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What is game theory?
• Game theory studies settings where multiple parties 

(agents) each have( g )
– different preferences (utility functions),

– different actions that they can take– different actions that they can take

• Each agent’s utility (potentially) depends on all agents’ 
iactions

– What is optimal for one agent depends on what other agents do

• Very circular!

• Game theory studies how agents can rationally form y g y
beliefs over what other agents will do, and (hence) how 
agents should actagents should act
– Useful for acting as well as predicting behavior of others



Penalty kick example

probability .7

probability .3

action

probability 1

Is this a action

probability .6
“rational” 
outcome?  
If not, what 

action

probability .4 is?



Rock-paper-scissors
Column player akaColumn player aka. 
player 2 chooses a 

column

0, 0 -1, 1 1, -1
1, -1 0, 0 -1, 1

Row player
aka. player 1

chooses a row , , ,
-1, 1 1, -1 0, 0

c ooses a o

A row or column is , , ,
called an action or 

(pure) strategy
Row player’s utility is always listed first, column player’s secondp y y y , p y

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.



Matching pennies (~penalty kick)

L R

1, -1 -1, 1L

-1, 1 1, -1R



“Chicken”
• Two players drive cars towards each other

• If one player goes straight that player wins• If one player goes straight, that player wins

• If both go straight, they both die

S D

D S

0 0 1 1
D S

0, 0 -1, 1D not zero-sum

1, -1 -5, -5S



How to play matching pennies

L R
Them

1, -1 -1, 1L
Us

-1, 1 1, -1R
Us

• Assume opponent knows our strategy…
– hopeless?

• … but we can use randomization

• If we play L 60% R 40%If we play L 60%, R 40%...

• … opponent will play R…

t 6*( 1) 4*(1) 2• … we get .6*(-1) + .4*(1) = -.2

• What’s optimal for us?  What about rock-paper-scissors?



Matching pennies with a sensitive target

L R
Them

1, -1 -1, 1L
Us

-2, 2 1, -1R
Us

• If we play 50% L, 50% R, opponent will attack L

– We get .5*(1) + .5*(-2) = -.5g ( ) ( )

• What if we play 55% L, 45% R?

• Opponent has choice between• Opponent has choice between

– L: gives them .55*(-1) + .45*(2) = .35

R i th 55*(1) 45*( 1) 1– R: gives them .55*(1) + .45*(-1) = .1

• We get -.35 > -.5



Matching pennies with a sensitive target

L R
Them

1, -1 -1, 1L
Us

-2, 2 1, -1R
Us

• What if we play 60% L, 40% R?

• Opponent has choice betweenOpponent has choice between

– L: gives them .6*(-1) + .4*(2) = .2

R: gives them 6*(1) + 4*( 1) = 2– R: gives them .6 (1) + .4 (-1) = .2

• We get -.2 either way

• This is the maximin strategy

– Maximizes our minimum utility



Let’s change roles

L R
Them

1, -1 -1, 1L
Us

-2, 2 1, -1R
Us

• Suppose we know their strategy

• If they play 50% L, 50% R, von Neumann’s minimax y p y , ,

– We play L, we get .5*(1)+.5*(-1) = 0

• If they play 40% L 60% R

theorem [1927]: maximin 
value = minimax value

(~LP duality)If they play 40% L, 60% R,

– If we play L, we get .4*(1)+.6*(-1) = -.2

If we play R we get 4*( 2)+ 6*(1) = 2

( y)

– If we play R, we get .4 (-2)+.6 (1) = -.2

• This is the minimax strategy



Minimax theorem falls apart in 
nonzero-sum games

D S

0 0 -1 1D

D S

0, 0 1, 1
1 -1 -5 -5

D

S 1, 1 5, 5S

• Let’s say we play SLet s say we play S

• Most they could hurt us is by playing S as well

• But that is not rational for them

• If we can commit to S they will play DIf we can commit to S, they will play D
– Commitment advantage



Nash equilibrium [Nash 1950]q [ ]

• A profile (= strategy for each player) so that no 
player wants to deviateplayer wants to deviate

D S

0, 0 -1, 1D

1, -1 -5, -5S

• This game has another Nash equilibrium in g q
mixed strategies – both play D with 80%



The presentation game

Put effort into Do not put effort into

Presenter

Pay attention

Put effort into 
presentation (E) 

Do not put effort into 
presentation (NE)

