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Abstract. The Marquis du Condorcet recognized 200 years ago that major-
ity rule can produce intransitive group preferences if the domain of possible
(transitive) individual preference orders is unrestricted. We present results on
the cardinality and structure of those maximal sets of permutations for which
majority rule produces transitive results (consistent sets). Consistent sets that
contain a maximal chain in the Weak Bruhat Order inherit from it an upper
semimodular sublattice structure. They are intrinsically related to a special
class of hamiltonian graphs called persistent graphs. These graphs in turn have
a clean geometric interpretation: they are precisely visibility graphs of stair-
case polygons. We highlight the main tools used to prove these connections
and indicate possible social choice and computational research directions.

1. Introduction

Arrow’s impossibility theorem [5], says that if a domain of voter preference pro-
files is sufficiently diverse and if each profile in the domain is mapped into a social
order on the alternatives that satisfies a few appealing conditions, then a specific
voter is a dictator in the sense that all of his or her strict preferences are preserved
by the mapping. One interesting question is how to determine restrictions on sets
of voters preference orders which guarantee that every non-empty finite subset of
candidates S contains at least one who beats or ties all others under pairwise ma-
jority comparisons [14, 15, 17]. When voters express their preferences via linear
preference orders over {1, . . . , n } (i.e. permutations in Sn) a necessary and suffi-
cient condition is provided by the following proposition. It identifies embedded 3x3
latin squares as the main reason for intransitivity of the majority rule.

Definition 1.1. A three subset {α, β, γ} ⊂ Sn contains an embedded 3x3 latin
square if there exist {i, j, k} ⊂ {1, . . . , n} such that αi = βj = γk, αj = βk = γi

and αk = βi = γj . C ⊂ Sn is called consistent if no three subset of C contains an
embedded 3x3 latin square.

Proposition 1.2. [15] For a finite set of voters P with preference orders in a subset
C of Sn , denote by |aPb| the number of voters that prefer a to b. For every subset
S of at least three candidates,

{a ∈ S : ∀b ∈ S − a, |aPb| ≥ |bPa|} 6= ∅
if and only if C does not contain an embedded 3 by 3 latin square ( i.e. Consistent

sets produce transitive results under majority rule).

It has been conjectured that for every n the maximum cardinality of such con-
sistent sets is not more than 3n−1 [1]. Maximal consistent sets that contain a

1



2 JAMES ABELLO

Figure 1. A maximal consistent subset of S6. It is conjectured to
be maximum in [15]

maximal chain in the Weak Bruhat order of Sn are upper semimodular sublat-
tices of cardinality bounded by the n-th Catalan number [4](Theorem 2.2). This
result is the basis of an output sensitive algorithm to compute these sublattices (
see Remark 2.3 and Corollary 2.4 ). With such sublattices we associate a class of
graphs (called persistent) that offers a bridge from the combinatorics of consistent
sets of permutations to non degenerate point configurations (see Section 2.3 and
Theorem 2.8). Every graph in this apparently ”new” class can be realized as the
visibility graph of a staircase polygon(see Section 3). A colorful way to view these
abstract connections is that if the aggregate collection of voters is realizable as a
non-degenerate collection of points then majority rule produces transitive results.
Under this interpretation point configurations represent the candidates aggregate
view provided by the voters rankings (one point per candidate).

2. The Weak Bruhat Order, Balanced Tableaux and Persistent
Graphs

2.1. The Weak Bruhat Order of Sn. For n ≥ 2, let Sn denote the symmetric
group of all permutations of the set {1, . . . , n }. As a Coxeter group Sn is endowed
with a natural partial order called the weak Bruhat order ( [2, 4, 12]. This order is
generated by considering a permutation γ an immediate successor of a permutation
α if and only if γ can be obtained from α by interchanging a consecutive pair of
non inverted elements of α. The partial order ≤ WB is the transitive closure of
this relation. The unique minimum and maximum elements are the identity and
the identity reverse respectively, ( figure ).

