
A Computational Study of the Kemeny Rule for Preference Aggregation

Andrew Davenport and Jayant Kalagnanam
IBM T.J.Watson Research Center, Yorktown Heights, New York, 10598

davenport@us.ibm.com, jayant@us.ibm.com

Abstract
We consider from a computational perspective the
problem of how to aggregate the ranking preferences of a
number of alternatives by a number of different voters
into a single consensus ranking, following the majority
voting rule. Social welfare functions for aggregating
preferences in this way have been widely studied since
the time of Condorcet (1785). One drawback of majority
voting procedures when three or more alternatives are
being ranked is the presence of cycles in the majority
preference relation. The Kemeny order is a social welfare
function which has been designed to tackle the presence
of such cycles. However computing a Kemeny order is
known to be NP-hard. We develop a greedy heuristic and
an exact branch and bound procedure for computing
Kemeny orders. We present results of a computational
study on these procedures.

Introduction

Preference aggregation concerns how to combine the
preference rankings of a number of alternatives by a
number of different voters into a single consensus (or
society) ranking. The aggregation of preferences in this
way arises in applications such as determining the
winners of elections or sports tournaments (Truchon
1998), multi-criteria and word association queries in
databases (Dwork et al. 2001), the ranking of suppliers
by buyers during strategic sourcing and the combining of
search results from multiple search engines in order to
fight spam (Dwork et al. 2001).
 The properties of social welfare functions for
aggregating preferences have been studied by
mathematicians since the 18th century, and it is well
known that complications and paradoxes can arise when
there are more than two alternatives to be ranked.
Arrow's impossibility theorem (Arrow 1951) states that
no non-dictatorial social welfare function can ever satisfy
a set of desirable and compelling properties for fair
elections simultaneously on all domains of preferences.
The debate on the merits of different types of social
welfare functions is still ongoing (Saari and Valognes
1998), however two classes of ranking methods have
been widely studied. Positional methods, such as the
Borda count (Borda 1781), assign points to each
alternative, depending on how they are ranked by each
voter. Candidates are then ordered in the consensus
ranking according to the sum of their assigned points.
Majority ranking methods determine an outcome in terms
of the majority ranking for the alternatives: alternative x

is ranked ahead of alternative y in the consensus ranking
if more voters prefer x to y. Positional methods such as
the Borda count, while being very simple to compute, are
considered to be highly manipulable and fail to satisfy
important properties such as the independence of
irrelevant alternatives (changes in individuals' rankings
of "irrelevant" alternatives outside of a certain subset
should have no impact on the societal ranking of this
subset) and the Condorcet criterion (if some alternative is
ranked ahead of all other alternatives by an absolute
majority of voters, then it should be ranked first in the
consensus ranking). Majority ranking methods such as
Condorcet methods may be subject to cycles in the
majority preference relation when there are more than
two alternatives to be ranked, and thus may fail to select
any winners at all (this is known as the Condorcet
paradox (Condorcet 1785)).
 The Kemeny rule (Kemeny 1959) has been proposed
as a way of seeking a compromise ranking in the
majority vote when there are cycles present in the
majority preference relation. The Kemeny rule satsifies
the Condorcet criterion and a weaker version of local
independence of irrelevant alternatives. However the
computational drawback of the Kemeny Rule is that is
NP-hard to compute (Cohen, Schapire and Singer 1999;
Dwork et al. 2001). This has discouraged the
development of exact algorithms for computing Kemeny
orders. Instead greedy heuristics (Cohen, Schapire and
Singer 1999) or tractable multi-stage methods have been
developed that combine both positional and majority
voting methods (Black 1958; Dwork et al. 2001). A
disadvantage of such approaches is that their theoretical
properties are not known, and hence their outcomes can
be unpredictable. Furthermore, NP-hardness is a only
worst case complexity result which may not reflect the
difficulty of solving problems which arise in practice. In
the sections which follow we describe new exact and
greedy heuristic procedures for computing Kemeny
orders, and present results of an initial computational
study into solving problems using these procedures.

