing GAI-
decompositions. It also describes a general elicitation pro-
cedure relying on this network which applies to any GAI-
decomposable utility, as well as a generic scheme for con-
structing the GAI network. We finally conclude by empha-
sizing some significant advantages of our elicitation proce-
dure.

Utility Decompositions
In this paper, we address problems of decision making un-
der risk (von Neumann & Morgenstern 1944) (or under un-
certainty (Savage 1954)), that is the DM has a preference
relation %d over a set of decisions D, “d1 %d d2” mean-
ing the DM either prefers decision d1 to d2 or feels indif-
ferent between both decisions. The consequence or out-
come resulting from making a particular decision is uncer-
tain and only known through a probability distribution over
the set of all possible outcomes. Decisions can thus be de-
scribed in terms of these distributions, i.e., to each deci-
sion is attached a lottery, that is a finite tuple of pairs (out-
come, probability of the outcome), and to %d is associated
a preference relation % over the set of lotteries such that
d1 %d d2 ⇔ lottery(d1) % lottery(d2). Taking advantage
of this equivalence, we will use lotteries instead of decisions
in the remainder of the paper.

Let X be the finite set of outcomes and let L be the set
of lotteries. 〈p1, x1; p2, x2; . . . ; pq, xq〉 denotes the lottery
such that each outcome xi ∈ X obtains with a probability
pi > 0 and

∑q

i=1 pq = 1. Moreover, for convenience of no-
tation, when unambiguous, we will note x instead of lottery
〈1, x〉. Under some axioms expressing the “rational” behav-
ior of the DM, (Savage 1954) and (von Neumann & Morgen-
stern 1944) have shown that there exist some functions U :
L 7→ R and u : X 7→ R, unique up to strictly positive affine
transforms, such that L1 % L2 ⇔ U(L1) % U(L2) for all
L1, L2 ∈ L and U(〈p1, x1; . . . ; pq, xq〉) =

∑q

i=1 piu(xi).
Such functions assigning higher numbers to the preferred
outcomes are called utility functions. As U(·) is the expected
value of u(·), we say that the DM is an expected utility max-
imizer.

Eliciting U(·) consists in both assessing the probability
distribution over the outcomes for each decision and elic-
iting function u(·). The former has been extensively ad-
dressed in the UAI community (Buntine 1994; Heckerman
1995). Now eliciting u(·) is in general a complex task as
the size of X is usually very large. The first step to circum-
vent this problem is to remark that usually the set of out-
comes can be described as a Cartesian product of attributes
X =

∏n

i=1 Xi, where each Xi is a finite set. For instance,
a mayor facing the Decision Making problem of selecting
one policy for the industrial development of his city can as-
similate each policy to a lottery over outcomes defined as
tuples of type (investment cost supported by the city, envi-
ronmental consequence, impact on employment, etc). This
particular structure can be exploited by observing that some
independences hold between attributes. For instance, pref-
erences over environment consequences should not depend
on preferences over employment. Several types of indepen-
dence have been suggested in the literature, taking into ac-
count different preference structures and leading to different
functional forms of the utilities. The most usual is the fol-
lowing:

Definition 1 (Additive Independence) Let L1 and L2 be
any pair of lotteries and let p and q be their respective prob-
ability distributions over the outcome set. Then X1, . . . , Xn

are additively independent for % if p and q having the same
marginals on every Xi implies that both lotteries are indif-
ferent, i.e. L1 % L2 and L2 % L1 (or L1 ∼ L2 for short).

(Bacchus & Grove 1995) illustrates additive indepen-
dence on the following example: let X = X1 × X2

where X1 = {a1, b1} and X2 = {a2, b2}. Let L1 and
L2 be lotteries whose respective probability distributions
on X are p and q. Assume p(a1, a2) = p(a1, b2) =
p(b1, a2) = p(b1, b2) = 1/4, q(a1, a2) = q(b1, b2) = 1/2
and q(a1, b2) = q(b1, a2) = 0. Then p and q have the
same marginals on X1 and X2 since p(a1) = q(a1) = 1/2,
p(b1) = q(b1) = 1/2, p(a2) = q(a2) = 1/2 and p(b2) =
q(b2) = 1/2. So under additive independence, lotteries L1

and L2 should be indifferent.
As additive independence captures the fact that prefer-

ences only depend on the marginal probabilities on each at-
tribute, it rules out interactions between attributes and thus
results in the following simple form of utility (Bacchus &
Grove 1995):

Proposition 1 X1, . . . , Xn are additively independent for
% iff there exist some functions ui : Xi 7→ R such that
u(x) =

∑n

i=1 ui(xi) for any x = (x1, . . . , xn).

