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Abstract 
We consider from a computational perspective the 
problem of how to aggregate the ranking preferences of a 
number of alternatives by a number of different voters 
into a single consensus ranking, following the majority 
voting rule. Social welfare functions for aggregating 
preferences in this way have been widely studied since 
the time of Condorcet (1785). One drawback of majority 
voting procedures when three or more alternatives are 
being ranked is the presence of cycles in the majority 
preference relation. The Kemeny order is a social welfare 
function which has been designed to tackle the presence 
of such cycles. However computing a Kemeny order is 
known to be NP-hard. We develop a greedy heuristic and 
an exact branch and bound procedure for computing 
Kemeny orders. We present results of a computational 
study on these procedures. 
 

Introduction 
 

Preference aggregation concerns how to combine the 
preference rankings of a number of alternatives by a 
number of different voters into a single consensus (or 
society) ranking. The aggregation of preferences in this 
way arises in applications such as determining the 
winners of elections or sports tournaments (Truchon 
1998), multi-criteria and word association queries in 
databases (Dwork et al. 2001), the ranking of suppliers 
by buyers during strategic sourcing and the combining of 
search results from multiple search engines in order to 
fight spam (Dwork et al. 2001). 
 The properties of social welfare functions for 
aggregating preferences have been studied by 
mathematicians since the 18th century, and it is well 
known that complications and paradoxes can arise when 
there are more than two alternatives to be ranked.  
Arrow's impossibility theorem (Arrow 1951) states that 
no non-dictatorial social welfare function can ever satisfy 
a set of  desirable and compelling properties for fair 
elections simultaneously on all domains of preferences.  
The debate on the merits of different types of social 
welfare functions is still ongoing (Saari and Valognes 
1998), however two classes of ranking methods have 
been widely studied. Positional methods, such as the 
Borda count (Borda 1781), assign points to each 
alternative, depending on how they are ranked by each 
voter. Candidates are then ordered in the consensus 
ranking according to the sum of their assigned points. 
Majority ranking methods determine an outcome in terms 
of the majority ranking for the alternatives: alternative x 

is ranked ahead of alternative y in the consensus ranking 
if more voters prefer x to y. Positional methods such as 
the Borda count, while being very simple to compute, are 
considered to be highly manipulable and fail to satisfy 
important properties such as the independence of 
irrelevant alternatives (changes in individuals' rankings 
of "irrelevant" alternatives outside of a certain subset 
should have no impact on the societal ranking of this 
subset) and the Condorcet criterion (if some alternative is 
ranked ahead of all other alternatives by an absolute 
majority of voters, then it should be ranked first in the 
consensus ranking). Majority ranking methods such as 
Condorcet methods may be subject to cycles in the 
majority preference relation when there are more than 
two alternatives to be ranked, and thus may fail to select 
any winners at all (this is known as the Condorcet 
paradox (Condorcet 1785)). 
 The Kemeny rule (Kemeny 1959) has been proposed 
as a way of seeking a compromise ranking in the 
majority vote when there are cycles present in the 
majority preference relation. The Kemeny rule satsifies 
the Condorcet criterion and a weaker version of local 
independence of irrelevant alternatives. However the 
computational drawback of the Kemeny Rule is that is 
NP-hard to compute (Cohen, Schapire and Singer 1999; 
Dwork et al. 2001). This has discouraged the 
development of exact algorithms for computing Kemeny 
orders. Instead greedy heuristics (Cohen, Schapire and 
Singer 1999) or tractable multi-stage methods have been 
developed that combine both positional and majority 
voting methods (Black 1958; Dwork et al. 2001). A 
disadvantage of such approaches is that their theoretical 
properties are not known, and hence their outcomes can 
be unpredictable. Furthermore, NP-hardness is a only 
worst case complexity result which may not reflect the 
difficulty of solving problems which arise in practice. In 
the sections which follow we describe new exact and 
greedy heuristic procedures for computing Kemeny 
orders, and present results of an initial computational 
study into solving problems using these procedures. 
 

