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Simple Counter-terrorism 
Decision 

Defender has n alternatives

Attacker has m alternatives

States of information
Common
Defender
Attacker

Consequences 
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Simple Counter-terrorism 
Decision

Usual framework is threat, vulnerability, and 
consequence
Vulnerability is represented by two events

Success or failure of any defenses the 
defender decides to implement
Attacker’s success in carrying out the attack 
if the defender fails

Threat is also represented by two events
Attacker gains the capability to perform a 
given attack
Attacker decides to use a given attack 
capability 
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Container Security
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Nuclear materials and 
devices

Example 1
We use container screening for radiological material as a 
rich and representative example of homeland security 
decisions

Each year 20.4 million containers enter the US (Bonner 2005)
Bakir (2008) estimates the probability that terrorists will use a 
container to smuggle radiological material into the US in the 
next 10 years to be 0.1. This estimate includes 

• A probability of 0.4 that terrorists will acquire the capability for a 
RDD 

• A probability of 0.25 that they will attempt to smuggle their device 
into the US inside a container

The probability that the smuggling attempt is thwarted by 
screening is 0.8
Bakir (2008) assumes a 0.5 chance that the attack either is 
stopped inside the country or is not successfully carried out
The consequence distribution for attack 1 to be 

• $10 billion with probability 0.3
• $40 billion with probability 0.4
• $100 billion with probability 0.3

For attack 2, we assume the consequences to be half these 
estimates. 



Defender Event Tree
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Defender Bayesian Network

Attacker Capability
Yes
No

40.0
60.0

Attacker Decision
Attack1
Attack2

25.0
75.0

Defender Success
Yes
No

8.00
92.0

Attacker Success
Yes
No

16.0
84.0

Defender Consequences
High1
Medium1
Low1
High2
Medium2
Low2
None

0.30
0.40
0.30
4.50
6.00
4.50
84.0

4.16 ± 13



Attacker Event Tree

Attack 2

Attack 1
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Attacker Bayesian Network

Attacker Capability
Yes
No

40.0
60.0

Attacker Decision
Attack1
Attack2

100.
   0

Defender Success
Yes
No

32.0
68.0

Attacker Success
Yes
No

4.00
96.0

Defender Consequences
High1
Medium1
Low1
High2
Medium2
Low2
None

1.20
1.60
1.20

   0
   0
   0

96.0
1.96 ± 12

Attack 2

Attack 1

Attacker Capability
Yes
No

40.0
60.0

Attacker Decision
Attack1
Attack2

   0
100.

Defender Success
Yes
No

   0
 100

Attacker Success
Yes
No

20.0
80.0

Defender Consequences
High1
Medium1
Low1
High2
Medium2
Low2
None

   0
   0
   0

6.00
8.00
6.00
80.0

4.9 ± 13



Defender Decision Tree 
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Attacker Decision Tree 
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Simultaneous Games

Defender 
Decision

Attacker 
Decision

4.99.8No

4.91.96Yes

Attack 2Attack 1

Defender 
Decision

Attacker 
Decision

4.99.8No

4.91.96Yes

Attack 2Attack 1
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Sequential Games 
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Intelligent Adversary Risk Analysis 
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Joint Attacker and 
Defender Decision Trees



Adversarial Risk Analysis 

Attacker sub-model for D=d1

P(θ=10) = 0.5               P(θ=5) = 0.5
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Adversarial Risk Analysis

Attacker sub-model for D=d2

P(θ=10) = 0.5               P(θ=5) = 0.5
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Adversarial Risk Analysis
Attacker sub-

model for D=d1

Attacker sub-
model for D=d2
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Summary of Methods
Method Uncertainties Defender Decisions Attacker Decisions State of 

Information

Defender 
Event trees

Attacker decision,
Attacker capability,
Defense success,
Attack success given defense 
failure,
Defender consequences

Known a priori None
Defender’s 
probabilities and 
consequences used

Attacker 
Event Tree

Attacker capability,
Defender success,
Attack success,
Attacker consequences

Known a priori Known a priori
Defender’s 
probabilities and 
consequences used

Bayesian  
Network Any of the above

Defender’s 
probabilities and 
consequences used

Defender 
Decision Tree

Attacker decision,
Attacker capability,
Defense success,
Attack success given defense 

failure,
Defender consequences

Solved by backwards 
induction (minimizing 
expected defender 
consequences)

None
Defender’s 
probabilities and 
consequences used

Attacker 
Decision Tree

Attacker capability,
Screening success,
Attack success,
Attacker consequences

Known a priori

Solved by backwards 
induction 
(maximizing 
expected attacker 
consequences)

Defender’s 
probabilities and 
consequences used

Influence 
Diagrams Any of the above

Defender’s 
probabilities and 
consequences used



Summary of Methods
Method Uncertainties Defender Decisions Attacker Decisions State of 

Information

Simultaneous 
Games

None Solved by finding Nash equilibrium Defender’s 
consequences used

Sequential 
Games

None Solved by backwards induction (maximizing attacker 
consequences and minimizing defender consequences)

Defender’s 
consequences used

Intelligent 
Adversary 
Risk Analysis

Attacker capability,
Defense success,
Attack success given defense 

failure,
Defender consequences

Solved by backwards induction
(maximizing expected attacker consequences and 

minimizing expected defender consequences)

Defender’s 
probabilities and 
consequences used

Adversarial 
Risk Analysis

Attacker capability,
Defense success,
Attack success given defense 
failure,
Defender consequences

Solved by backwards induction
(maximizing expected attacker consequences and 

minimizing expected defender consequences)

Defender’s 
probabilities and 
consequences used 
in defender tree 
and defender’s 
beliefs of attacker’s 
state of 
information.