Additive decomposition allows all ui’s to be elicited inde-
pendently, thus considerably reducing the amount of ques-
tions required to determine u(·). However, as no interaction
is possible among attributes, such functional form cannot
be applied in many practical situations. Hence other types
of independence have been introduced that capture more or
less dependences. For instance utility independence of every
attribute (Bacchus & Grove 1995) leads to a more general



form of utility called multilinear utility:

u(x1, . . . , xn) =
∑

∅6=Y ⊆{1,...,n}

kY

∏

i∈Y

ui(xi),

where the ui’s are scaled from 0 to 1. Multilinear utilities
are more general than additive utilities but many interactions
between attributes still cannot be taken into account by such
functionals. Consider for instance the following example:
Example 1 Let X = X1 × X2, where X1 = {lamb, veg-
etable, beef} and X2 = {red wine, white wine}. Assume a
DM has the following preferences over meals:

(lamb, red wine) � (vegetable, red wine)
∼ (lamb, white wine) ∼ (vegetable, white wine)
� (beef, red wine) � (beef, white wine),

that is the DM has some kind of lexicographic preference
over food, and then some preference over wine. Then,
if a multilinear utility u(food, wine) = k1u1(food) +
k2u2(wine) + k3u1(food)u2(wine) existed, since utilities
are scaled from 0 to 1, the above preference relations
would imply that u1(lamb) = 1 ≥ u1(vegetable) =
x ≥ u1(beef) = 0 and that u2(red wine) = 1 and
u2(white wine) = 0. But then the preference relations could
be translated into a system of inequalities k1 + k2 + k3 >
k1x+k2 +k3x = k1 = k1x > k2 > 0 having no solution, a
contradiction. Consequently no multilinear utility can repre-
sent these DM preferences, although they are not irrational.

�

Within multilinear utilities, interactions between at-
tributes are taken into account using the products of subutil-
ities on every attribute. The advantage is that the elicitation
task remains reasonably tractable since only the assessments
of the ui’s and of constants kY ’s are needed. But the price to
pay is that many preference relations cannot be represented
by such functions. One way out would be to keep the types
of interactions between attributes unspecified, that is, sepa-
rating the utility function into a sum of subutilities on sets of
interacting attributes: this leads to the GAI decompositions.
Those result from a generalization of additive utilities:
Definition 2 (Generalized Additive Independence) Let
L1 and L2 be any pair of lotteries and let p and q be
their probability distributions over the outcome set. Let
Z1, . . . , Zk be some subsets of N = {1, . . . , n} such that
N = ∪k

i=1Zi and let XZi
= {Xj : j ∈ Zi}. Then

XZ1
, . . . , XZk

are generalized additively independent for %
if the equality of the marginals of p and q on all XZi

’s im-
plies that L1 ∼ L2.

As proved in (Bacchus & Grove 1995; Fishburn 1970) the
following functional form of the utility called a GAI decom-
position can be derived from generalized additive indepen-
dence:
Proposition 2 Let Z1, . . . , Zk be some subsets of N =
{1, . . . , n} such that N = ∪k

i=1Zi. XZ1
, . . . , XZk

are gen-
eralized additively independent (GAI) for % iff there exist
some real functions ui :

∏
j∈Zi

Xj 7→ R such that

u(x) =
k∑

i=1

ui(xZi
), for all x = (x1, . . . , xn) ∈ X ,

where xZi
denotes the tuple of components of x having their

index in Zi.

Example 1 (continued) GAI decompositions allow great
flexibility because they do not make any assumption on
the kind of relations between attributes. Thus, if besides
main course and wine, the DM wants to eat a dessert
and a starter, her choice for the starter will certainly be
dependent on that of the main course, but her prefer-
ences for desserts may not depend on the rest of the
meal. This naturally leads to decomposing the utility over
meals as u1(starter, main course)+u2(main course, wine)+
u3(dessert) and this utility corresponds precisely to a GAI
decomposition. �

Note that the undecomposed utility u(·) and the additively
decomposed utility

∑n

i=1 ui(·) are special cases of GAI-
decomposable utilities. The amount of questions required by
the elicitation is thus closely related to the GAI decomposi-
tion itself. In practice, it is unreasonable to consider eliciting
subutilities with more than 3 parameters. But GAI decom-
positions involving “small” XZi

’s can be exploited to keep
the number of questions to a reasonable amount as shown in
the next two sections.

Elicitation of a GAI-decomposable Utility
In this section, we will first present the general type of ques-
tions to be asked to the DM during the elicitation process
and, then, we will specialize them to the GAI-decomposable
model case.

Let % be a preference relation on the set L of all pos-
sible lotteries over an outcome set X . Let x, y and z be
three arbitrary outcomes such that the DM prefers mak-
ing any decision the result of which is always outcome
y (resp. x) to any decision resulting in x (resp. z), i.e.,
y % x % z. In terms of utilities, u(y) ≥ u(x) ≥ u(z).
Consequently, there exists a real number p ∈ [0, 1] such
that u(x) = pu(y) + (1 − p)u(z), or equivalently, there
exists a probability p such that x ∼ 〈p, y; 1 − p, z〉. This
gamble is illustrated on Figure 1. Knowing the values of

z

yp

1− p

x ∼

Figure 1: Gamble x ∼ 〈p, y; 1− p, z〉.

p, u(y) and u(z) thus completely determines that of u(x).
This is the very principle of utility elicitation under risk.
In the remainder, to avoid testing which of the outcomes
x, y or z are preferred to the others, for any three out-
comes x1, x2, x3, we will denote by G(x1, x2, x3) the gam-
ble xσ(2) ∼ 〈p, xσ(1); 1−p, xσ(3)〉 where σ is a permutation
of {1, 2, 3} such that xσ(1) % xσ(2) % xσ(3).