(Sn,≤ WB) is a ranked poset where the rank of a permutation α is its inversion
number i(α) = |{(αi, αj) : i < j and αi > αj}| . From now on, consider all permuta-
tions in Sn written in one line notation and let si denote the adjacent transposition
of the letters in positions i and i + 1 . With this convention αsi is the permutation
obtained by switching the symbols αi and αi+1 in α. Every permutation is then
representable as a word over the alphabet { s1, . . . , sn−1 } where the juxtaposi-
tion express α as a left to right product of the si’s. Among these representations,
those words that involve exactly i(α) transpositions are called the reduced words
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Figure 2. The weak Bruhat order for S4. A maximal chain is
highlighted.The identity is at the bottom and the identity reverse
is at the top. By suitable relabeling we can in fact have any per-
mutation at the top and its reverse at the bottom.

for α. Those reduced words that represent the maximum element have length N =
(n ∗ (n− 1))/2 and they are the maximal chains in (Sn,≤ WB) from the identity
permutation to its reverse. They constitute the central combinatorial object in this
work. In particular, the majority rule produces transitive results when applied to
them. We define now a closure operator that allow us to characterize those maximal
consistent sets of permutations that contain maximal chains.

Definition 2.1. For α ∈ Sn, let Triples(α) = {(αi, αj , αk) : i < j < k} and for
C ⊂ Sn, Triples(C) =

⋃{Triples(α) : α ∈ C}. The Triples closure of a set C ⊂ Sn

is Closure(C) = {α ∈ Sn : Triples(α) ⊂ Triples(C)}.
It is natural to ask how to obtain Closure(C) for a given set C ⊂ Sn. In

particular, what is the cardinality and structure of maximal consistent sets? We
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provide next an answer to these questions for the case that Ch is a maximal chain
in (Sn,≤ WB).

2.1.1. Maximal Connected Consistent Sets. It is not difficult to see that any three
permutations that contain an embedded 3x3 latin square can not be totally ordered
in (Sn,≤ WB). This means that a maximal chain Ch is a consistent set. Moreover,
|Triples(Ch)| = 4

(
n
3

)
. Therefore Closure(Ch) is a maximal consistent set. The size

of Closure(Ch) varies widely depending on Ch. In some cases, it is of O(n2) and
in many others is of size > 2n−1 + 2n−2− 4 for n ≥ 5 ([1]). It has been conjectured
(since 1985) in [2] that the maximum cardinality of a consistent set in Sn is ≤3n−1.
The next result provides information about the structure and maximum cardinality
of those consistent sets containing a maximal chain in the weak Bruhat order. It
is a useful result because it furnishes an algorithm to generate the Closure of a
maximal chain Ch. This allow us to have at our disposal all the possible rankings
that are compatible with Ch. They represent in this case the maximum allowable
set of ranking choices for the voters if we want to obtain transitivite results from the
majority rule. Transitivity conditions like Inada’s single peakedness [16] correspond
to the choice of a particular maximal chain in (Sn,≤ WB).

Theorem 2.2. [4]The closure of any maximal chain in (Sn,≤ WB) is an upper
semimodular sublattice of (Sn,≤ WB) that is maximally consistent. Its cardinality
is ≤ the nth Catalan number.

Remark 2.3. The question that comes to mind next is where a permutation α ∈
Closure(Ch) lives in the Hasse diagram of (Sn,≤ WB) ?. The answer is that it
lies close to Ch. Namely, Closure(Ch) is a connected subgraph (the undirected
version) in the Hasse diagram of the weak Bruhat order. To see this let Path(Ch)
be the labeled ordered path from the identity to the identity reverse, defined by
Ch, in the Hasse diagram of (Sn,≤ WB), ie. Path(Ch) = (t1, . . . , tN ) where
tl = (i, j) if the symbols i and j were interchanged by the lth transposition in
Ch. Notice that this is an alternate notation referring to the actual symbols in a
permutation rather than their positions but it is better suited for this portion of
the paper. Let Pathk(Ch) denote the set of permutations appearing in the first k
steps of Path(Ch), for k = 1, . . . , N . It follows from the proof of the previous the-
orem that Closure(Pathk(Ch)) has a unique maximum element which is precisely
the maximum element in Pathk(Ch). Call this element the kth bottom element.
Moreover, Closure(Pathk+1(Ch)) − Closure(Pathk(Ch)) = a projection of cer-
tain connected subset of Closure(Pathk(Ch)) that is determined by the adjacent
transposition tk+1. This is stated more precisely in the following corollary.