Notation 
 

Let X be a set of m alternatives and N be a set of n voters. 
Each voter j has weak order or ranking rj of the 
alternatives in X. Each element rj

s is the rank of voter j of 
alternative s. A ranking with no tie for a rank is an order 
on X, which can be represented as a sequence (s1,...,sn) , 



where si is the alternative with rank i. A preference 
aggregation function (also known as a social welfare 
function) maps a set of rankings R (also referred to as a 
profile of rankings) into a single consensus ranking. 
 For each pair of alternatives s and t ranked by some 
profile of rankings R, we define vst as the number of 
voters expressing a preference for s over t in their 
individual rankings, that is ( ) | : |j j

st s tv R j N r r= ∈ < . If 
vst > vts we refer to s > t as the majority vote and t > s as 
the minority vote for s and t. We represent a profile of 
rankings R by a weighted, directed graph we call the 
preference graph. Each alternative in X is represented by 
a node in the graph. Between each pair of nodes 
representing alternatives s and t is an edge of weight vst. 
 We represent the strict majority relation by a simple, 
directed, weighted graph called the strict majority graph, 
which we also refer to more simply as the majority 
graph.  There is an edge between each pair of nodes 
representing alternatives s and t iff vst > vts.  The weight 
of such an edge is vst− vts. The weak majority relation is 
represented by the weak majority graph, which has an 
edge between each pair of nodes representing 
alternatives s and t iff vst ≥ vts.  The weight of such an 
edge is vst − vts. 
 
Majority voting and the Condorcet criterion 

 
The Condorcet criterion (Condorcet 1785) states that if 
some alternative is ranked ahead of all other alternatives 
by an absolute majority of voters, then it should be 
ranked first in the consensus ranking. When such an 
alternative exists, it is called the Condorcet winner. 
Example 1: Consider the preferences expressed by the 
profile (A,B,C), (A,C,B), (B,A,C) (e.g. the 1st  voter 
prefers A to B to C, the 2nd  voter prefers A to C to B, the 
3rd  voter prefers B to A to C). The preferences for each 
of the pairwise rankings are: vAB=2,vBA=1,vBC=2, vCB=1, 
vAC=3, vCA=0.  We have a majority of 1 vote for A > B, a 
majority of 1 vote for B > C and a majority of 3 votes for  
A > C. 
 
 
 
 
 
 
 
 
 
In
th
id
in
C
ra
E
(B
a

for C > A. This profile defines a cycle in the majority 
relation of A > B, B > C, C > A. 
 
 
 
 
 

 

 Cycles do occur in practice, even for quite small 
problems. For example, in a study of Olympic figure 
skating contests, cycles were found in competitions 
involving 9 out of 23 skaters (Truchon 1998). When 
cycles are present in the majority relation, the  extended 
Condorcet criterion (Truchon 1998) gives a partial 
ordering of alternatives (with no cycles it gives a 
complete ordering). The extended Condorcet criterion 
states that if there is a partition XC, XD of X such that for 
any s in C and any t in D if the majority prefers s to t (vst 
> vts) then s must be ranked ahead of t in the consensus 
ranking. One application of the Condorcet and extended 
Condorcet criteria is in fighting ``spam'' in individual 
rankings (Dwork et al. 2001). However it has been 
shown that no positional method for aggregating 
preferences can ever satisfy either of  these criteria 
(Young 1974). 
 Given some partial or complete consensus ranking of a 
profile of rankings R, we can enforce the extended 
Condorcet criterion on the ranking in the following way1: 
Algorithm 1: 
1. Identify all the maximal strongly connected 

components in the majority graph of R. Each strongly 
connected component of size > 1 node identifies a set 
of nodes which are involved in at least 1 cycle.  

2. For each node n in each component, consider all target 
nodes m on all outgoing edges of n. If m is not in the 
same component as n, add to the consensus ranking the 
ordering s > t, where s is the alternative represented by 
node n and t is the alternative represented by node m. 