Assume that y and z correspond to the most and least pre-
ferred outcomes in X respectively, then all the x’s in X are
such that y % x % z, and the utility assigned to every out-
come inX can be determined from the knowledge of p, u(y)
and u(z). Moreover, as under von Neumann-Morgenstern’s



axioms utilities are unique up to strictly positive affine trans-
forms, we can assume that u(y) = 1 and u(z) = 0. Hence
there just remains to assess probabilities p. Different inter-
active procedures exist but they all share the same key idea:
the DM is asked which of the following options she prefers:
x or 〈p, y; 1 − p, z〉 for a given value of p. If she prefers
the first option, another similar question is asked with an in-
creased value of p, else the value of p is decreased. When
the DM feels indifferent between both options, p has been
assessed.

Of course, as in practice X is a Cartesian product, X ’s
size tends to increase exponentially with the number of at-
tributes so that, as such, the above procedure cannot be com-
pleted using a reasonable number of questions. Fortunately,
GAI decomposition helps reducing drastically the number of
questions to be asked. The key idea can be illustrated with
the following example:

Example 2 Consider an outcome set X = X1 × X2 ×X3

and assume that u(x1, x2, x3) = u1(x1)+u2(x2, x3). Then
it is easily seen that gamble

(x1, a2, a3) ∼ 〈p, (y1, a2, a3); 1− p, (z1, a2, a3)〉

is equivalent to gamble

(x1, b2, b3) ∼ 〈p, (y1, b2, b3); 1− p, (z1, b2, b3)〉

as they both assert that u1(x1) = pu1(y1) + (1− p)u1(z1).
Hence, assuming preferences are stable over time, there is
no need to ask the DM questions to determine the value of p
in the second gamble: it is equal to that of p in the first one.
Thus many questions can be avoided during the elicitation
process. Note that in essence this property is closely related
to a Ceteris Paribus statement (Boutilier et al. 1999). �

Now let us introduce our elicitation procedure with the
following example:

Example 3 Let X =
∏4

i=1 Xi and assume that utility
u : X 7→ R over the outcomes is decomposable as
u(x1, . . . , x4) = u1(x1, x2)+u2(x2, x3)+u3(x3, x4). The
elicitation algorithm consists in asking questions to deter-
mine successively the value of u1(·), then that of u2(·) and
finally that of u3(·).

Let (a1, a2, a3, a4) be an arbitrary outcome that will be
used as a reference point. In the sequel, for notational conve-
nience, instead of writing x{1,2} for (x1, x2) we shall write
x12. Let us show that we may assume without loss of gener-
ality that:

u1(b1, a2) = 1, u1(a1, x2) = 0 for all x2 ∈ X2,
u3(a3, a4) = 0, u2(a2, x3) = 0 for all x3 ∈ X3.

(1)

Assume the DM’s preferences are representable by a utility

v(x1, . . . , x4) = v1(x1, x2) + v2(x2, x3) + v3(x3, x4)

on the outcome set such that v(·) does not necessarily satisfy
Eq. (1). Let

u1(x1, x2) = v1(x1, x2)− v1(a1, x2).

Then v(x1, . . . , x4) = u1(x1, x2) + [v2(x2, x3) +
v1(a1, x2)] + v3(x3, x4) and v2(x2, x3) + v1(a1, x2) is a

function on X2 × X3 and u1(a1, x2) = 0 for all x2’s. It
can thus be said that v2(·) has “absorbed” a part of v1(·).
Similarly, some part of v2(·) may be absorbed by v3(·) in
such a way that the resulting u2(a2, x3) = 0 for all x3’s: it
is sufficient to define

u2(x2, x3) = v2(x2, x3) + v1(a1, x2)
−v2(a2, x3)− v1(a1, a2).

v(x1, . . . , x4) thus equals to u1(x1, x2) + u2(x2, x3) +
v3(x3, x4)+v2(a2, x3)+v1(a1, a2). Note that u3(x3, x4) =
v3(x3, x4) + v2(a2, x3) + v1(a1, a2) is a function over
X3 ×X4 as v1(a1, a2) is a constant.

Von Neumann-Morgenstern’s utilities being unique up
to positive affine transforms, it can be assumed without
loss of generality that u(a1, a2, a3, a4) = 0 and that
u(b1, a2, a3, a4) = 1 for some arbitrary b1 ∈ X1 such
that outcome (b1, a234) % (a1, a234), hence resluting in
u3(a3, a4) = 0 and u1(b1, a2) = 1. Consequently, hypothe-
ses (1) may be assumed without loss of generality.

