Workshop on Adversarial Decision Making

Adversarial Risk Analysis for Counterterrorism Modeling

Jesus Rios
IBM research

joint work with David Rios Insua

Outline

- Motivation
- ARA framework: Predicting actions from intelligent others
- (Basic) counterterrorism models
 - Sequential Defend-Attack model
 - Simultaneous Defend-Attack model
 - Defend-Attack-Defend model
 - Sequential Defend-Attack model with Defender's private info.
- Discussion

Motivation

- Biological Threat Risk Analysis for DHS (Battelle, 2006)
 - Based on Probability Event Trees (PET)
 - Government & Terrorists' decisions treated as random events
- Methodological improvements study (NRC committee)
 - PET appropriate for risk assessment of
 - Random failure in engineering systems but not for adversarial risk assessment
 - Terrorists are intelligent adversaries trying to achieve their own objectives
 - Their decisions (if rational) can be somehow anticipated
 - PET cannot be used for a full risk management analysis
 - Government is a decision maker not a random variable

Methodological improvement recommendations

- Distinction between risk from
 - Nature/Chance vs.
 - Actions of intelligent adversaries
- Need of models to predict Terrorists' behavior
 - Red team role playing (simulations of adversaries thinking)
 - Attack-preference models
 - Examine decision from Attacker viewpoint (T as DM)
 - Decision analytic approaches
 - Transform the PET in a decision tree (G as DM)
 - How to elicit probs on terrorist decisions??
 - Sensitivity analysis on (problematic) probabilities
 - » Von Winterfeldt and O'Sullivan (2006)
 - Game theoretic approaches
 - Transform the PET in a game tree (G & T as DM)

Adversarial risk problems

- Two (or more) intelligent opponents
 - Defender invests in a portfolio of defense options
 - Terrorists invest effort and distribute resources among different types of attack
- Uncertain outcomes
 - arising both from randomness and our lack of knowledge
- Advise the Defender to efficiently spend resources
 - To reduce/eliminate the risks from malicious (or self-interested) actions of intelligent adversaries

Tools for analysis

- Chance and uncertainty analysis
 - Statistical risk analysis
 - Terrorists' actions as a random variables
- Decision making paradigms
 - Game theory (multiple DMs)
 - Terrorists' actions as a decision variables
 - Decision Analysis (unitary DM)
 - Terrorists' actions as a random variables
- Graphical representations
 - Game and decision trees
 - Multi-agent Influence Diagrams

Critiques to the Game Theoretic approach

- Unrealistic assumptions
 - Full and common knowledge assumption
 - e.g. Attacker's objectives are known
 - Common prior assumption for games with private information
- Symmetric predictive and descriptive approach
 - What if multiple equilibria
 - Passive understanding
- Equilibria does not provide partisan advise
- Impossibility to accommodate all kind of information that may be available (intelligence about what the attacker might do)

Decision analytic approaches

- One-sided prescriptive support
 - Use a prescriptive model (SEU) for supporting the Defender
 - Treat the Attacker's decision as uncertainties
 - Help the Defender to assess probabilities of Attacker's decisions
- The 'real' bayesian approach to games (Kadane & Larkey 1982)
 - Weaken common (prior) knowledge assumption
- Asymmetric prescriptive/descriptive approach (Raiffa 2002)
 - Prescriptive advice to one party conditional on a (probalistic) description of how others will behave
- Adversarial Risk Analysis
 - Develop methods for the analysis of the adversaries' thinking to anticipate their actions.
 - We assume the Attacker is a *expected utility maximizer*
 - But other (descriptive) models may be possible

Predicting actions from intelligent others

- Decision analytic approach
 - Prob over the actions of intelligent others
 - Compute defence of maximum expected utility
- How to assess a probability distribution over the actions (attacks) of an intelligent adversary??
- (Probabilistic) modeling of terrorist's actions
 - Attack-preference models
 - Examine decision from Attacker viewpoint

Parnell (2007)

- Elicit Terrorist's probs and utilities from our viewpoint
 - Point estimates
- Solve Terrorist's decision problem
 - Finding Terrorist's action that gives him max. expected utility
- Assuming we know the Terrorist's true probs and utilities
 - We can anticipate with certitude what the terrorist will do