Pay attention 
(A) 2, 2 -8, -7Audience

Do not pay 
attention (NA) 0, -1 0, 0

• Pure-strategy Nash equilibria: (A, E), (NA, NE)

• Mixed-strategy Nash equilibrium:Mixed strategy Nash equilibrium: 

((1/10 A, 9/10 NA), (4/5 E, 1/5 NE))

– Utility 0 for audience, -7/10 for presentery , p

– Can see that some equilibria are strictly better for both players than other equilibria, i.e. 
some equilibria Pareto-dominate other equilibria



Properties of Nash equilibrium in 
two-player games

• In zero-sum games, same thing as 
maximin/minimax strategiesmaximin/minimax strategies

• Any (finite) game has at least one Nash 
equilibrium [Nash 1950]

• PPAD complete to compute one Nash equilibrium• PPAD-complete to compute one Nash equilibrium 
[Daskalakis, Goldberg, Papadimitriou 2006; Chen & Deng, 2006]

• NP-hard & inapproximable to compute the “best” 
Nash equilibrium [Gilboa & Zemel 1989; Conitzer & Sandholm 2008]q



Nash isn’t optimal if one player 
can commit

2, 1 4, 0
U i N h

1, 0 3, 1
Unique Nash 
equilibrium

• Suppose the game is played as follows:
– Player 1 commits to playing one of the rows,

– Player 2 observes the commitment and then chooses a columnPlayer 2 observes the commitment and then chooses a column

• Optimal strategy for player 1: commit to Down



Commitment as an 
i fextensive-form game

Player 1

• For the case of committing to a pure strategy:

Player 1

Up Down

Player 2 Player 2

Left Left RightRight

2, 1 4, 0 1, 0 3, 1



Commitment to mixed strategiesg

2, 1 4, 0.49.5 , ,

1, 0 3, 1.51.5

• Assume follower breaks ties in leader’s favor
– In generic games this is the unique SPNE outcome of the extensive-

form game [von Stengel & Zamir 2010]

– We will also refer to this as a Stackelberg strategy



Commitment as an 
i fextensive-form game…

• for the case of committing to a mixed strategy:
Player 1

… for the case of committing to a mixed strategy:

(1,0) 
(=Up)

(0,1) 
(=Down)

(.5,.5)

… …
Player 2

Left Left RightRight Left Right

2, 1 4, 0 1, 0 3, 11.5, .5 3.5, .5

• Economist: Just an extensive form game nothing new here• Economist: Just an extensive-form game, nothing new here

• Computer scientist: Infinite-size game!  Representation matters



Computing the optimal mixed 
strategy to commit to

[C it & S dh l 2006 St l & Z i 2010][Conitzer & Sandholm 2006, von Stengel & Zamir 2010]

• Separate LP for every possible follower’s action t*
Leader utility

Distributional constraint

Follower optimality

• Choose t* for which the LP is feasible and has the 
highest objective The leader plays thehighest objective. The leader plays the 
corresponding strategy <ps>.

Slide 7



Easy polynomial-time algorithm 
for two playersfor two players 

[Conitzer & Sandholm 2006; von Stengel & Zamir 2010]

• For every column t separately, we solve separately for the 
best mixed row strategy (defined by ps) that induces player 
2 to play t

• maximize Σ p u (s t)• maximize Σs ps u1(s, t) 

• subject to 

for any t’, Σs ps u2(s, t) ≥ Σs ps u2(s, t’) 

Σ p = 1Σs ps  1

• (May be infeasible)

• Pick the t that is best for player 1



VisualizationVisualization

L C RL C R

U 0,1 1,0 0,0 (0,1,0) = M
M 4,0 0,1 0,0
D 0,0 1,0 1,1

( , , )

C

RL R

(1,0,0) = U (0,0,1) = D



Observations about commitment to a 
mixed strategy in a two-player game

• Coincides with minimax strategies in zero-sumCoincides with minimax strategies in zero sum 
games

• Leader’s payoff always at least as good as in any 
Nash equilibrium (see [von Stengel & Zamir 2010])q ( [ g ])
– Can simply commit to the Nash equilibrium strategy

– Follower breaks ties in your favor

– Actually at least as good as any correlated equilibrium
– Close relationship to LP for correlated equilibrium [Conitzer 2010 draft]

• No equilibrium selection problem• No equilibrium selection problem

• Natural notion of approximation



(a particular kind of) Bayesian games(a particular kind of) Bayesian games

l d tiliti
follower utilities follower utilities

2 4 1 0 1 0

leader utilities
f

(type 1)
f

(type 2)