Thus, the assessment of u1(x1, a2) for all x1’s can be de-
rived directly from gambles such as:

(x1, a234) ∼ 〈p, (b1, a234); 1− p, (a1, a234)〉
also denoted as G((b1, a234), (x1, a234), (a1, a234)),

(2)

as they are equivalent to u1(x1, a2) = p. Note that in
the above gambles lotteries only differ by the first attribute
value, hence the questions asked to the DM should not be
cognitively too complicated and the DM should not have dif-
ficulties answering them. Then

G((b1, a2, a34), (a1, x2, a34), (a1, a2, a34)) (3)

determines the value of u2(x2, a3). For instance, if
(b1, a2, a34) � (a1, x2, a34), then the above gamble is
equivalent to:

(a1, x2, a34) ∼ 〈q, (b1, a2, a34); 1− q, (a1, a2, a34)〉,

which implies that u2(x2, a3) = q. Combining Eq. (3) with

G((b1, a2, a34), (x
′
1, x2, a34), (a1, a2, a34)), (4)

where x′
1 is an arbitrary value of X1, the determination of

u1(x
′
1, x2) follows. Note that until now all calls to func-

tion G(·), and especially in equations (3) and (4), shared
the same first and third outcomes, i.e., (b1, a2, a34) and
(a1, a2, a34). Note also that the gambles remain cognitively
“simple” as most of the attributes are the same for all out-
comes. Now, the value of u1(x

′
1, x2) is sufficient to in-

duce from G((x′
1, x2), (x1, x2), (a1, x2)) the values of all

the u1(x1, x2)’s and the determination of u1(·) is completed.
The same process applies to assess u2(·). First,

using gambles similar to that of Eq. (3), i.e.,
G((b1, a2, a34), (a1, b2, a34), (a1, a2, a34)), u2(b2, a3)
can be assessed for arbitrary values b2 of X2. Then
G((a1, b2, a34), (a1, x2, a34), (a1, a2, a34)) will enable
the determination of the u2(x2, a3)’s for all x2’s (in fact,
they will involve terms in u1(·) and u2(·) but as u1(·) has
been elicited, only the u2(·)’s remain unknown). Once the
u2(x2, a3)’s are known, gambles similar to those of Eq. (3)
and Eq. (4) but applied to X2, X3 instead of X1, X2 lead to
the complete determination of u2(·).



Finally as function u3(·) is the only remaining un-
known, u3(x3, x4) can be elicited directly using any
gamble involving two “elicited” outcomes. For in-
stance G((b1, a23, a4), (a1, a23, x4), (a1, a23, a4)) will de-
termine the u3(a3, x4)’s for all values of x4 and, then,
G((a12, a3, b4), (a12, x3, x4), (a12, a3, a4)) will complete
the assessment of u3(·). �

Note that only a few attributes differed in the outcomes
of each of the above gambles, hence resulting in cogni-
tively simple questions. At first sight, this elicitation scheme
seems to be a ad hoc procedure but, as we shall see in the
next section, it proves to be in fact quite general.

GAI Networks
To derive a general scheme from the above example, we in-
troduce a graphical structure we call a GAI network, which
is essentially similar to the junction graphs used in Bayesian
networks (Jensen 1996; Cowell et al. 1999):

Definition 3 (GAI network) Let Z1, . . . , Zk be some
subsets of N = {1, . . . , n} such that

⋃k

i=1 Zi = N . Assume
that % is representable by a GAI-decomposable utility
u(x) =

∑k

i=1 ui(xZi
) for all x ∈ X . Then a GAI network

representing u(·) is an undirected graph G = (V, E),
satisfying the following properties:

1. V = {XZ1
, . . . , XZk

};
2. For every (XZi

, XZj
) ∈ E, Zi ∩ Zj 6= ∅. Moreover,

for every pair of nodes XZi
, XZj

such that Zi∩Zj =
Tij 6= ∅, there exists a path in G linking XZi

and XZj

such that all of its nodes contain all the indices of Tij

(Running intersection property).
Nodes of V are called cliques. Moreover, every edge
(XZi

, XZj
) ∈ E is labeled by XTij

= XZi∩Zj
, which is

called a separator.

Throughout this paper, cliques will be drawn as ellipses
and separators as rectangles. The rest of this section will
be devoted to the construction of GAI networks, and espe-
cially GAI trees, from GAI decompositions of utilities, and
an elicitation procedure applicable to any GAI tree will be
inferred from the example of the preceding section.

From GAI Decompositions to GAI Networks
For any GAI decomposition, Definition 3 is explicit as to
which cliques should be created: these are simply the sets of
variables of each subutility. For instance, if u(x1, . . . , x5) =
u1(x1, x2, x3) + u2(x3, x4) + u3(x4, x5) then, as shown
in Figure 2.a, cliques are {X1, X2, X3}, {X3, X4} and
{X4, X5}.

Property 2 of Definition 3 gives us a clue for determining
the set of edges of a GAI network: the algorithm construct-
ing this set should always preserve the running intersection
property. A simple — although not always efficient — way
to construct the edges thus simply consists in linking cliques
that have some nodes in common. Hence the following al-
gorithm:

X3X4

X4X5X3X4X1X2X3

X4X3X1X2X3 X4X5

a) cliques of the GAI network

b) edges of the GAI network

Figure 2: The construction of a GAI network.