Notation

Let X be a set of m alternatives and N be a set of n voters.
Each voter j has weak order or ranking rj of the
alternatives in X. Each element rj

s is the rank of voter j of
alternative s. A ranking with no tie for a rank is an order
on X, which can be represented as a sequence (s1,...,sn) ,

where si is the alternative with rank i. A preference
aggregation function (also known as a social welfare
function) maps a set of rankings R (also referred to as a
profile of rankings) into a single consensus ranking.
 For each pair of alternatives s and t ranked by some
profile of rankings R, we define vst as the number of
voters expressing a preference for s over t in their
individual rankings, that is () | : |j j

st s tv R j N r r= ∈ < . If
vst > vts we refer to s > t as the majority vote and t > s as
the minority vote for s and t. We represent a profile of
rankings R by a weighted, directed graph we call the
preference graph. Each alternative in X is represented by
a node in the graph. Between each pair of nodes
representing alternatives s and t is an edge of weight vst.
 We represent the strict majority relation by a simple,
directed, weighted graph called the strict majority graph,
which we also refer to more simply as the majority
graph. There is an edge between each pair of nodes
representing alternatives s and t iff vst > vts. The weight
of such an edge is vst− vts. The weak majority relation is
represented by the weak majority graph, which has an
edge between each pair of nodes representing
alternatives s and t iff vst ≥ vts. The weight of such an
edge is vst − vts.

Majority voting and the Condorcet criterion

The Condorcet criterion (Condorcet 1785) states that if
some alternative is ranked ahead of all other alternatives
by an absolute majority of voters, then it should be
ranked first in the consensus ranking. When such an
alternative exists, it is called the Condorcet winner.
Example 1: Consider the preferences expressed by the
profile (A,B,C), (A,C,B), (B,A,C) (e.g. the 1st voter
prefers A to B to C, the 2nd voter prefers A to C to B, the
3rd voter prefers B to A to C). The preferences for each
of the pairwise rankings are: vAB=2,vBA=1,vBC=2, vCB=1,
vAC=3, vCA=0. We have a majority of 1 vote for A > B, a
majority of 1 vote for B > C and a majority of 3 votes for
A > C.

In
th
id
in
C
ra
E
(B
a

for C > A. This profile defines a cycle in the majority
relation of A > B, B > C, C > A.

 Cycles do occur in practice, even for quite small
problems. For example, in a study of Olympic figure
skating contests, cycles were found in competitions
involving 9 out of 23 skaters (Truchon 1998). When
cycles are present in the majority relation, the extended
Condorcet criterion (Truchon 1998) gives a partial
ordering of alternatives (with no cycles it gives a
complete ordering). The extended Condorcet criterion
states that if there is a partition XC, XD of X such that for
any s in C and any t in D if the majority prefers s to t (vst
> vts) then s must be ranked ahead of t in the consensus
ranking. One application of the Condorcet and extended
Condorcet criteria is in fighting ``spam'' in individual
rankings (Dwork et al. 2001). However it has been
shown that no positional method for aggregating
preferences can ever satisfy either of these criteria
(Young 1974).
 Given some partial or complete consensus ranking of a
profile of rankings R, we can enforce the extended
Condorcet criterion on the ranking in the following way1:
Algorithm 1:
1. Identify all the maximal strongly connected

components in the majority graph of R. Each strongly
connected component of size > 1 node identifies a set
of nodes which are involved in at least 1 cycle.

2. For each node n in each component, consider all target
nodes m on all outgoing edges of n. If m is not in the
same component as n, add to the consensus ranking the
ordering s > t, where s is the alternative represented by
node n and t is the alternative represented by node m.

Alternatives represented by nodes within non-trivial
strongly connected components of the majority graph are
involved in cycles, and will not be ordered by Algorithm
1. Kemeny (Kemeny 1959) proposed a way of breaking
such cycles, using a notion of distance for orders. Given
a total order r, a weak order rj and 2 alternatives s and t,
we define:

j j

F
(

h

B

A C

2
1

2
1

3
0

B

A C

1 1

3

1 1
1

B

A C

2 2

2

B

A C

1 1

1

igure 1: The preference graph (left) and majority graph
right) of the profile of Example 1

 Example 1 alternative A is the Condorcet winner. Note
at when there is a Condorcet winner, it can be found by
entifying the node in the weak majority graph with an
degree of zero. However, there may not always be a
ondorcet winner, as cycles may occur in the majority
nking of alternatives.
xample 2: Consider the profile of rankings (A,B,C),
,C,A), (C,A,B). There is a majority of 1 vote for A > B,

 majority of 1 vote for B > C and a majority of 1 vote

Figure 2: The preference graph (left) and majority grap
(right) for the profile of Example 2

 (,st r rδ

and
 (∆

1 A similar scheme
1999) and in (Dwo
1 if and
)

0 otherwise
j s t t sr r r r< ≤

=

,) (,)jj

s X t X
str r r rδ

∈ ∈

= ∑ ∑

 is presented in (Cohen, Schapire and Singer
rk et al. 2001).