Corollary 2.4. For a maximal chain Ch in the weak Bruhat order of Sn, let
Projectablek+1(Ch) be the set of γ ∈ Closure(Pathk(Ch)) for which there exists a
downward path from γ to the bottom element of Closure(Pathk(Ch)) such that all
the adjacent transpositions used in the path are disjoint from tk+1. Closure(Ch)
can be computed by an iterated application of the following property.

Closure(Pathk+1(Ch))− Closure(Pathk(Ch)) = {α ∈ Sn : ∃γ ∈
Projectablek+1(Ch) for which tk+1(γ) = α}
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Figure 3. The maximal consistent subset of S6 of Figure 1 viewed
as a sublattice of the Weak Bruhat Order.The subsets enclosed
in rectangles are the ones obtained by a projection. The max-
imal chain is the one defined by the sequence of transpositions
Path(Ch) = {45, 46, 23, 25, 26, 24, 13, 15, 16, 14, 12, 35, 36, 34, 56}.
Incoming arrows to a rectangle correspond to a single transpo-
sition used to project a previous subset. These transpositions are
{23, 25, 13, 15, 16, 35, 36, 34, 56}.

Remark 2.5. The previous corollary can be turned into an algorithm that computes
Closure(Ch) in time proportional to |Closure(Ch)|, i.e. is an output sensitive algo-
rithm. To our knowledge, no consistent set has been found of cardinality larger than
the ones produced by this algorithm. The reason could be that maximal consistent
sets that are not connected are not larger than connected ones. Figure 1 is an exam-
ple of a maximal consistent subset of S6 with 45 permutations which is conjectured
in [15] to be the overall maximum in this case. It was constructed by ad hoc methods
but since it contains a maximal chain it can be described succintly as Closure(Ch)
where Path(Ch) = {45, 46, 23, 25, 26, 24, 13, 15, 16, 14, 12, 35, 36, 34, 56}. Its over-
all structure is illustrated by a coarse drawing of the corresponding sublattice of
(S6,≤ WB) in Figure 2. Each subset obtained by a projection is isomorphic to
its pre-image. Incoming arrows into a rectangle depict the pieces that form the
preimage of a projection by an adjacent transposition.

Next we present an alternative encoding of these maximal chains by special
tableux of staircase shape called balanced tableaux. These tableaux provide the
bridge between the weak Bruhat order and special combinatorial graphs called
persistent.

2.2. Balanced Tableaux. A Ferrer’s diagram of staircase shape is the figure ob-
tained from n− 1 left justified columns of squares of lengths n− 1, n− 2, ... , 1. A
tableau T of staircase shape is a filling of the cells of the Ferrer’s diagram of staircase
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shape with the distinct integers in the set { 1, . . . , N }. We denote by SS(n) the
set of tableux of staircase shape. A tableau T ∈ SS(n) is said to be balanced if for
any three entries T (i, j), T (j, k), T (i, k) we have either T (i, j) < T (j, k) < T (i, k)
or T (i, j) > T (j, k) > T (i, k). The key property that we exploit is a beautiful bijec-
tion due to Edelman and Greene. Namely, given a maximal chain in (Sn,≤ WB),
set T (i, j) = l if and only if i and j are the symbols interchanged in going from
the (l − 1)th permutation to the lth permutation in the chain. It is proved in [12]
that this mapping defines a one to one correspondence between balanced tableux in
SS(n) and maximal chains in (Sn,≤ WB) (The balanced tableau associated with
the maximal chain used in Figure 2 is depicted below).