Algorithm 1 (Construction of a GAI network)
construct set V = {XZ1

, . . . , XZk
};

for i ∈ {1 . . . , k − 1} do
for j ∈ {i + 1 . . . , k} do

if Zi ∩ Zj 6= ∅ then
add edge (XZi

, XZj
) to E

fi
done

done
Applying this algorithm on set V = {{X1, X2, X3},
{X3, X4}, {X4, X5}}, sets {X1, X2, X3} and {X3, X4}
having a nonempty intersection, an edge should be
created between these two cliques. Similarly, edge
({X3, X4}, {X4, X5}) should also be added as X4 be-
longs to both cliques. Consequently the network of Fig-
ure 2.b is a GAI network representing u(x1, . . . , x5) =
u1(x1, x2, x3) + u2(x3, x4) + u3(x4, x5).

As we shall see in the next subsection, GAI trees are
more suitable than multiply-connected networks for con-
ducting the elicitation process. Unfortunately, GAI net-
works representing utility decompositions often contain cy-
cles. For instance, consider the following decomposition:
u(x1, x2, x3, x4) = u1(x1, x2)+u2(x2, x3)+u3(x3, x4)+
u4(x4, x1). Then the only possible GAI network is that of
Figure 3.

X3X1

X4 X3X4

X2 X2X3X1X2

X1X4

Figure 3: A GAI network containing a cycle.

Unlike GAI trees where a sequence of questions reveal-
ing the DM’s utility function naturally arises, GAI multiply-
connected networks do not seem to be appropriate to eas-
ily infer the sequence of questions to ask to the DM. Fortu-
nately, they can be converted into GAI trees using the same
triangulation techniques as in Bayesian networks (Kjærulff
1990; Darwiche & Hopkins 2001):



Algorithm 2 (Construction of a GAI tree)
1/ create a graph G′ = (V ′, E′) such that

a/ V ′ = {X1, . . . , Xn};
b/ edge (Xi, Xj) belongs to E′ iff there exists a

subutility containing both Xi and Xj

2/ triangulate G′

3/ derive from the triangulated graph a junction tree:
the GAI tree

For instance, consider again the GAI network of Fig-
ure 3 representing utility u(x1, x2, x3, x4) = u1(x1, x2) +
u2(x2, x3)+u3(x3, x4)+u4(x4, x1). Graph G′ constructed
on step 1 of the above algorithm is depicted on Figure 4.a:
the nodes of this graph are X1, X2, X3, X4, i.e., they cor-
respond to the attributes of the utility. As function u1(·) is
defined over X1 × X2, G′ contains edge (X1, X2). Simi-
larly, functions u2(·), u3(·) and u4(·) imply that E′ contains
edges (X2, X3), (X3, X4) and (X4, X1), hence resulting in
the solid edges in Figure 4.a. Note that graph G′ corresponds
to a CA-independence map of (Bacchus & Grove 1995).

a. attribute dependences

X2X1

X4 X3

b. final GAI tree

X1X3X4

X1X2X3

X1X3

Figure 4: From a GAI network to a GAI tree.

On step 2, G′ is triangulated using any triangulation al-
gorithm (Becker & Geiger 2001; Kjærulff 1990; Olesen &
Madsen 2002), for instance using the following one:

Algorithm 3 (triangulation) Let G′ = (V ′, E′) be an
undirected graph, where V ′ = {X1, . . . , Xn}. Let adj(Xi)
denote the set of nodes adjacent to Xi in G′. A node
Xi ∈ V ′ is said to be eliminated from graph G′ when
i) the edges (adj(Xi) × adj(Xi))\E

′ are added to E′ so
that adj(Xi) ∪ {Xi} becomes a clique;

ii) the edges between Xi and its neighbors are removed from
E′, as well as Xi from V ′.
Let σ be any permutation of {1, . . . , n}. Let us eliminate

Xσ(1), Xσ(2), . . . , Xσ(n) successively and call E ′
T the set of

edges added to graph G′ by these eliminations. Then graph
G′

T = (V ′, E′ ∪E′
T ) is triangulated.

This triangulation algorithm, when applied with elimination
sequence X2, X3, X1, X4, precisely produces the graph of
Figure 4.a, in which edges in E ′

T are drawn with dashed
lines.