Paté-Cornell & Guikema (2002)

Attacker Defender

Paté-Cornell & Guikema (2002)

- Assessing probabilities of terrorist's actions
 - From the <u>Defender viewpoint</u>
 - Model the Attacker's decision problem
 - Estimate Attacker's probs and utilities
 - Calculate expected utilities of attacker's actions
 - Prob of attacker's actions <u>proportional</u> to their perceived expected utilities
- Feed with these probs the uncertainty nodes with Attacker's decisions in the Defender's influence diagram
 - Choose defense of maximum expected utility
- Shortcoming
 - If the (idealized) adversary is an expected utility maximizer
 he would certainly choose the attack of max expected utility
 - a choice that could be divined by the analyst,
 if the analyst knows the adversary's true utilities and risk analysis

How to assess probabilities over the actions of an intelligent adversary??

- Raiffa (2002): Asymmetric prescriptive/descriptive approach
 - Lab role simulation experiments
 - Assess probability distribution from experimental data
- Our proposal: Rios Insua, Rios & Banks (2009)
 - Assessment based on an analysis of the adversary rational behavior
 - Assuming the Attacker is a SEU maximizer
 - Model his decision problem
 - Assess his probabilities and utilities
 - Find his action of maximum expected utility
 - Uncertainty in the Attacker's decision stems from
 - our uncertainty about his probabilities and utilities
 - Sources of information
 - Available past statistical data of Attacker's decision behavior
 - Expert knowledge / Intelligence
 - Non-informative (or reference) distributions

Counterterrorism modeling

- Basic models
- Standard Game Theory vs. Bayesian Decision Analysis
- Supporting the Defender against an Attacker
- How to assess Attacker's decisions (probability of Attacker's actions)
 - No infinity regress
 - sequential Defender-Attacker model
 - Infinity regress
 - simultaneous Defender-Attacker model

Sequential Defend-Attack model

- Two intelligent players
 - Defender and Attacker
- Sequential moves
 - First Defender, afterwards Attacker knowing Defender's decision

Standard Game Theoretic Analysis

Expected utilities at node S

$$\psi_D(d, a) = p_D(S = 0|d, a) \ u_D(d, S = 0) + p_D(S = 1|d, a) \ u_D(d, S = 1)$$

$$\psi_A(d, a) = p_A(S = 0 \mid d, a) \ u_A(a, S = 0) + p_A(S = 1 \mid d, a) \ u_A(a, S = 1)$$

Best Attacker's decision at node A

$$a^*(d) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A(d, a)$$

Assuming Defender knows Attacker's analysis

Defender's best decision at node D

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \psi_D(d, a^*(d))$$

Solution: $(d^*, a^*(d^*))$

ARA: Supporting the Defender

Defender's problem D d, aA|d $u_D(d,S)$

Defender's solution of maximum SEU

$$\psi_D(d, a) = p_D(S = 0|d, a) \ u_D(d, S = 0) + p_D(S = 1|d, a) \ u_D(d, S = 1)$$

$$\psi_D(d) = \psi_D(d, a_1) \ p_D(A = a_1|d) + \psi_D(d, a_2) \ p_D(A = a_2|d)$$

$$d^* = \arg\max_{d \in X_D} \psi_D(d)$$

Modeling input: $p_D(S|a,d) \left(p_D(A|d)\right)$?

Example: Banks-Anderson (2006)

- Exploring how to defend US against a possible smallpox attack
 - Random costs (payoffs)

	No Attack	Minor Attack	Major Attack
Stockpile	C_{11}	C_{12}	C_{13}
Biosurveillance	C_{21}	C_{22}	C_{23}
First Responders	C_{31}	C_{32}	C_{33}
Mass Inoculation	C_{41}	C_{42}	C_{43}

 Conditional probabilities of each kind of smallpox attack given terrorist knows what defence has been adopted