Alternatives represented by nodes within non-trivial 
strongly connected components of the majority graph are 
involved in cycles, and will not be ordered by Algorithm 
1. Kemeny (Kemeny 1959) proposed a way of breaking 
such cycles, using a notion of distance for orders. Given 
a total order r, a weak order rj and 2 alternatives s and t, 
we define:  
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igure 1: The preference graph (left) and majority graph 
right) of the profile of Example 1 
 
 Example 1 alternative A is the Condorcet winner. Note 
at when there is a Condorcet winner, it can be found by 
entifying the node in the weak majority graph with an 
degree of zero. However, there may not always be a 
ondorcet winner, as cycles may occur in the majority 
nking of alternatives. 
xample 2: Consider the profile of rankings (A,B,C), 
,C,A), (C,A,B). There is a majority of 1 vote for A > B, 

 majority of 1 vote for B > C and a majority of 1 vote 
 
 
 

Figure 2: The preference graph (left) and majority grap
(right) for the profile of Example 2 
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 is presented in (Cohen, Schapire and Singer 
rk et al. 2001). 



The value of ( , )j

st r rδ  indicates whether there is a 
disagreement in the relative ranking of s and t between r 
and rj. ( , )jr r∆  measures the total number of 
disagreements between r and rj, and is referred to as the 
Kendall tau distance (Diaconis 1988). For complete 
orders, the Kendall tau distance is the ``bubble sort'' 
distance: it gives the number of pairwise adjacent 
transpositions to transform one order into another. The 
distance between a complete order r and a profile of 
rankings R is given by d(r, R) = ∑j=1..n ∆(r, rj). A Kemeny 
order for a profile R is an order r which minimizes the 
distance d(r, R) , i.e. an order which has the minimum 
number of disagreements with the pairwise rankings in 
the profile R. It has been shown that any Kemeny order 
satisfies the extended Condorcet criterion (Truchon 
1998). 
 

Algorithm design 
 
Problem formulation 
Given a (weak) majority graph GR of a profile of 
rankings R, we wish to compute a total order of the 
alternatives in R taking into account as many of the 
majority preferences expressed by the edges in GR as 
possible. If GR is acyclic, a topological sort of the nodes 
in the graph will identify a Kemeny order of the 
alternatives. When GR contains cycles, it becomes 
necessary to remove some set of edges from GR such that 
the resulting graph is acyclic.  To find a Kemeny order, 
the sum of the weights of the edges removed from the 
graph must be minimized. This problem is known as the 
minimum weight feedback edge set problem (Festa, 
Pardalos, and Resende 1999), and is known to be NP-
hard.  Feedback set problems have received considerable 
attention in recent years (Festa, Pardalos, and Resende 
1999), especially with respect to approximation 
algorithms and tractable cases. However, as far as we are 
aware, there has been no work on exact approaches for 
finding optimal solutions to the weighted variant of the 
feedback edge set problem in directed graphs. In the 
sections which follow, we outline a new greedy heuristic 
and exact  branch and bound approach for finding 
Kemeny orders, based on formulating the problem as 
minimum weight feedback edge set problem. 
 
Solution representation 
We use a solution graph to represent orderings of 
alternatives that are established during a search 
procedure when constructing a Kemeny order.  Each 
alternative in the set X is represented by a node in the 
solution graph. A directed edge between a pair of nodes 
representing alteratives s and t indicates that in the 
solution s is ranked ahead of t.  A solution graph which is 
simple, directed, acyclic and where all nodes have degree 
of |X|−1 represents a complete ordering of the 
alternatives in X. The goal of the search procedure is to 
construct a solution graph representing a complete 
ordering which is a Kemeny order.  A complete ordering 

can be obtained from the solution graph by performing a 
topological sort of the nodes in the graph. 
 We often want to compute a majority graph which 
takes into account the orderings that have been made in a 
solution graph, even if some of these orderings 
correspond to minority votes. Thus all edges in the 
solution graph have corresponding edges in the majority 
graph representing the same orderings, regardless of the 
majority votes for these alternatives. In the case where an 
edge in the solution graph corresponds to an ordering 
with a minority vote, the reverse edge in the direction of 
the majority vote will not be present in this modified 
majority graph. 
 