2 4

1 3

1 0

0 1

1 0

1 3
probability .6 probability .4



Multiple types visualizationMultiple types - visualization
(0 1 0)(0,1,0)

C
Combined

C

R
(0,1,0)

(1,0,0)
L

(0,0,1)

(0,1,0)
(1,0,0) (0,0,1)

L R (R,C)

(1,0,0) C (0,0,1)





LAX techniques 
[Paruchuri et al. 2008, Pita et al. 2009]

• Uses Bayesian games framework

• Mixed integer programming formulation for 
solving Bayesian games optimallysolving Bayesian games optimally
– Much faster than converting game to normal 

form, solving that



(In)approximability
[Letchford Conitzer Munagala 2009][Letchford, Conitzer, Munagala 2009]

• (#types)-approximation: pick one type uniformly at random, 
optimize for it using LP approach
– … or (deterministic) optimize for every type separately, pick best

• Can’t do any better in polynomial time unless P=NPCan t do any better in polynomial time, unless P NP
– Reduction from INDEPENDENT-SET

• For adversarially chosen types, cannot decide in polynomial y y y
time whether it is possible to guarantee positive utility, 
unless P=NPunless P NP
– Again, a MIP formulation can be given



Reduction from independent setReduction from independent set

1 2 3
leader utilities

A B
al

1 1 0
al

2 1 0
al

3 1 0
f ll l f ll l f ll l

A B A B A B

follower utilities
(type 1)

follower utilities
(type 2)

follower utilities
(type 3)

A B
al

1 3 1
al

2 0 10

A B
al

1 0 10
al

2 3 1

A B
al

1 0 1
al

2 0 10l

al
3 0 1

l

al
3 0 10

l

al
3 3 1



Switching topics: Learningg p g

• Single follower typeSingle follower type

• Unknown follower payoffs

• Repeated play: commit to mixed strategy, 
see follower’s (myopic) response

L R
U 1 ? 3 ?U 1,? 3,?
D 2 ? 4 ?D 2,? 4,?



VisualizationVisualization

L C RL C R

U 0,1 1,0 0,0 (0,1,0) = M
M 4,0 0,1 0,0
D 0,0 1,0 1,1

( , , )

C

RL R

(1,0,0) = U (0,0,1) = D



SamplingSampling

C (0,1,0)

L R

(1 0 0) (0 0 1)(1,0,0) (0,0,1)



Three main techniques in q
the learning algorithm

• Find one point in each region (usingFind one point in each region (using 
random sampling)

• Find a point on an unknown hyperplane

• Starting from a point on an unknown 
hyperplane, determine the hyperplanehyperplane, determine the hyperplane 
completely



Finding a point on an unknown 
hyperplane

Intermediate state
Step 1. Sample in the overlapping region

Step 2.  Connect the new point to the pointp p p
in the region that doesn’t match

C
Step 3.  Binary search along this lineL R

L R

R or L

Region: R



Determining the hyperplaneDetermining the hyperplane

Intermediate state
Step 1. Sample a regular d-simplex
centered at the point

Step 2.  Connect d lines between points on
opposing sides

C
Step 3.  Binary search along these lines

Step 4. Determine hyperplane (and update

L R

L R

Step 4.  Determine hyperplane (and update 
the region estimates with this information)

R or L



Bound on number of samples

Theorem. Finding all of the hyperplanes necessary to 
compute the optimal mixed strategy to commit to 
requires O(Fk log(k) + dLk2) samples

– F depends on the size of the smallest region

L depends on desired precision– L depends on desired precision

– k is the number of follower actions

– d is the number of leader actions



Discussion about appropriateness of 
leadership model in security applications

• Mixed strategy not actually communicated

Ob bili f i d i ?• Observability of mixed strategies?
– Imperfect observation?p

• Does it matter much (close to zero-sum anyway)?

• Modeling follower payoffs?
– Sensitivity to modeling mistakes 2 1 4 0Sensitivity to modeling mistakes

• Human players… [Pita et al. 2009]

2, 1 4, 0

1, 0 3, 1, ,



Computing optimal strategies to commit to in 
t i fextensive-form games [Letchford & Conitzer 2010]

ChanceNo Chance

Imperfect InfoPerfect Info.

NP-hard

Imperfect Info.Perfect Info.