> This is the problematic step of the analysis

	No Attack	Minor Attack	Major Attack
Stockpile	.95	.040	.010
Biosurveillance	.96	.035	.005
First Responders	.96	.039	.001
Mass Inoculation	.99	.009	.001

- Compute expected cost of each defence strategy
- Solution: defence of minimum expected cost

Predicting Attacker's decision: $p_D(A \mid d)$

Solving the assessment problem

Elicitation of $p_D(A \mid d)$

A is an EU maximizer

D's beliefs about $(u_A, p_A) \sim (P_A, U_A) = F$

$$\Psi_A(d, a) = P_A(S = 0 \mid d, a) \ U_A(a, S = 0) + P_A(S = 1 \mid d, a) \ U_A(a, S = 1)$$

$$p_D(A = a|d) = \mathbb{P}_F[a = \operatorname{argmax}_{x \in A} \Psi_A(d, x)]$$

MC simulation

$$\{(p_A^i, u_A^i)\}_{i=1}^n \sim F \longrightarrow \psi_A^i \sim \Psi_A$$
$$a_i^*(d) = \operatorname{argmax}_{x \in \mathcal{A}} \psi_A^i(x, d)$$

$$p_D(A = a|d) \approx \#\{a = a_i^*(d)\}/n$$

Bayesian decision solution for the sequential Defend- Attack model

- 1. Assess (p_D, u_D) from the Defender
- 2. Assess $F = (P_A, U_A)$, describing the Defender's uncertainty about (p_A, u_A)
- 3. For each d, simulate to assess $p_D(A|d)$ as follows:
 - (a) Generate $(p_A^i, u_A^i) \sim F$, i = 1, ..., nSolve $a_i^*(d) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A^i(d, a)$
 - (b) Approximate $\hat{p}_D(A = a|d) = \#\{a = a_i^*(d)\}/n$
- 4. Solve the Defender's problem

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \psi_D(d, a_1) \, \hat{p}_D(A = a_1 | d) + \psi_D(d, a_2) \, \hat{p}_D(A = a_2 | d)$$

Simultaneous Defend-Attack model

Decisions are taken without knowing each other's decisions

Game Theory Analysis

- Common knowledge
 - Each knows expected utility of every pair (d,a) for both of them
 - Nash equilibrium: (d*, a*) satisfying

$$\psi_D(d^*, a^*) \ge \psi_D(d, a^*) \ \forall d \in \mathcal{D}$$
$$\psi_A(d^*, a^*) \ge \psi_A(d^*, a) \ \forall a \in \mathcal{A}$$

- When some information is not common knowledge
 - Private information
 - Type of Defender and Attacker

$$\tau_D \in T_D \longrightarrow u_D(d, s, \tau_D) \quad p_D(S \mid d, a, \tau_D)$$

$$\tau_A \in T_A \longrightarrow u_A(d, s, \tau_D) \quad p_A(S \mid d, a, \tau_D)$$

- Common prior over private information $\pi(\tau_D, \tau_A)$
- Model the game as one of incomplete information

Bayes Nash Equilibrium

- Strategy functions
 - Defender $d: \tau_D \to d(\tau_D) \in \mathcal{D}$
 - Attacker $a: \tau_A \to a(\tau_A) \in \mathcal{A}$
- Expected utility of (d,a)
 - for Defender, given her type $\psi_D(d(\tau_D), a, \tau_D) =$

$$= \int \left[\sum_{s \in S} u_D(d(\tau_D), s, \tau_D) \ p_D(S = s \mid d(\tau_D), a(\tau_A), \tau_D) \right] \pi(\tau_A \mid \tau_D) \ d\tau_A$$

$$\psi_D(d(\tau_D), a(\tau_A), \tau_D)$$

- Similarly for Attacker, given his type $\psi_A(d,a(\tau_A), au_A)$
- Bayes-Nash Equlibrium (d*, a*) satisfying

$$\psi_D(d^*(\tau_D), a^*, \tau_D) \ge \psi_D(d(\tau_D), a^*, \tau_D) \quad \forall \, d : \tau_D \to d(\tau_D)$$