Greedy heuristic and branch and bound search 
We have developed a simple greedy heuristic and an 
exact depth-first branch and bound procedure for 
computing Kemeny orders, based on constructing a 
solution by identifying orderings of pairs of alternatives 
and adding the corresponding edges to the solution 
graph. We use the following heuristic to select and order 
a pair of alternatives at each node of the search in both of 
these approaches: select the pair of alternatives which 
has the greatest difference between the majority and the 
minority vote for the different pairwise orderings and 
order the alternatives following the majority vote. 
 The greedy procedure simply follows this heuristic and 
applies propagation rules after each ordering is made, 
terminating when the solution graph represents a 
complete order. The branch and bound procedure 
performs a depth-first backtracking search, following the 
heuristic at each node and  applying lower bounding 
procedures in addition to the propagation rules to prune 
the search. In the sections which follow we discuss the 
propagation rules and lower bounding techniques. 
 
Propagation 
A solution is built up incrementally by adding edges to 
the solution graph. In order to ensure that the solution 
graph remains acyclic we maintain transitive closure of 
the graph after edges are added or deleted.  Since the 
graph is directed and acyclic, we can use an efficient 
incremental algorithm that maintains transitive closure in 
time 2( )O n  for n nodes in the graph. 
 The first step for both approaches is to run Algorithm 
1 to satisfy the extended Condorcet criterion of the 
ordering.  If there are no cycles in the majority graph, 
this step is sufficient to identify a Kemeny order.  
Otherwise, as edges are added to the solution graph 
during search, cycles may be broken in the majority 
graph that takes into account solution graph orderings 
(and new cycles may be created). We run Algorithm 1 as 
a propagation step on this majority graph. If there are 
new strongly connected components in the majority 
graph as a result of edges added to the solution graph, 
further orderings of alternatives may be added to the 
solution. Applying this propagation step every time an 
edge is added to the solution graph ensures that we only 



ever branch on orderings that are involved in some cycle 
in the majority graph associated with some solution 
graph. 
 
Lower bounding 
A simple lower bound LB1 on the Kemeny distance of a 
Kemeny order is the sum of the minority votes for every 
pair of alternatives: 
 
 1 ,

,

min( )st ts
s X t X s t

LB v v
∀ ∈ ∀ ∈ ≠

= ∑ ∑  
 
This bound will be equal to the Kemeny distance of the 
Kemeny order when there are no cycles in the majority 
graph: in this case we can follow the majority vote in the 
Kemeny order for the ranking of all pairs of alternatives. 
When there are cycles, the bound can be strengthened 
during search by taking into account the orderings of the 
pairs of alternatives that have been fixed by the search 
procedure. 
 A stronger lower bound can be computed by 
determining a set of edge disjoint cycles in each strongly 
connected component of the majority graph (associated 
with some solution graph). Each edge disjoint cycle 
contains at least one edge representing a majority vote 
between a pair of alternatives which the Kemeny order 
must disagree with. The impact of disagreeing with the 
majority vote on the distance of the Kemeny order for 
some pair of alternatives s and t is vst − vts, which is the 
weight of the edge between the nodes corresponding to 
the pair of alternatives in the majority graph. We can add, 
for each edge disjoint cycle, the minimum positive 
weight of the edges in the cycle to the bound LB1 to form 
a stronger lower bound. 
 We simplify the lower bound computation by 
considering  edge disjoint cycles containing only 3 
nodes. This is motivated by the observations that (a) it is 
harder to compute a Kemeny order for profiles where 
there are no ties in the rankings between any pairs of 
alternatives2 and (b) in a majority graph where there are 
no ties, there exists an edge between every pair of nodes 
in every non-trivial strongly connected component. 
When this is the case then every set of nodes involved in 
a cycle of length greater than 3 must contain a cycle of 
exactly length 3 on a subset of these nodes. An 
illustration of this proposition is given in Figure 3. 
Consider a cycle of length 4 between nodes A, B, C and 
D. When there are no ties, there must be an edge in the 
majority graph between nodes B and D. If this edge is 
directed from node B to D then we have the 3-cycle 
involving nodes A, B, D (left, Figure 3). If the edge is 
oriented the reverse way, we have the 3-cycle involving 
nodes B, C, D (middle, Figure 3). Finally, we consider 
the case where a cycle contains more than 4 nodes. The 
right graph in Figure 3 shows a cycle involving 5 nodes 
A, B, C, D, E. Consider the edge between nodes A and D 
                                                 
2 This situation will always occur when we have an odd 
number of voters and all voters rank all alternatives. 

which is not an edge of the 5-cycle. If this edge is 
directed from nodes A to D then we have the 3-cycle 
involving nodes A, D, E. Otherwise, the direction from D 
to A forms a 4-cycle involving nodes A, B, C, D for 
which we have shown there must exist a 3-cycle on a 
subset of these nodes. A similar argument can be used to 
show that each cycle involving n nodes (n>3) must 
contain a cycle involving either 3 or n − 1 nodes. 
 