1
11 2
7 3 3
10 6 14 4
8 4 12 1 5
9 5 13 2 15 6

With each balanced tableau T we associate a graph skeleton(T ) with vertex set
{1, . . . , n} and edge set = { (j, i) : T (j, i) > T (j, i′) ∀i′, i < i′ < j }. In other words,
the edges in skeleton(T ) record those entries in T whose values are larger than all
the entries above in its column (i.e. they are restricted local maximum in their
columns). By the balanced property this is equivalent to { (j, i) : T (j, i) < T (j, i′),
∀ i < i′ < j } (i.e. they are restricted local minimum in their rows). The skeleton
corresponding to the above balanced tableau(i.e. the maximal chain used in Figure
2) is

1
1 2
0 1 3
0 1 1 4
0 0 0 1 5
0 0 0 1 1 6

The reader may be pondering about the properties of these graphs that arise
as skeletons of the balanced tableaux associated with maximal chains in the weak
Bruhat order.The next section offers a graph theoretical characterization.

2.3. Persistent Graphs. Chordal graphs are a well studied class with a variety of
applications. We introduce now an ordered version of chordality that together with
an additional property called inversion completeness define what we call persistent
graphs ([?]).

Definition 2.6. A connected graph G = (V,E) with an specified linear order-
ing H = (1, . . . , n) on V is called chordal with respect to H if every H-ordered
cycle of length ≥ 4 has a chord. G is called inversion complete with respect to
H if for every 4-tuple i < j < k < l, it is the case that {(Hi,Hk), (Hj ,Hl)}
⊂E(G)impliesthat(Hi,Hl) ∈E(G). In other words, pairs of edges that interlace in
the order provided by H force the existence of a third edge joining the minimum
and maximum(in the order) of the involved vertices.

Definition 2.7. A graph G = (V,E) with a Hamiltonian path H is called H-
persistent if it is ordered chordal and inversion complete with respect to H.
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The following theorem provides a graph theoretical characterization of the skele-
tons of balanced tableaux. Namely, they are precisely persistent graphs.

Theorem 2.8. A graph G = (V,E) is H-persistent if and only if is the skeleton of
a balanced tableau T ∈ SS(n) where |V | = n and H = (1, 2, . . . , n).

Proof Sketch: That the skeleton of a balanced tableau T ∈ SS(n) is hamiltonian
with hamiltonian path H = (1, . . . , n) follows from the definition of the skeleton.
That the obtained graph is H-persistent is a consequence of the balanced property.
The interesting direction is how to associate with a given H-persistent graph a
balanced tableau. The core of the proof relies on the following facts.

(1) Any H persistent graph with at least n edges has at least an edge e such
that G− e is H-persistent. Call such an edge a reversible edge.

(2) The complete graph is H-persistent for H = (1, 2, . . . , n) and it is the
skeleton of the balanced tableau T where for j > i, T (j, i) = (((j − 1) ∗
(j − 2)/2) + i) for i ∈ {1, . . . , j − 1} . Each row and column is sorted in
increasing order.

(3) Given an H-persistent graph G, [3] presents and O(n5) algorithm that
provides a sequence of persistent graphs that starts with the complete graph
Kn and ends with G. The algorithm deletes successively a set {e1, . . . , ek}
of reversible edges and constructs for each i = 1, . . . , k a maximal chain
Chi in (Sn,≤ WB) such that skeleton(Chi) is isomorphic to the persistent
graph Gi = G− {e1, . . . , ei}.

(4) Gk is isomorphic to a persistent graph G given as input.