The value of (,)j

st r rδ indicates whether there is a
disagreement in the relative ranking of s and t between r
and rj. (,)jr r∆ measures the total number of
disagreements between r and rj, and is referred to as the
Kendall tau distance (Diaconis 1988). For complete
orders, the Kendall tau distance is the ``bubble sort''
distance: it gives the number of pairwise adjacent
transpositions to transform one order into another. The
distance between a complete order r and a profile of
rankings R is given by d(r, R) = ∑j=1..n ∆(r, rj). A Kemeny
order for a profile R is an order r which minimizes the
distance d(r, R) , i.e. an order which has the minimum
number of disagreements with the pairwise rankings in
the profile R. It has been shown that any Kemeny order
satisfies the extended Condorcet criterion (Truchon
1998).

Algorithm design

Problem formulation
Given a (weak) majority graph GR of a profile of
rankings R, we wish to compute a total order of the
alternatives in R taking into account as many of the
majority preferences expressed by the edges in GR as
possible. If GR is acyclic, a topological sort of the nodes
in the graph will identify a Kemeny order of the
alternatives. When GR contains cycles, it becomes
necessary to remove some set of edges from GR such that
the resulting graph is acyclic. To find a Kemeny order,
the sum of the weights of the edges removed from the
graph must be minimized. This problem is known as the
minimum weight feedback edge set problem (Festa,
Pardalos, and Resende 1999), and is known to be NP-
hard. Feedback set problems have received considerable
attention in recent years (Festa, Pardalos, and Resende
1999), especially with respect to approximation
algorithms and tractable cases. However, as far as we are
aware, there has been no work on exact approaches for
finding optimal solutions to the weighted variant of the
feedback edge set problem in directed graphs. In the
sections which follow, we outline a new greedy heuristic
and exact branch and bound approach for finding
Kemeny orders, based on formulating the problem as
minimum weight feedback edge set problem.

Solution representation
We use a solution graph to represent orderings of
alternatives that are established during a search
procedure when constructing a Kemeny order. Each
alternative in the set X is represented by a node in the
solution graph. A directed edge between a pair of nodes
representing alteratives s and t indicates that in the
solution s is ranked ahead of t. A solution graph which is
simple, directed, acyclic and where all nodes have degree
of |X|−1 represents a complete ordering of the
alternatives in X. The goal of the search procedure is to
construct a solution graph representing a complete
ordering which is a Kemeny order. A complete ordering

can be obtained from the solution graph by performing a
topological sort of the nodes in the graph.
 We often want to compute a majority graph which
takes into account the orderings that have been made in a
solution graph, even if some of these orderings
correspond to minority votes. Thus all edges in the
solution graph have corresponding edges in the majority
graph representing the same orderings, regardless of the
majority votes for these alternatives. In the case where an
edge in the solution graph corresponds to an ordering
with a minority vote, the reverse edge in the direction of
the majority vote will not be present in this modified
majority graph.

Greedy heuristic and branch and bound search
We have developed a simple greedy heuristic and an
exact depth-first branch and bound procedure for
computing Kemeny orders, based on constructing a
solution by identifying orderings of pairs of alternatives
and adding the corresponding edges to the solution
graph. We use the following heuristic to select and order
a pair of alternatives at each node of the search in both of
these approaches: select the pair of alternatives which
has the greatest difference between the majority and the
minority vote for the different pairwise orderings and
order the alternatives following the majority vote.
 The greedy procedure simply follows this heuristic and
applies propagation rules after each ordering is made,
terminating when the solution graph represents a
complete order. The branch and bound procedure
performs a depth-first backtracking search, following the
heuristic at each node and applying lower bounding
procedures in addition to the propagation rules to prune
the search. In the sections which follow we discuss the
propagation rules and lower bounding techniques.