Step 3 consists in constructing a new graph the nodes
of which are the cliques of G′ (i.e., maximal complete
subgraphs of G′): here, {X1, X2, X3} and {X1, X3, X4}
(see Figure 4.a). The edges between these cliques derive
from the triangulation (Cowell et al. 1999; Kjærulff 1990;
Rose 1970): each time a node Xi is eliminated, it will either

create a new clique Ci or a subclique of an already existing
clique Ci. In both cases, associate Ci to each Xi. Once a
node Xi is eliminated, it cannot appear in the cliques cre-
ated afterward. However, just after Xi’s elimination, all the
nodes in Ci\{Xi} still form a clique, hence the clique as-
sociated to the first eliminated node in Ci\{Xi} contains
Ci\{Xi}. Thus linking Ci to this clique ensures the running
intersection property. In our example, clique {X1, X2, X3}
is associated to node X2 while clique {X1, X3, X4} is asso-
ciated to the other nodes. As X2 is the first eliminated node,
we shall examine clique {X1, X2, X3}. Ci\{Xi} is thus
equal to {X1, X3}. Among these nodes, X3 is the first to
be eliminated and clique {X1, X3, X4} is associated to this
node. Hence, there should exist an edge between cliques
{X1, X2, X3} and {X1, X3, X4}. As each clique is linked
to at most one other clique, the process ensures that the re-
sulting graph is actually a tree (see Figure 4.b).

Note that the GAI tree simply corresponds to a coarser
GAI decomposition of the DM’s utility function, i.e., it sim-
ply occults some known local independences, but this is the
price to pay to make the elicitation process easy to perform.

Utility Elicitation in GAI Trees
This subsection first translates into a GAI tree-conducted al-
gorithm the elicitation process of the preceding section and,
then, a general algorithm is derived.

Example 3 (continued) The GAI network related to Exam-
ple 3 is shown on Figure 5: ellipses represent the attributes
of each subutility and rectangles the intersections between
pairs of ellipses. Separators are essential for elicitation be-
cause they capture all the dependencies between sets of at-
tributes. For instance separator X2 reveals that clique X1X2

is independent of the rest of the graph for any fixed value of
X2. Hence answers to questions involving gambles on out-
comes of type (·, a2, a3, a4) do not depend on a3, a4, thus
simplifying the elicitation of u1(·, a2).

X2X3 X3 X3X4X2X1X2

Figure 5: The GAI tree of Example 3.

The elicitation process described in Example 3 can be re-
formulated using the GAI tree as follows: we started with
an outer clique, i.e., a clique connected to at most one sepa-
rator. The clique we chose was X1X2. Function u1(·) was
assessed for every value of the attributes in the clique except
those in the separator (here X2) that were kept to the refer-
ence point a2. This led to assessing u1(x1, a2) for all x1’s
using Eq. (2)’s gamble:

G((b1, a234), (x1, a234), (a1, a234)).

Then the values of the attributes in the separator were
changed to, say x2, and u1(·) was elicited for every value
of the attributes in clique X1X2 except those in the sepa-
rator that were kept to x2. This was performed using the
gambles of Eq. (3) and (4), as well as gambles similar to the



one above, i.e.,

G((b1, a2, a34), (a1, x2, a34), (a1, a2, a34)),
G((b1, a2, a34), (x

′
1, x2, a34), (a1, a2, a34)),

G((x′
1, x2, a34), (x1, x2, a34), (a1, x2, a34)).

After u1(·) was completely determined, clique X1X2

and its adjacent separator were removed from the
network and we applied the same process with an-
other outer clique, namely clique X2X3: using gam-
ble G((b1, a2, a34), (a1, b2, a34), (a1, a2, a34)), u2(b2, a3)
could be determined. Then gamble

G((a1, b2, a3, a4), (a1, x2, a3, a4), (a1, a2, a3, a4))

was used to assess the value of u2(x2, a3) for any x2 in
X2. In other words, we assessed the value of u2(·) for every
value of the attributes in the clique except those in the sepa-
rator (X3) that were kept to the reference point a3. Once the
u2(x2, a3)’s were known, u2(·) was determined for different
values of x3 using gambles

G((b1, a2, a3, a4), (a1, a2, x3, a4), (a1, a2, a3, a4)),
G((b1, a2, a3, a4), (a1, b2, x3, a4), (a1, a2, a3, a4)),
G((a1, b2, x3, a4), (a1, x2, x3, a4), (a1, a2, x3, a4)),

i.e., the values of the attributes in the separator were changed
to x3 and u2(·) was elicited for every value of the attributes
in clique X2X3 except those in the separator that were kept
to x3, and so on.

All cliques can thus be removed by induction until there
remains only one clique. This one deserves a special treat-
ment as the hypotheses of Eq. (1) specifying that, when we
elicit a subutility ui(·), ui(·) = 0 whenever the value of the
attributes not in the separator equal those of the reference
point, apply to every clique except the last one. When de-
termining the value of the utility of the last clique, all the
other subutilities are known and a direct elicitation can thus
be applied. �

The above example suggests the following general elic-
itation procedure, which is applicable to any GAI tree: let
% be a preference relation on lotteries over the outcome set
X . Let Z1, . . . , Zk be some subsets of N = {1, . . . , n}

such that N = ∪k
i=1Zi and such that u(x) =

∑k

i=1 ui(xZi
)

is a GAI-decomposable utility. Assume that the XZi
’s are

such that they form a GAI tree G = (V, E) and that for
every i, once all XZj

’s, j < i, have been removed from
G as well as their adjacent edges and separators, XZi

has
only one adjacent separator left we will denote by XSi

. In
other words, the XZi

’s are ordered giving priorities to outer
nodes. Call Ci = Zi\Si, and let Ck = Zk\Sk−1. Let
(a1, . . . , an) and (b1, . . . , bn) be arbitrary outcomes of X
such that (bCi

, aN\Ci
) � (aCi

, aN\Ci
) for all i’s. Then al-

gorithm 4 completely determines the value of each subutil-
ity which can then be stored in cliques, thus turning the GAI
network into a compact representation of u(·).