Results Comparison
Method Expected 

Consequences 
Defender Decision Attacker Decisions 

Defender Event trees 4.165 Assumed Yes NA 
Attacker Event Tree 1.96 for Attack 1 

4.90 for Attack 2 
Assumed Yes NA 

Bayes Nets Equivalent to Event Trees 
Defender Decision 
Tree 

4.165 Yes Probabilities 
elicited 

Attacker Decision Tree 4.9 Assumed Yes Attack 2 
Influence Diagrams Equivalent to Decision Trees 
Simultaneous Games 4.9 Yes Attack 2 
Sequential Games 4.9 Yes Attack 2 
Intelligent Adversary 
Risk Analysis 

4.9 Yes Attack 2 

Adversarial Risk 
Analysis 

4.9 Yes Attack 2 

Adversarial Risk 
Analysis with 
Uncertainty 

3.43 Yes Probabilities 
derived from 

attacker sub-models 
 



Example 2

The attacker may not obtain attack capability for both 
attacks.
We specify a

0.4 chance that they will get the capability for attack 1 
0.1 chance they will get the capability for attack 2. 

Thus, there is a 
0.04 probability they will get both capabilities
0.36 probability they will get just attack 1 capability
0.06 probability they will get just attack 2 capability 
0.54 probability they will get neither capability

Defender Decision Tree



Attacker Decision Tree

Game Theory

Defender 
Decision

Attacker 
Decision

1.2259.8No

1.2251.96Yes

Attack 2Attack 1

Defender 
Decision

Attacker 
Decision

1.2259.8No

1.2251.96Yes

Attack 2Attack 1



Intelligent Adversary Risk Analysis

Results Comparison

Method Expected 
Consequences 

Defender 
Decisions 

Attacker Decisions 

Defender Event trees 2.915 Assumed Yes NA 
Attacker Event Tree 2.695 (Attack 1 if 

capable) 
2.989 (Attack 2 if 

capable) 

Assumed Yes NA 

Bayes Nets Equivalent to Event Trees 
Defender Decision Tree 2.915 Yes Uncertain 
Attacker Decision Tree 2.989 Assumed Yes Attack 2 if capable 
Influence Diagrams Equivalent to Decision Trees 
Simultaneous Games 1.96 Yes Attack 1 
Sequential Games 1.96 Yes Attack 1 
Intelligent Adversary Risk 
Analysis 

2.989 Yes Attack 2 if capable 

Adversarial Risk Analysis 2.989 Yes Attack 2 if capable 
Adversarial Risk Analysis 
with Uncertainty 

2.842 Yes Probabilities derived from 
attacker sub-models 

 



Risk Assessment 
Defender event trees and decision trees that represent 
attacker decisions as probabilities estimate lower 
expected consequences than equivalent attacker event 
trees and decisions trees. 

Each successive attacker decision modeled as a 
probability node reduces the expected consequences 
accordingly. 
Intelligent adversary risk analysis and adversarial risk 
analysis estimate expected consequences equal to those 
of attacker models. 
Simultaneous and sequential game theory approaches 
that use simple expected consequence measures do not 
provide the flexibility to model the order of decisions and 
uncertainties, and thus arrive at different expected 
consequences than other approaches in the second 
example. 

Intelligent adversary risk analysis and adversarial risk 
analysis estimate the same expected consequences if 
the same probabilities and consequences are used in 
the attacker sub-models. 

Risk Assessment

When the defender expresses uncertainty about the 
attacker’s beliefs and preferences in adversarial risk 
analysis, the result is a distribution over the attacker’s 
decision, the same as specified in the defender decision 
tree. 

Ezell et al. (2010) assert that the decision maker must treat 
the attacker’s decision as an uncertainty and specify a 
probability distribution over the alternatives. 
However, the adversarial risk analysis approach can be 
considered a decomposition of this complex distribution, 
making each elicitation task easier. 
Suitably decomposed probability elicitations have been 
found to be better calibrated than those obtained without 
decomposition (Ravinder et al. 1988, Howard 1989, 
Mihajlovits and Merrick 2010). 



Risk Communication 

Event trees, influence diagrams with just probability 
nodes, and Bayesian networks with only probability 
nodes are all equivalent as they are following the laws of 
probability even though they use different solution 
algorithms. 

However, they communicate different aspects of the joint 
probability distribution. 

Influence diagrams show just the probabilistic 
dependencies with arrows but do not show probabilities. 
Event trees show prior distributions, conditional 
probabilities and the expected consequences at each 
node in the tree.  

Probabilistic dependencies must be deduced by examining 
the probabilities in the conditional probability distributions. 
The marginal probability distributions do not appear in the 
tree and must be calculated separately. 

Risk Communication 

Bayesian networks show probabilistic dependencies (with 
arrows), the prior distributions and marginal probabilities.  

They are much more effective for communication since the 
show all of the prior and marginal probability distributions of 
the risk results and are easier update as new information 
becomes available.  

For a risk communications perspective, Bayesian 
networks seem to be the most useful technique. 



Risk Management 

Event trees are less useful for assessing the risk posted 
by intelligent, adaptive adversaries. 

Event trees and decisions trees that specify fixed 
probabilities of attacker decisions will underestimate the 
potential defender risks. 
In addition, they do not show the shift in risk given the 
potential defender decisions. 
This can also be thought of as the adaptation of the attacker 
to defender decisions. 

Intelligent adversary risk analysis and adversarial risk analysis 
explicitly show such adaptation and the shift in risk based on 
defender decisions. 

Are the Attackers Rational?

We are using these methods 
prescriptively to improve the 
defender’s decision making

Rational decision axioms
Use subjective expected utility

Terrorists are surprisingly quantitative, 
but they are making unaided 
decisions

Boundedly rational
Descriptive decision models