Propagation
A solution is built up incrementally by adding edges to
the solution graph. In order to ensure that the solution
graph remains acyclic we maintain transitive closure of
the graph after edges are added or deleted. Since the
graph is directed and acyclic, we can use an efficient
incremental algorithm that maintains transitive closure in
time 2()O n for n nodes in the graph.
 The first step for both approaches is to run Algorithm
1 to satisfy the extended Condorcet criterion of the
ordering. If there are no cycles in the majority graph,
this step is sufficient to identify a Kemeny order.
Otherwise, as edges are added to the solution graph
during search, cycles may be broken in the majority
graph that takes into account solution graph orderings
(and new cycles may be created). We run Algorithm 1 as
a propagation step on this majority graph. If there are
new strongly connected components in the majority
graph as a result of edges added to the solution graph,
further orderings of alternatives may be added to the
solution. Applying this propagation step every time an
edge is added to the solution graph ensures that we only

ever branch on orderings that are involved in some cycle
in the majority graph associated with some solution
graph.

Lower bounding
A simple lower bound LB1 on the Kemeny distance of a
Kemeny order is the sum of the minority votes for every
pair of alternatives:

 1 ,

,

min()st ts
s X t X s t

LB v v
∀ ∈ ∀ ∈ ≠

= ∑ ∑

This bound will be equal to the Kemeny distance of the
Kemeny order when there are no cycles in the majority
graph: in this case we can follow the majority vote in the
Kemeny order for the ranking of all pairs of alternatives.
When there are cycles, the bound can be strengthened
during search by taking into account the orderings of the
pairs of alternatives that have been fixed by the search
procedure.
 A stronger lower bound can be computed by
determining a set of edge disjoint cycles in each strongly
connected component of the majority graph (associated
with some solution graph). Each edge disjoint cycle
contains at least one edge representing a majority vote
between a pair of alternatives which the Kemeny order
must disagree with. The impact of disagreeing with the
majority vote on the distance of the Kemeny order for
some pair of alternatives s and t is vst − vts, which is the
weight of the edge between the nodes corresponding to
the pair of alternatives in the majority graph. We can add,
for each edge disjoint cycle, the minimum positive
weight of the edges in the cycle to the bound LB1 to form
a stronger lower bound.
 We simplify the lower bound computation by
considering edge disjoint cycles containing only 3
nodes. This is motivated by the observations that (a) it is
harder to compute a Kemeny order for profiles where
there are no ties in the rankings between any pairs of
alternatives2 and (b) in a majority graph where there are
no ties, there exists an edge between every pair of nodes
in every non-trivial strongly connected component.
When this is the case then every set of nodes involved in
a cycle of length greater than 3 must contain a cycle of
exactly length 3 on a subset of these nodes. An
illustration of this proposition is given in Figure 3.
Consider a cycle of length 4 between nodes A, B, C and
D. When there are no ties, there must be an edge in the
majority graph between nodes B and D. If this edge is
directed from node B to D then we have the 3-cycle
involving nodes A, B, D (left, Figure 3). If the edge is
oriented the reverse way, we have the 3-cycle involving
nodes B, C, D (middle, Figure 3). Finally, we consider
the case where a cycle contains more than 4 nodes. The
right graph in Figure 3 shows a cycle involving 5 nodes
A, B, C, D, E. Consider the edge between nodes A and D

2 This situation will always occur when we have an odd
number of voters and all voters rank all alternatives.

which is not an edge of the 5-cycle. If this edge is
directed from nodes A to D then we have the 3-cycle
involving nodes A, D, E. Otherwise, the direction from D
to A forms a 4-cycle involving nodes A, B, C, D for
which we have shown there must exist a 3-cycle on a
subset of these nodes. A similar argument can be used to
show that each cycle involving n nodes (n>3) must
contain a cycle involving either 3 or n − 1 nodes.

Figure 3: Illustration of 3-cycles in a majority graph.

We formulate the problem of computing edge disjoint 3-
cycles in a strongly connected component of the majority
graph as an iterative min-cost max-flow problem (Ahuja,
Magnanti, and Orlin 1993). An example of the network
formulation we use to solve this problem is given in
Figure 4 for the majority graph illustrated in the left of
Figure 3.

Figure 4: An example network formulation for the
majority graph in the left of Figure 3.