Of course, algorithm 4 can be applied whichever way
the GAI tree is obtained. In particular, it can be applied
on GAI trees resulting from triangulations. For the lat-
ter, the algorithm may be improved taking into account the
knowledge of the GAI decomposition before triangulation.

Algorithm 4
u1(bC1

, aN\C1
)← 1; u1(aN )← 0

for all i in {1, . . . , k} and all xSi
do

ui(aCi
, xN\Ci

)← 0
done
for all i in {1, . . . , k − 1} do

if i 6= 1 then
compute ui(bCi

, aN\Ci
) using

G((bC1
, aN\C1

), (bCi
, aN\Ci

), (aN))
endif
for all xSi

do
if xSi

6= aSi
then

compute ui(bCi
, xSi

, aN\Zi
) using

G((bC1
, aN\C1

), (xSi
, aN\Si

), (aN))
and G((bC1

, aN\C1
), (bCi

, xSi
, aN\Zi

), (aN))
endif
for all xZi

do
compute ui(xZi

) using G((bCi
, xSi

, aN\Zi
),

(xZi
, aN\Zi

), (aCi
, xSi

, aN\Zi
))

done
done

done
/* computation of the final clique */
compute uk(bCk

, aSk−1
) using

G((bC1
, aN\C1

), (bCk
, aN\Ck

), (aN))
for all xZk

do
compute uk(xZk

) using
G((bCk

, aN\Ck
), (xZk

, aN\Zk
), (aN))

done

Consider for instance the following GAI decomposition:
u(x1, x2, x3, x4) = u1(x1, x2)+u2(x2, x3)+u3(x3, x4)+
u4(x4, x1), representable by the GAI network of Figure 6.a
and inducing the GAI tree of Figure 6.b, or equivalently
the GAI decomposition u(x1, . . . , x4) = v1(x1, x2, x3) +
v2(x1, x3, x4). Applying directly the elicitation process in

X3X1

X4 X3X4

X2 X2X3X1X2

X1X4 X1X3X4

X1X2X3

X1X3

a. original GAI network b. final GAI tree

Figure 6: A GAI tree resulting from a triangulation.

the graph of Figure 6.b would be quite inefficient as many
questions would be asked to the DM although their answers
could be computed from the answers given to previous ques-
tions. For instance, assume that X1 (resp. X2; X3) can
take values a1, b1 (resp. a2, b2; a3, b3). Then, as obviously
v1(x1, x2, x3) = u1(x1, x2)+u2(x2, x3), the above elicita-
tion algorithm ensures that

v1(a1, a2, a3) = u1(a1, a2) + u2(a2, a3) = 0.



X1X2X3 X1X3 X1X3X4

u3(x3, x4) + u4(x4, x1)u1(x1, x2) + u2(x2, x3)

Figure 7: Subutilities in a GAI tree.

But, then,

v1(b1, a2, b3) = u1(b1, a2) + u2(a2, b3)
= u1(b1, a2) + u2(a2, a3)+

u1(a1, a2) + u2(a2, b3)
= v1(b1, a2, a3) + v1(a1, a2, b3).

Hence, after the elicitation of both v1(b1, a2, a3) and
v1(a1, a2, b3), that of v1(b1, a2, b3) can be dispensed with.
Intuitively, such questions can be found simply by setting
down the system of equations linking the vi’s to the ui’s and
identifying colinear vectors.

In GAI trees, the running intersection property ensures
that the questions related to the subutilities of outer cliques
are sufficient to determine unambiguously these subutili-
ties. When the GAI networks are multiply-connected, this
property does not hold anymore: the equations resulting
from questions do often involve several unknown subutil-
ity values. Consequently, in such networks, questions are
used to fill a system of linear equations on subutility val-
ues and, when the elicitation process is completed, this sys-
tem is solved, thus producing values for all subutilities. GAI
multiply-connected networks are thus less user-friendly than
GAI trees to perform the elicitation process. Moreover, as
the subutility values remain unknown until the elicitation
process is completed, determining the next question to ask is
less obvious than in GAI trees because we must find a ques-
tion that will not add an equation colinear with the rest of
the linear system, hence this requires additional tests.