 $\psi_A(d^*, a^*(\tau_A), \tau_A) \ge \psi_A(d^*, a(\tau_A), \tau_A) \quad \forall \, a : \tau_A \to a(\tau_A)$

ARA: Supporting the Defender

Weaken common (prior) knowledge assumption

Defender's decision analysis

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} u_D(d,s) \ p_D(S = s \mid d,a) \right] \underbrace{\pi_D(A = a)}_{\text{How to}}$$
How to

How to elicit it ??

 u_D

Assessing: $\pi_D(A=a)$

 Attacker's decision analysis as seen by the Defender

$$a^* = \operatorname{argmax}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[\sum_{s \in \{0,1\}} u_A(a,s) \ p_A(S = s \mid d, a) \right] \pi_A(D = d)$$

$$(u_A, p_A, \pi_A) \sim (U_A, P_A, \Pi_A)$$

$$\psi_A(d, a)$$

 u_A

Assessing $\pi_D(A=a)$

$$A \mid D \sim \operatorname{argmax}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[\sum_{s \in \{0,1\}} U_A(a,s) \ P_A(S=s \mid d,a) \right] \Pi_A(D=d)$$

$$\Psi_A(d,a)$$

- $\Pi_A(D=d)$
 - Attacker's uncertainty about Defender's decision $\pi_A(D=d)$
 - Defender's uncertainty about the model used by the Attacker to predict what defense the Defender will choose $\pi_A \sim \Pi_A$
- The elicitation of $\Pi_A(D=d)$ may require further analysis Next level of recursive thinking

$$D \mid A^{1} \sim \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} U_{D}(d,s) \ P_{D}(S = s \mid d,a) \right] \Pi_{D}(A^{1} = a)$$

$$\Psi_{D}(d,a)$$

The assessment problem

- To predict Attacker's decision The Defender needs to solve Attacker's decision problem She needs to assess (u_A, p_A, π_A)
- Her beliefs about $(u_A, p_A, \pi_A) \sim (U_A, P_A, \Pi_A)$
- The assessment of $\Pi_A(D=d)$ requires further analysis
 - D's analysis of A's analysis of D's problem
 Thinking-about-what-the-other-is-thinking-about...
- It leads to a hierarchy of nested decision models

Hierarchy of nested decision models

Repeat

Find $\Pi_{D^{i-1}}(A^i)$ by solving

$$A^{i} \mid D^{i} \sim \operatorname{argmax}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[\sum_{s \in \{0,1\}} U_{A}^{i}(a,s) P_{A}^{i}(S = s \mid d, a) \right] \Pi_{A^{i}}(D^{i} = d)$$
where $(U_{A}^{i}, P_{A}^{i}) \sim F^{i}$

Find $\Pi_{A^i}(D^i)$ by solving

$$D^i \mid A^{i+1} \sim \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} U_D^i(d,s) \ P_D^i(S=s \mid d,a) \right] \Pi_{D^i}(A^{i+1}=a)$$
 where $(U_D^i, P_D^i) \sim G^i$

$$i = i + 1$$

Stop when the Defender has no more information about utilities and probabilities at some level of the recursive analysis

How to stop this infinite regress?

Potentially infinite analysis of nested decision models

- Game Theory
 - Game Theory

 Full and common knowledge assumption: $\begin{cases} d^* = \operatorname{argmax}_{d \in \mathcal{D}} & \psi_D(d, a^*) \\ a^* = \operatorname{argmax}_{a \in \mathcal{A}} & \psi_A(d^*, a) \end{cases}$ (u_A, p_A, u_D, p_D)

$$- \quad \text{Common prior assumption:} \left\{ \begin{array}{l} \mathsf{A} = \mathsf{A}^1 = \dots \\ \mathsf{D} = \mathsf{D}^1 = \dots \end{array} \right.$$

- ARA: where to stop?
 - when no more info can be accommodated
 - Non-informative or reference model
 - Sensitivity analysis test

A numerical example

- Defender chooses d₁ or d₂
- Simultaneously Attacker must choose a₁ or a₂
- Defender assessments:

$u_D(d,s)$			$p_D(S=1 \mid d,$		
	s = 1	s = 0		a_1	a_2
d_1	50	80	d_1	0.1	0
d_2	0	100	d_2	0.9	0

- Two different types of Attacker
 - Type I prob 0.8
 - Type II prob 0.2

$$(U_{A_I}, P_{A_I}) \sim F_I$$
:
$$U_{A_I}(a, s) \qquad P_{A_I}(S = 1 \mid d, a)$$

$$s = 1 \qquad s = 0 \qquad a_1 \qquad a_2$$

$$a_1 \qquad Tri(20, 100, 100) \qquad Tri(0, 20, 100) \qquad d_1 \qquad \mathcal{U}[0, 1] \qquad 0$$

$$a_2 \qquad 100 \qquad Tri(0, 40, 100) \qquad d_2 \qquad Tri(0.5, 1, 1) \qquad 0$$

$(U_{A_{II}}, P_{A_{II}}) \sim F_{II}$:							
	$U_{A_{II}}(a,s)$				$P_{A_{II}}(S=1\mid d,a)$		
		s = 1	s = 0			a_1	a_2
	a_1	$\mathcal{U}[0, 100]$	Tri(0, 20, 100)		d_1	Tri(0,0,1)	0
	a_2	100	Tri(40, 80, 90)		d_2	Tri(0,1,1)	0

- Defender thinks that a Type I Attacker is intelligent enough to analyze her problem
 - A Type I Attacker's beliefs about her utilities and probabilities are

$$(U_{D_I}, P_{D_I}) \sim G_I$$
: $U_{D_I}(d, s)$ $P_{D_I}(S = 1 \mid d, a)$ $S = 1$ $S = 0$ a_1 a_2 d_1 $Tri(0, 0, 40)$ $U[50, 100]$ d_1 $Tri(0, 0, 0.5)$ 0 d_2 $Tri(0, 0, 40)$ $U[50, 100]$ d_2 $U[0, 1]$ 0

$$\Pi_{A_I}(D_I = d_1) \sim \mathcal{B}e(\alpha, 10 - \alpha)$$
, where $\alpha = \pi_{A_I}(D_I = d_1) \times 10$

However, the Defender does not know how a Type II
 Attacker would analyze her problem, but believes that

$$\Pi_{A_{II}}(D_{II}=d_1) \sim \mathcal{B}e(75,25)$$

 Defender: what does Type I Attacker think to be her beliefs about what he will do?

$$\Pi_{D_I}(A_I^1 = a_1) \sim \mathcal{U}[0, 1]$$

- Solving Defender's decision problem
 - Computing her defense of max. expected utility
- She first needs to compute
 - Her predictive distribution about what an Attacker will do

$$\pi_D(A = a_1) = 0.8 \times \pi_D(A_I = a_1) + 0.2 \times \pi_D(A_{II} = a_1)$$

$$\pi_D(A_I = a_1) \longrightarrow$$

- $\pi_D(A_I = a_1)$ 1. For k = 1, ..., n, repeat

 Draw $\pi_{D_I}^k \sim \Pi_{D_I}$, that is $\pi_{D_I}^k(A_I^1 = a_1) \sim \mathcal{U}[0, 1]$.
 - Draw $(u_{D_I}^k, p_{D_I}^k) \sim (U_{D_I}, P_{D_I}) = G_I$
 - Compute

$$d_{I}^{k} = \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} u_{D_{I}}^{k}(d,s) \ p_{D_{I}}^{k}(S = s \mid d,a) \right] \pi_{D_{I}}^{k}(A_{I}^{1} = a)$$

2. Approximate $\pi_{A_I}(D_I = d_1)$ through $\hat{\pi}_{A_I}(D_I = d_1) = \#\{d_I^k = d_1\}/n$.

Set
$$\hat{\Pi}_{A_I}(D_I = d_1) \sim \mathcal{B}e(\alpha, 10 - \alpha)$$
, with $\alpha = \hat{\pi}_{A_I}(D_I = d_1) \times 10$.