Pure Mixed

NP-hard

Tree DAG Tree DAG

Left
Two Players Two PlayersThree+ Players Three+ Players

P NP-hard

No Restrictions No Restrictions RestrictionsRestrictions
NP-hardNP-hard

P PNP-hard ?



A problem for scaling to (some) 
l li tireal applications

• So far, we have assumed that we can ,
enumerate all the defender pure strategies

• Not feasible in some applications
F d l Ai M h l [T i t l 2009]– Federal Air Marshals [Tsai et al. 2009]

– Protecting a city [Tsai et al. 2010]g y [ ]

– …

• Problem: each possible allocation of 
resources is a pure strategyresources is a pure strategy
– Combinatorial explosion



Security resource allocation games
[Ki ki t ld t l 2009]

• Set of targets T

[Kiekintveld et al. 2009]
g

• Set of security resources available to the defender (leader)

• Set of schedules• Set of schedules

• Resource  can be assigned to one of the schedules in

• Attacker (follower) chooses one target to attack

• Utilities:                           if the attacked target is defended, 

otherwise

• s
t1

1

s1

s2

t2
t3

2
2

s3

t5t4 Slide 8



Applications and previous workApplications and previous work

• Security checkpoints in airports 
(i l t d t LAX) [P h i t l(implemented at LAX) [Paruchuri et al. 
2008, Pita et al. 2009]008, ta et a 009]

• Federal air marshal service [Tsai et al. 
2009]2009]

Slide 9



Compact LPs approachCompact LPs approach

• Motivation: exponential number of pure 
strategies for the defender so thestrategies for the defender, so the 
standard LP is exponential in sizep

• Instead, we will find the (marginal) 
b bilit f b iprobability cs of resource  being 

assigned to schedule sg

Slide 10



Compact LPCo pac
• Cf. ERASER-C algorithm by Kiekintveld et al. [2009]

• Separate LP for every possible t* attacked:

f d iliDefender utility

Marginal probability

Distributional constraints

Marginal probability 
of t* being defended

Distributional constraints

Attacker optimality

Slide 11



Counter-example to the compact LP
2

.5 .5

5 tt

1

.5 tt

.5 t t

• LP suggests that we can cover every 
target with probability 1…

b t in fact e can co er at most 3• … but in fact we can cover at most 3 
targets at a time

Slide 12



Schedules of size 1Schedules of size 1

• Kiekintveld et al. prove that in this case, 
there exists a mixed strategy with thethere exists a mixed strategy with the 
given marginal probabilities

• How can we find it?

1 t1

.7

2 t2

.1
.3

.2

t3

.7

Slide 13



Birkhoff-von Neumann theorem
• Every doubly stochastic n x n matrix can be 

represented as a convex combination of n x n 
permutation matrices .1 .4 .5

.3 .5 .2

.6 .1 .3

1 0 0
0 0 1= .1

0 1 0
0 0 1+.1

0 0 1
0 1 0+.5

0 1 0
1 0 0+.3

• Decomposition can be found in polynomial time O(n4.5)

0 1 0 1 0 0 1 0 0 0 0 1

Decomposition can be found in polynomial time O(n ), 
and the size is O(n2) [Dulmage and Halperin, 1955]

C b t d d t t l d bl b t h ti• Can be extended to rectangular doubly substochastic
matrices Slide 14



Computing the probabilities for 
each pure strategy

1 t1
.7

.1 .2 t1 t2 t3

2
t2

.7

.3 1 .7 .2 .1

2 0 .3 .7

t3

.1 .2.2 .5
0 0 1
0 1 0

0 1 0
0 0 1

1 0 0
0 1 0

1 0 0
0 0 1



Summary of resultsy
[Korzhyk, Conitzer, Parr 2010]

Homogeneous
R

Heterogeneous
Resources resources

Size 1 P P
(BvN theorem)

du
le

s

(BvN theorem)

Size ≤2, bipartite P
(BvN theorem)

NP-hard
(SAT)

Sc
he Size ≤2 P

(constraint generation)
NP-hard

NP hard
Size ≥3 NP-hardNP-hard

(3-COVER)

Slide 16



Is it right to play Stackelberg?
• Typical argument: attacker can observe 

realizations of our distribution over time 
before executing an attack learn thebefore executing an attack, learn the 
distribution

• Is this accurate?