Conclusion
In this paper, we provided a general algorithm for elicit-
ing GAI-decomposable utilities. Unlike UCP-nets, GAI net-
works do not assume some CP-net structure and thus extend
the range of application of GAI-decomposable utilities. For
instance, consider a DM having some preferences over some
meals constituted by a main course (either a stew or some
fish), some wine (red or white) and a dessert (pudding or an
ice cream), in particular

(stew,red wine,dessert) � (fish,white wine,dessert)
� (stew,white wine,dessert) � (fish,red wine,dessert)

for any dessert. Moreover, assume that the DM would like
to suit the wine to the main course and she prefers having
ice cream when she eats a stew. Then such preferences can
be represented efficiently by u(meal) = u1(course, wine)+
u2(course, dessert) and thus be compacted by the associated
GAI network. Nevertheless, since preferences over courses
depend on wine and conversely, and since there exists some
dependence between courses and desserts, UCP-nets do not
help in compacting utility function u(·) despite its GAI de-
composability.

Another specificity of our procedure is that we always
consider gambles over completely specified outcomes, i.e.,
including all the attributes. This is an advantage because
answers to questions involving only a subset of attributes
are not easily interpretable. Consider for instance a multi-
attribute decision problem where the multi-attribute space
is X = X1 × X2 × X3 × X4, with X1 = {a1, c1, b1},
X2 = {a2, c2, b2}, X3 = {a3, c3}, and X4 = {a4, c4}. As-
sume the preferences of the DM can be represented by the
following utility function:

u(x) = u1(x1) + u2(x1, x2) + u3(x2, x3) + u4(x3, x4),

where the ui’s are given by the tables below:

x1 a1 c1 b1

u1(x1) 0 500 1000

u2(x1, x2) a2 c2 b1

a1 0 10 70
c1 50 10 90
b1 60 80 100

u3(x2, x3) a3 c3

a2 0 7
c2 5 2
b2 9 10

u4(x3, x4) a4 c4

a3 0 0.6
c3 0.4 1

Note that the big-stepped structure of utilities in the above
tables is consistent with the Ceteris Paribus assumption
about preferences, hence u(·) can be characterized by the
UCP-net of Figure 8. Asking the DM to provide probability

X2 X3X1 X4

Figure 8: A simple UCP-net.

p such that c1 ∼ 〈p, b1; 1 − p, a1〉 would, at first sight, be
meaningful and, assuming u1(a1) = 0 and u1(b1) = 1000,
it would certainly imply that u1(c1) = 1000p. How-
ever, a careful examination highlights that it is not so ob-
vious. Indeed, such gamble, involving only attribute X1

would be meaningful only if the DM had a preference re-
lation %1 over X1 that could be exploited to extract in-
formations about %, the DM’s preference relation over
X . In the classical framework of additive conjoint mea-
surement (Fishburn 1970; Krantz et al. 1971; Wakker
1989), this property holds because c1 ∼ 〈p, b1; 1 − p, a1〉
is equivalent to (c1, x2, x3, x4) ∼ 〈p, (b1, x2, x3, x4); 1 −
p, (a1, x2, x3, x4)〉 for any (x2, x3, x4) ∈ X2 × X3 × X4,
but this does not hold for GAI decompositions involving in-
tersecting factors. For instance, using the above tables, it is
easily seen that, whatever values for X3 and X4:



(a1, b2, x3, x4)

(b1, b2, x3, x4)0.505

0.495

(c1, b2, x3, x4) ∼

(a1, c2, x3, x4)

(b1, c2, x3, x4)0.467

0.533

(c1, c2, x3, x4) ∼

(a1, a2, x3, x4)

(b1, a2, x3, x4)0.519

0.481

(c1, a2, x3, x4) ∼

The explanation of this unfortunate property lies in the mis-
leading interpretation we may have of Ceteris Paribus state-
ments: in the above UCP-net, Ceteris Paribus implies that
preferences over X1 do not depend on the values of the other
attributes. The observation of the subutility tables confirm
this fact: b1 is preferred to c1, that is also preferred to a1.
However, the CP property does not take into account the
strength of these preferences while the probabilities involved
in the lotteries do: whatever the value of X2, (b1, x2) is al-
ways preferred to (c1, x2), but the DM prefers more (b1, c2)
to (c1, c2) than (b1, a2) to (c1, a2) and this results in differ-
ent values of p in gambles. This explains the discrepancy
between c1 ∼ 〈p, b1; 1− p, a1〉 and the same gamble taking
into account the other attributes. This discrepancy is not re-
stricted to UCP-net root nodes, it is easily seen that it also
occurs for other nodes such as X2 or X3.

To conclude, the GAI networks introduced in this paper
allow taking advantage of any GAI decomposition of a mul-
tiattribute utility function to construct a compact representa-
tion of preferences. The efficiency of the proposed elicita-
tion procedure lies both in the relative simplicity of the ques-
tions posed and in the careful exploitation of independences
between attributes to reduce the number of questions. This
approach of preference elicitation is a good compromise be-
tween two conflicting aspects: the need for sufficiently flex-
ible models to capture sophisticated decision behaviors un-
der uncertainty and the practical necessity of keeping the
elicitation effort at an admissible level. A similar approach
might be worth investigating for the elicitation of multiat-
tribute utility functions under certainty. Resorting to GAI
networks in this context might also be efficient to elicit subu-
tility functions under some solvability assumptions on the
product set.
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