- 3. For $k = 1, \ldots, n$, repeat
 - Draw $\hat{\pi}_{A_I}^k \sim \hat{\Pi}_{A_I}$, that is $\hat{\pi}_{A_I}^k(D_I = d_1) \sim \hat{\Pi}_{A_I}(D_I = d_1)$
 - Draw $(u_{A_I}^k, p_{A_I}^k) \sim (U_{A_I}, P_{A_I}) = F_I$
 - Compute

$$a_I^k = \operatorname{argmax}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[\sum_{s \in \{0,1\}} u_{A_I}^k(a,s) \ p_{A_I}^k(S = s \mid d, a) \right] \hat{\pi}_{A_I}^k(D_I = d)$$

4. Approximate $\pi_D(A_I = a_1)$ through $\hat{\pi}_D(A_I = a_1) = \#\{a_I^k = a_1\}/n$.

$$\pi_D(A_{II} = a_1) \longrightarrow 1$$
. For $k = 1, ..., n$, repeat

- Draw $\pi_{A_{II}}^k \sim \Pi_{A_{II}}$, that is $\pi_{A_{II}}^k(D_{II} = d_1) \sim \mathcal{B}e(75, 25)$.
- Draw $(u_{A_{II}}^k, p_{A_{II}}^k) \sim (U_{A_{II}}, P_{A_{II}}) = F_{II}$
- Compute

$$a_{II}^k = \operatorname{argmax}_{a \in \mathcal{A}} \sum_{d \in \mathcal{D}} \left[\sum_{s \in \{0,1\}} u_{A_{II}}^k(a,s) \ p_{A_{II}}^k(S = s \mid d, a) \right] \pi_{A_{II}}^k(D_{II} = d)$$

- 2. Approximate $\pi_D(A_{II} = a_1)$ through $\hat{\pi}_D(A_{II} = a_1) = \#\{a_{II}^k = a_1\}/n$.
- In a run with n=1000, we got

$$\hat{\pi}_D(A_I = a_1) = 0.97 \times 0.8$$

$$\hat{\pi}_D(A_{II} = a_1) = 0.82 \times 0.2$$

$$\hat{\pi}_D(A = a_1) = 0.94$$

And, now the Defender can solve her problem

$$d^* = \operatorname{argmax}_{d \in \mathcal{D}} \sum_{a \in \mathcal{A}} \left[\sum_{s \in \{0,1\}} u_D(d,s) \ p_D(S = s \mid d,a) \right] \pi_D(A = a)$$

 $d^* = d_1$ with (MC estimated) expected utility 77, against d_2 with 15

Defend-Attack-Defend model

skip

Standard Game Theory Analysis

- Under common knowledge of utilities and probs
- At node D_2

$$d_2^*(d_1, s) = \operatorname{argmax}_{d_2 \in \mathcal{D}_2} u_D(d_1, s, d_2)$$

Expected utilities at node S

$$\psi_D(d_1, a) = \int u_D(d_1, s, d_2^*(d_1, s)) \ p_D(s \mid d_1, a) \ ds$$

$$\psi_A(d_1, a) = \int u_A(a, s, d_2^*(d_1, s)) p_A(s \mid d_1, a) ds$$

Best Attacker's decision at node A

$$a^*(d_1) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A(d_1, a)$$

Best Defender's decision at node D_1

$$d_1^* = \operatorname{argmax}_{d_1 \in \mathcal{D}_1} \psi_D(d_1, a^*(d_1))$$

Nash Solution: $d_1^* \in \mathcal{D}_1$ $a^*(d_1^*) \in \mathcal{A}$ $d_2^*(d_1^*, s) \in \mathcal{D}_2$

ARA: Supporting the Defender

At node A

$$\psi_D(d_1) = \int \psi_A(d_1, a) \ p_D(a \mid d_1) \ da$$

• At node D_1

$$d_1^* = \operatorname{argmax}_{d_1 \in \mathcal{D}_1} \psi_D(d_1)$$

• $p_D(A \mid d_1)$??