 
 
 
 
 
 

Figure 3: Illustration of 3-cycles in a majority graph. 

We formulate the problem of computing edge disjoint 3-
cycles in a strongly connected component of the majority 
graph as an iterative min-cost max-flow problem (Ahuja, 
Magnanti, and Orlin 1993). An example of the network 
formulation we use to solve this problem is given in 
Figure 4 for the majority graph illustrated in the left of 
Figure 3. 
 
 
 
 
 
 
 
 
 
 

Figure 4: An example network formulation for the 
majority graph in the left of Figure 3. 

 The network has four layers of nodes, l1,...,l4. In each 
layer there are |X| nodes, where each node corresponds 
to a node in the majority graph. There is a directed edge 
between each pair of nodes in layers li and li+1 in this 
network if there is a directed edge between the 
corresponding pair of nodes in the majority graph. The 
cost on each edge between the layers is some constant K 
(e.g. the number of voters) minus the weight between the 
corresponding pair of nodes in the majority graph (we 
want to find cycles with the largest possible minimum 
edge cost in the majority graph). All nodes in layer l1 are 
connected to the source node and all nodes in layer l4 are 
connected to the sink node of the network. These 
connections all have a cost of 1. All minimum edge 
capacities are set to 0. The maximum capacities of all the 
edges between nodes in the layers are to set to 1. During 
each iteration we solve a min-cost max-flow problem to 
determine a set of paths through the network starting and 
ending at some common node in layers l1 and l4, 
representing a starting and ending point for a 3-cycle in 
the majority graph.  For example, the highlighted edges 
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in Figure 4 illustrate a path of length 3 starting at node A 
in layer l1 and ending at node A in layer l4. Such a path 
corresponds to the 3-cycle (A, B, D, A) in the majority 
graph in the left of Figure 3. In each iteration we select 
and fix the common starting and ending nodes ns and ne 
in layers l1 and l4 (e.g. node A in Figure 4). The 
maximum number of 3-cycles max3 that can be found 
from these nodes is the minimum of the out-degree of 
node ns and the in-degree of node ne. We set the 
maximum capacity of the edge from the source node to 
the node ns and node ne to the sink node to max3. We set 
the maximum capacities of all remaining edges from the 
source node to the layer l1 nodes to 0. Similarly, we set 
the maximum capacities of all remaining edges between 
nodes in layer l4 and the sink node to 0. The solution to 
the min-cost max-flow problem on this network specifies 
a set of paths through the network that correspond to a 
set of 3-cycles in the majority graph starting and ending 
at the fixed node. The value of the flow is the number of 
disjoint 3-cycles found in the corresponding majority 
graph. We determine, for each cycle found by the 
network flow solution, the lowest cost of all the edges in 
the cycle and add (the cost constant K minus) this lowest 
cost to LB1.  Enumerating the paths can be achieved by 
solving multiple shortest path problems, one for each 
path in the network flow solution. Each shortest path 
computation can be performed with time complexity 
O(n+m) for a directed acyclic graph with n nodes and m 
edges. Finally, at the end of each iteration, we delete all 
edges from the network which were found in the min-
cost max-flow solution, to ensure that a single edge is 
only assigned to one 3-cycle. We have also observed that 
the order in which we perform the network flow 
iterations can have an impact on the number of 3-cycles 
that are found. For each node in the majority graph we 
determine the minimum and maximum of their in-degree 
and out degree. We sort the nodes by decreasing 
minimum of these degrees, breaking ties by decreasing 
maximum of these degrees, and perform the network 
flow iterations in this order. 
 The time to compute the min-cost max-flow solution 
of the network dominates the other parts of the 
procedure. This can be computed in time 

( log ( log ))O m U m n n+  for n nodes of maximum 
degree U and m edges (Ahuja, Magnanti, and Orlin 
1993). Since we may have up to n iterations, the time 
complexity of this lower bounding procedure is 

( log ( log ))O nm U m n n+ . 
 