Items 1, 2, 3, 4 above allow us to conclude that any persistent graph G is the
skeleton of a balanced tableau T ∈ SS(n) where T is the encoding of the maximal
chain Chk produced by the algorithm where k is the number of edges that have to
be reversed in Kn to obtain G. •

Since balanced tableaux and maximal chains in the weak Bruhat order of Sn

are just different encodings of the same objects we will abuse notation by using
Skeleton(Ch) to refer to the graph associated with the balanced tableau corre-
sponding to Ch. It makes sense them to define an equivalence relation on maximal
chains based on the skeletons of their corresponding balanced tableaux. Namely,
two maximal chains are related if their corresponding balanced tableaux have the
same graph skeleton. The reader may be wandering what this has to do with the
majority rule. The answer is that if Ch′ is a maximal chain ⊂ Closure(Ch) then
Skeleton(Ch′) is identical to Skeleton(Ch), i.e. each maximal connected consis-
tent set C in the weak Bruhat of Sn has a unique persistent graph associated with
it. This graph encodes the local column maximums (and local row minimums)of
the tableaux associated with any of the maximal chains appearing in C. The cor-
responding graph represents a global characteristic of the set of rankings which
offers a ”novel” approach to understanding voters profiles. As an example, the
well known single peakedness condition for transitivity corresponds to a very spe-
cial persistent graph. This line of thinking brings immediately the characterization
question, i.e. do persistent graphs characterize maximal connected consistent sets?
In other words, is the Closure of a maximal chain Ch equal to the union of all
maximal chains Ch′ which have the same skeleton as Ch?. The answer is not al-
ways. For sure we know that Closure(Ch) is contained in the set of all chains that
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have the same skeleton as Ch but the reverse is not true. However, we can provide
a geometric characterization and this is the purpose of the next section.

3. Maximal Chains in the Weak Bruhat Order with the same
Skeleton and Non-degenerate Point Configurations

Let Conf be a non-degenerate configuration of n points on the plane. Without
loss of generality, assume that not two points have the same x-coordinate and label
the points from 1 through n in increasing order of their x-coordinates. The points in
the configuration determine N =

(
n
2

)
straight lines. We can construct a tableau T

of shape SS(n) that encodes the linear order on the slopes of these lines by setting
T (i, j) = l if and only if the rank of the slope of the line through i and j in this linear
order is l. As the reader may suspect the obtained tableau is a balanced tableau
and therefore it encodes a maximal chain in the weak Bruhat Order. This chain
is precisely the first half of the Goodman and Pollack circular sequence associated
with the configuration ([13]). The question is what is a gometric interpretation
of the skeleton of the corresponding tableau?. In other words, what geometric
property is encoded by the corresponding persistent graph?. The answer lies in
the notion of visibility graphs of staircase polygons (Proposition ) and that is the
subject of the remaining part of this section.

Definition 3.1. Consider a configuration Conf of n points {p1, . . . , pn} with co-
ordinates (xi, yi) for point pi. Conf is called a staircase configuration if for every
i < j xi < xj and yi > yj. A staircase path consists of a staircase configuration
plus the n− 1 straight line segments joining pi and pi+1, for i = 1, . . . , i = n− 1. A
staircase polygon P is a staircase path together with the segments from the origin
to p1 and from the origin to pn.

Definition 3.2. Two vertices p and q of a simple polygon P are said to be visible if
the open line segment (p, q) joining them is completely contained in the interior of
P or if the closed segment [p, q] joining them is a segment of P itself. The visibility
graph of a simple polygon P , V is(P ) = (V, E) where V is the set of vertices of P
and E is the set of polygon vertex pairs that are visible.

Proposition 3.3. The visibility graph of a staircase polygon P with vertexes {p1, . . . , pn}
is a persistent graph with respect to the hamiltonian path H = (p1, . . . , pn).

Proof Sketch:The first half period of the Goodman and Pollack circular sequence
([13]) associated with the point configuration, defined by the vertexes of a staircase
polygon P , is a maximal chain in the weak Bruhat order. Therefore its associated
tableau T which completely encodes the ordering of the slopes is balanced and its
associated skeleton is persistent by Theorem 2.8. To see that this graph is identical
to the visibility graph of P let mik denote the magnitude of the slope between
points pi and pk where k > i + 1. pi is visible from pk if and only if the open line
segment joining them lies in the interior of P . For the case of staircase polygons
this implies that there is no j, k < j < i such that mik ≤ mij . Therefore mik > mjk

for j = i − 1, i − 2, . . . , k + 1. Since T encodes this ordering this means that vi is
visible from vk iff T (i, k) is larger than all entries that lie above it, i.e. T (i, k) is a
restricted local maximum. •