Assessing $p_D(A \mid d_1)$

Attacker's problem as seen by the Defender

Assessing $p_D(A \mid d_1)$

• At chance node D_2 , compute

$$(d_1, a, s) \to \Psi_A(d_1, a, s) = \int U_A(a, s, d_2) P_A(D_2 = d_2 \mid d_1, s) dd_2$$

• At chance node S

$$(d_1, a) \to \Psi_A(d_1, a) = \int \Psi_A(d_1, a, s) P_A(S = s \mid d_1, a) ds$$

• At decision node A

$$d_1 \to A^*(d_1) = \operatorname{argmax}_{a \in \mathcal{A}} \Psi_A(d_1, a)$$

•
$$p_D(A = a \mid d_1) = \Pr(A^*(d_1) = a)$$

Monte-Carlo approximation of $p_D(A \mid d_1)$

- Drawn $\{(u_A^i(a,s,d_2), p_A^i(S \mid d_1,a), p_A^i(D_2 \mid d_1,s))\}_{i=1}^n \sim F$
- Generate $\{a_i^*(d_1)\}_{i=1}^n$ by
 - At chance node D_2 $(d_1, a, s) \to \psi_A^i(d_1, a, s) = \int u_A^i(a, s, d_2) \ p_A^i(D_2 = d_2 \mid d_1, s) \ dd_2$
 - At chance node S $(d_1, a) \to \psi_A^i(d_1, a) = \int \psi_A^i(d_1, a, s) \ p_A^i(S = s \mid d_1, a) \ ds$
 - At decision node A $d_1 \to a_i^*(d_1) = \operatorname{argmax}_{a \in \mathcal{A}} \psi_A^i(d_1, a)$

Approximate

$$p_D(A = a \mid d_1) \approx \#\{a_i^*(d) = a\}/n$$

The assessment of $p_A(D_2 \mid d_1, s)$

 The Defender may want to exploit information about how the Attacker analyzes her problem

Hierarchy of recursive analysis

Discussion

- DA vs GT
 - A Bayesian prescriptive approach to support a Defender against an Attacker
 - Computation of her defense of maximum expected utility
 - Weaken common (prior) knowledge assumption
 - Analysis and assessment of Attacker' thinking to anticipate his actions
 - The assessment problem under infinite regress
- We have assumed that the Attacker is a expected utility maximizer
 - Other descriptive models of rationality (non expected utility models)
- Several simple but illustrative models
 - What if
 - more complex dynamic interactions?
 - against more than one Attacker or an uncertain number of them?
- More than one agent at each side
 - Two or more countries coordinate resources to counter two or more terrorist groups
 - External model on the intelligent adversaries' behaviour
- Implementation issues
 - Elicitation of a valuable judgmental input from Defender
 - Computational issues
- Real problems

Some references

- Banks, D. and S. Anderson (2006) Game theory and risk analysis in the context of the smallpox threat, in A. Wilson, G. Wilson and D. Olwell (ed) Statistical Methods in Counterterrorism, 9-22.
- Kadane, J.B. and P.D. Larkey (1982) Subjective probability and the theory of games, *Management Science*, 28, 113-120.
- Parnell, G. (2007) Multi-objective Decision Analysis, in Voeller (ed) Handbook of Science and Technology for Homeland Security, Wiley.
- Parnell, G., Banks, D., Borio, L., Brown, G., Cox, L. A., Gannon, J., Harvill, E., Kunreuther, H., Morse, S., Pappaioanou, M., Pollack, S., Singpurwalla, N., and Wilson, A. (2008).
 Report on Methodological Improvements to the Department of Homeland Security's Biological Agent Risk Analysis, National Academies Press.
- Pate-Cornell, E. and S. Guikema (2002) Probabilistic modeling or terrorist threats: a systematic analysis approach to setting priorities among countermeasures, *Military Operations Research*, 7, 5-23.
- Raiffa, H. (2002) Negotiation Analysis, Harvard University Press.
- Rios Insua, D. J. Rios, and D. Banks (2009) Adversarial risk analysis, Journal of the American Statistical Association, 104, 841-854.
- von Winterfeldt, D. and T.M. O'Sullivan (2006) Should we protect commercial airplanes against surface-to-air missile attacks by terrorists? *Decision Analysis*, 3, 63-75.