 The network has four layers of nodes, l1,...,l4. In each
layer there are |X| nodes, where each node corresponds
to a node in the majority graph. There is a directed edge
between each pair of nodes in layers li and li+1 in this
network if there is a directed edge between the
corresponding pair of nodes in the majority graph. The
cost on each edge between the layers is some constant K
(e.g. the number of voters) minus the weight between the
corresponding pair of nodes in the majority graph (we
want to find cycles with the largest possible minimum
edge cost in the majority graph). All nodes in layer l1 are
connected to the source node and all nodes in layer l4 are
connected to the sink node of the network. These
connections all have a cost of 1. All minimum edge
capacities are set to 0. The maximum capacities of all the
edges between nodes in the layers are to set to 1. During
each iteration we solve a min-cost max-flow problem to
determine a set of paths through the network starting and
ending at some common node in layers l1 and l4,
representing a starting and ending point for a 3-cycle in
the majority graph. For example, the highlighted edges

BA

CD

BA

CD

BA

CD

E

A

D

B

C

A

D

B

C

A

D

B

C

A

D

B

C
S *

in Figure 4 illustrate a path of length 3 starting at node A
in layer l1 and ending at node A in layer l4. Such a path
corresponds to the 3-cycle (A, B, D, A) in the majority
graph in the left of Figure 3. In each iteration we select
and fix the common starting and ending nodes ns and ne
in layers l1 and l4 (e.g. node A in Figure 4). The
maximum number of 3-cycles max3 that can be found
from these nodes is the minimum of the out-degree of
node ns and the in-degree of node ne. We set the
maximum capacity of the edge from the source node to
the node ns and node ne to the sink node to max3. We set
the maximum capacities of all remaining edges from the
source node to the layer l1 nodes to 0. Similarly, we set
the maximum capacities of all remaining edges between
nodes in layer l4 and the sink node to 0. The solution to
the min-cost max-flow problem on this network specifies
a set of paths through the network that correspond to a
set of 3-cycles in the majority graph starting and ending
at the fixed node. The value of the flow is the number of
disjoint 3-cycles found in the corresponding majority
graph. We determine, for each cycle found by the
network flow solution, the lowest cost of all the edges in
the cycle and add (the cost constant K minus) this lowest
cost to LB1. Enumerating the paths can be achieved by
solving multiple shortest path problems, one for each
path in the network flow solution. Each shortest path
computation can be performed with time complexity
O(n+m) for a directed acyclic graph with n nodes and m
edges. Finally, at the end of each iteration, we delete all
edges from the network which were found in the min-
cost max-flow solution, to ensure that a single edge is
only assigned to one 3-cycle. We have also observed that
the order in which we perform the network flow
iterations can have an impact on the number of 3-cycles
that are found. For each node in the majority graph we
determine the minimum and maximum of their in-degree
and out degree. We sort the nodes by decreasing
minimum of these degrees, breaking ties by decreasing
maximum of these degrees, and perform the network
flow iterations in this order.
 The time to compute the min-cost max-flow solution
of the network dominates the other parts of the
procedure. This can be computed in time

(log (log))O m U m n n+ for n nodes of maximum
degree U and m edges (Ahuja, Magnanti, and Orlin
1993). Since we may have up to n iterations, the time
complexity of this lower bounding procedure is

(log (log))O nm U m n n+ .

Experiments

Problem generation
We evaluated the algorithms on randomly generated
problems. For each problem, we first generated a total
order representing a consensus ordering of m
alternatives. We then generated a preference graph where
each one of n voters agrees with the consensus ordering
regarding the ranking of every pair of alternatives with

some consensus probability p. We generate problems
with an odd number of voters, where each voter ranks all
alternatives with no ties.

Results
The first results we present explore the effect of varying
the consensus probability and the number of voters on
problem solving difficulty3. CPU time results for 15
alternatives are presented in Figure 5 (for all
experiments, 500 problems are solved at each data
point). As we increase the consensus probability, the
CPU time required to find a Kemeny order decreases
dramatically. When the consensus probability is over 0.7,
most problems are solved without any search. Increasing
the number of voters also makes problems easier to solve
at higher consensus probabilities, but harder to solve at
lower probabilities. We do not have an explanation for
the phenomena at low probabilities. Figure 6 shows the
difference in quality between the solution found by the
greedy heuristic procedure and optimal solution found
by branch and bound for the same set of problems. As we
increase the number of voters and the consensus
probability, the greedy heuristic finds better solutions.
We have seen similar results for larger problems.
 The encouraging aspect of these results is that
although finding a Kemeny order can be very difficult for
problems with very little consensus, it becomes much
easier for problems with a reasonable amount of
consensus that we would hope to find in real
applications. One question which arises is: what are the
range of problems we can solve to optimality by
generating solutions with a greedy algorithm and
comparing their Kemeny distance to the min-cost max-
flow Kemeny distance lower bound? We compare here
our greedy heuristic procedure with the greedy heuristic
presented in (Cohen, Schapire, and Singer 1999) which
has an approximation factor of 24. Figures 7 and 8
present results exploring the deviation between the min-
cost max-flow lower bound and the greedy heuristic
solutions for finding Kemeny orders for problems with
50 alternatives. For 25 voters, we can prove optimality of
most problems with consensus probability greater than
0.7 by comparing the solution of our greedy heuristic
procedure with the lower bound. With only 5 voters, this
consensus probability increases to around 0.9. The
greedy procedure of Cohen et al. does less well at high
probabilities, but finds better solutions at low
probabilities. We have also seen similar results for
problems with different numbers of alternatives.