Experiments 
 

Problem generation 
We evaluated the algorithms on randomly generated 
problems.  For each problem, we first generated a total 
order representing a consensus ordering of m 
alternatives. We then generated a preference graph where 
each one of n voters agrees with the consensus ordering 
regarding the ranking of every pair of alternatives with 

some consensus probability p. We generate problems 
with an odd number of voters, where each voter ranks all 
alternatives with no ties. 
 
Results 
The first results we present explore the effect of varying 
the consensus probability and the number of voters on 
problem solving difficulty3. CPU time results for 15 
alternatives are presented in Figure 5 (for all 
experiments, 500 problems are solved at each data 
point). As we increase the consensus probability, the 
CPU time required to find a Kemeny order decreases 
dramatically. When the consensus probability is over 0.7, 
most problems are solved without any search. Increasing 
the number of voters also makes problems easier to solve 
at higher consensus probabilities, but harder to solve at 
lower probabilities. We do not have an explanation for 
the phenomena at low probabilities. Figure 6 shows the 
difference in quality between the solution found by the  
greedy heuristic procedure  and optimal solution found 
by branch and bound for the same set of problems. As we 
increase the number of voters and the consensus 
probability, the greedy heuristic finds better solutions. 
We have seen similar results for larger problems. 
 The encouraging aspect of these results is that 
although finding a Kemeny order can be very difficult for 
problems with very little consensus, it becomes much 
easier for problems with a reasonable amount of 
consensus that we would hope to find in real 
applications. One question which arises is: what are the 
range of problems we can solve to optimality by 
generating solutions with a greedy algorithm and 
comparing their Kemeny distance to the min-cost max-
flow Kemeny distance lower bound? We compare here 
our greedy heuristic procedure with the greedy heuristic 
presented in (Cohen, Schapire, and Singer 1999) which 
has an approximation factor of 24. Figures 7 and 8 
present results exploring the deviation between the min-
cost max-flow lower bound and the greedy heuristic 
solutions for finding Kemeny orders for problems with 
50 alternatives. For 25 voters, we can prove optimality of 
most problems with consensus probability greater than 
0.7 by comparing the solution of our greedy heuristic 
procedure with the lower bound. With only 5 voters, this 
consensus probability increases to around 0.9. The 
greedy procedure of Cohen et al. does less well at high 
probabilities, but finds better solutions at low 
probabilities. We have also seen similar results for 
problems with different numbers of alternatives. 
 
 
 
                                                 
3 All experiments were run on a 1GHz Pentium III computer 
using C++ implementations of the algorithms 
4 The problem studied in (Cohen, Schapire, and Singer 1999) 
also allows voters to express degrees of preferences between 
alternatives. 
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Figure 5: Mean CPU time to find optimal solutions for 
problems with 15 alternatives, using branch and bound. 
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Figure 6: Mean % deviation of greedy heuristic 
procedure solutions from optimal, 15 alternatives. 
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Figure 7: Mean % deviation of greedy solutions from 
lower bound, 50 alternatives, 5 voters. 
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Figure 8: Mean % deviation of greedy solutions from 
lower bound, 50 alternatives, 25 voters. 

 
 
 

Conclusions 
 

We have presented new exact and heuristic algorithms 
for aggregating preferences following the Kemeny rule. 
Results of a computational study indicate that computing 
Kemeny orders appears to be computationally expensive 
when there is very little consensus between voters.  
However we have found that when there is a reasonable 
degree of consensus, a Kemeny order can be found 
within a short amount of time. Furthermore, compared to 
multi-stage techniques that combine both positional and 
majority voting methods, the Kemeny orders found by  
these algorithms have well studied theoretical properties. 
Further research into improving lower bounding 
techniques may significantly extend the range of 
problems for which Kemeny orders can be found. 
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