From the majority rule view point the previous proposition says that when the
voters rankings have a corresponding staircase point configuration the candidates
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Figure 4. A Staircase Polygon. Since vertex 0 that is the origin
sees everybody we remove it from consideration.

can be placed on a staircase path and each voter ranking correspond to its view of
the candidates in the configuration when the voter is located outside the convex hull
of the point set. The local maximum statistics obtained from the slopes ranking
are encoded by geometric visibility among the candidates within the corresponding
staircase polygon. What about a converse, i.e. Is it clear when is it that the voters
rankings have a corresponding staircase configuration?. The next result states that
if the set of voters rankings is the Closure(Ch) for Ch ∈(Sn,≤ WB) then there
exists a staircase polygon P on n points on the plane so that its V isibility graph
is isomorphic to the Skeleton(Ch).

Theorem 3.4. [3] Let Mn denote a maximal consistent set and let Ch be a maximal
chain in (Sn,≤ WB). Mn = Closure(Ch) iff Skeleton(Ch) is the visibility graph
of a staircase polygon P on n points.

Proof Sketch: (←) The visibility graph of a staircase polygon P is identical to
skeleton(T ) where T encodes the ranking of the N =

(
n
2

)
slopes determined by

the n polygon vertices as in the previous proposition. By letting Ch denote the
corresponding maximal chain in (Sn,≤ WB) and using Theorem 2.2 the result
follows •
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Proof Sketch: (→) Mn = Closure(Ch) implies that Skeleton(Ch) is H-persistent
where H = (1, 2, . . . , n) by Theorem 2.8 . The difficult part is to prove that there
exists a staircase polygon P such that V is(P ) is identical to Skeleton(Ch). The
tricky aspect is that Ch may not be realizable at all as a non-degenerate configu-
ration of points. In fact, deciding if a given Ch is realizable in the sense described
in this paper is NP-hard. However, what we are able to prove constructively is
that there exists a maximal chain Ch′ in (Sn,≤ WB) such that Skeleton(Ch′) is
identical to Skeleton(Ch) even though Ch may not be realizable. This means that
there is a geometric staircase ordering of the candidates whose corresponding set of
local maximum is the same as those of any chain in Closure(Ch). In other words
by lifting the hard question of direct realizability of maximal chains to persistent
graphs we get out of a difficult mathematical stumbling block. The essential tool is
an inductive geometric simulation of the main steps followed in the proof of The-
orem 2.8. Namely, take Skeleton(Ch) and create corresponding geometric steps
that produce from a convex staircase configuration, realizing the complete graph
Kn, staircase configurations whose visibility graphs are precisely the intermediate
persistent graphs Gi = G − {ei, e2, . . . , ei} where the e′is are reversible edges. In
this way a staircase realization of Gk = Skeleton(Ch) is eventually produced. Full
details are deferred to the full paper version•

4. Conclusions

Maximal chains in the weak Bruhat order of the symmetric group are consistent
sets that determine structurally maximally connected consistent sets. With each
such maximal consistent set we associate a persistent graph that turns out to be a
visibility graph of a simple polygon. An interpretation of these results is that these
classes of voters profiles can be represented by non-degenerate staircase configura-
tion of points(one point per candidate) where each voter ranking is hisview of the
point configuration. This offer a meta generalization of conditions for transitivity
of the majority rule. Many intereting questions remain to be answered. They are:

(1) Are there any maximal consistent subsets of Sn of larger cardinality than
those which are characterized as Closure(Ch) with Ch a maximal chain in
(Sn,≤ WB) ?

(2) Given C ⊂Sn what is the complexity of determining if C ⊂ Closure(Ch)
for some Ch a maximal chain in (Sn,≤ WB) ?

(3) How to generalize the results obtained here to weak orders instead of linear
orders?
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