3 All experiments were run on a 1GHz Pentium III computer
using C++ implementations of the algorithms
4 The problem studied in (Cohen, Schapire, and Singer 1999)
also allows voters to express degrees of preferences between
alternatives.

0

10

20

30

40

50

60

0.5 0.6 0.7 0.8 0.9 1
consensus probability

m
ea

n
C

PU
 ti

m
e

(s
ec

)
5 voters
15 voters
25 voters
35 voters

Figure 5: Mean CPU time to find optimal solutions for
problems with 15 alternatives, using branch and bound.

0

1

2

3

4

5

0.5 0.6 0.7 0.8 0.9 1
consensus probability

m
ea

n
%

 d
ev

ia
tio

n

5 voters
15 voters
25 voters
35 voters

Figure 6: Mean % deviation of greedy heuristic
procedure solutions from optimal, 15 alternatives.

0

5

10

15

20

25

0.5 0.6 0.7 0.8 0.9 1
consensus probability

m
ea

n
%

 d
ev

ia
tio

n

greedy heuristic
cohen et al

Figure 7: Mean % deviation of greedy solutions from
lower bound, 50 alternatives, 5 voters.

0

2

4

6

8

10

0.5 0.6 0.7 0.8 0.9 1
consensus probability

m
ea

n
%

 d
ev

ia
tio

n

greedy heuristic
cohen et al

Figure 8: Mean % deviation of greedy solutions from
lower bound, 50 alternatives, 25 voters.

Conclusions

We have presented new exact and heuristic algorithms
for aggregating preferences following the Kemeny rule.
Results of a computational study indicate that computing
Kemeny orders appears to be computationally expensive
when there is very little consensus between voters.
However we have found that when there is a reasonable
degree of consensus, a Kemeny order can be found
within a short amount of time. Furthermore, compared to
multi-stage techniques that combine both positional and
majority voting methods, the Kemeny orders found by
these algorithms have well studied theoretical properties.
Further research into improving lower bounding
techniques may significantly extend the range of
problems for which Kemeny orders can be found.

References

Ahuja, K.; Magnanti, T.; and Orlin, J. 1993. Network
flows. Prentice Hall.ISBN 0-13-617549-X.
Arrow, K. 1951. Social Choice and Individual Values.
John Wiley, New York.
Black, D. 1958. Theory of Committees and Elections.
Cambridge University Press.
Borda. 1781. Mémoire sur les élections au scrutin. In
Histoire de l'Académie Royale des Sciences.
Cohen, W.; Schapire, R.; and Singer, Y. 1999. Learning
to order things. Journal of Artificial Intelligence
Research 10:213-270.
Condorcet. 1785. Essai sur l'application de l'analyse à la
probabilité des décisions rendue à la pluralité des voix.
In Paris: Imprimerie royale. Also reproduced in
Condorcet, Sur les élections et autres textes, edited by O.
de Bernon, Fayard, 1986.
Diaconis, P. 1988. Group representation in probability
and statistics. IMS Lecture Series 11, Institute of
Mathematical Statistics.
Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D.
2001. Rank aggregation methods for the web. In Proc.
10th WWW, 613-622.
Festa, P.; Pardalos, P.; and Resende, M. 1999. Feedback
set problems. In Handbook of Combinatorial
Optimization, vol. 4. Kluwer Academic Publishers.
Kemeny, J. 1959.Mathematics without numbers.
Daedalus 88:571-591.
Saari, D., and Valognes, F. 1998. Geometry, voting, and
paradoxes.Mathematics Magazine 71(4):243-259.
Truchon, M. 1998. Figure skating and the theory of
social choice. Technical Report Cahier 98-16, Centre de
Recherche en Economie et Finance Appliquées,
Université Laval, Canada.
Young, H. 1974. An axiomitization of Borda's rule.
Journal of Economic Theory 9:43-52.