• We show that under certain conditions, it 
is “safe” to play the Stackelberg strategyis safe  to play the Stackelberg strategy 
[Yin et al. 2010]



Every Stackelberg strategy is also 
a Nash strategy in security games

• Theorem: If any subset of any schedule is 
also a sched le then e er Stackelbergalso a schedule, then every Stackelberg 
strategy is also part of a Nash equilibrium

Set of defender strategies

gy p q

Nash = Minimax

Set of defender strategies

Stackelberg



So how do we know we’re playing 
the “right” equilibrium?

T t t t tt• Turns out not to matter:

• Theorem. Security games satisfy the y g y
interchange property:

if <c1,a1> and <c2,a2> are NE profiles, then 
<c1,a2> and <c2,a1> are also NE profiles 1, 2 2, 1 p
– Doesn’t hold in general games (e.g., chicken)

• Proof analyzes a related zero-sum game
– Two-player zero-sum games always have the p y g y

interchange property



Interchange property in security gamesInterchange property in security games
• There is a 1:1 equivalence between NE 

profiles in general-sum and zero-sum games.

Interchange property of NE in zero sum• Interchange property of NE in zero-sum 
games: if <c1,a1> and <c2,a2> are NE profiles, 
then <c1,a2> and <c2,a1> are also NE profiles. 
This property doesn’t hold in general gamesThis property doesn t hold in general games.

• Interchange property carries over to general-
sum security games because of the above 
equivalenceequivalence.



ConsequenceConsequence
• When the defender is uncertain whether her 

strategy is known to the attacker or not, it is 
safe to play an SSE strategysafe to play an SSE strategy. 

• If the attacker somehow learns the defender’s 
strategy, the defender gets optimal utility.

If th tt k d t l th d f d ’• If the attacker does not learn the defender’s 
strategy, the SSE strategy is as good as any 
other NE strategy because of the interchange 
propertyproperty.



Conclusion
• Desire to address general-sum games in security

• Optimal mixed strategies to commit to (“Stackelberg 
strategies”) have certain conceptual & algorithmicstrategies ) have certain conceptual & algorithmic 
advantages over (say) Nash equilibrium

• Computational challenges remain: Many games 
have exponential strategy spaceshave exponential strategy spaces

• Also raises & forces close examination of 
fundamental game-theoretic questions

Th k f tt ti !Thank you for your attention!



Rock-paper-scissors – Seinfeld variant

MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER I th ht d kKRAMER: I thought paper covered rock.

MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?

MICKEY: (looks at hand) Nothing beats rockMICKEY: (looks at hand) Nothing beats rock.

0 0 1 1 1 10, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0



Dominance
f• Player i’s strategy si strictly dominates si’ if 

– for any s-i, ui(si , s-i) > ui(si’, s-i) i i i i i i i

• si weakly dominates si’ if 
– for any s i ui(si s i) ≥ ui(si’ s i); and

-i = “the player(s) 
other than i”

for any s-i, ui(si , s-i) ≥ ui(si , s-i); and
– for some s-i, ui(si , s-i) > ui(si’, s-i)

0 0 1 1 1 10, 0 1, -1 1, -1strict dominance

-1, 1 0, 0 -1, 1weak dominance

-1, 1 1, -1 0, 0



Prisoner’s Dilemma
• Pair of criminals has been caught• Pair of criminals has been caught

• District attorney has evidence to convict them of a minor 
crime (1 year in jail); knows that they committed a major 
crime together (3 years in jail) but cannot prove itg ( y j )

• Offers them a deal:
If both confess to the major crime they each get a 1 year reduction– If both confess to the major crime, they each get a 1 year reduction

– If only one confesses, that one gets 3 years reduction

confess don’t confess

f -2, -2 0, -3confess

-3, 0 -1, -1don’t confess



“Should I buy an SUV?” 
purchasing + gas cost accident cost

cost: 5 cost: 5 cost: 5

cost: 3 cost: 8 cost: 2

cost: 5 cost: 5

-10, -10 -7, -11

-11, -7 -8, -8



“2/3 of the average” game
• Everyone writes down a number between 0 and 

100100

• Person closest to 2/3 of the average winsg

• Example:
– A says 50

– B says 10B says 10

– C says 90

– Average(50, 10, 90) = 50

– 2/3 of average = 33.33g

– A is closest (|50-33.33| = 16.67), so A wins



Iterated dominance

• Iterated dominance: remove (strictly/weakly) te ated do a ce e o e (st ct y/ ea y)
dominated strategy, repeat

• Iterated strict dominance on Seinfeld’s RPS:

0, 0 1, -1 1, -1

1 1 0 0 1 1
0, 0 1, -1

-1, 1 0, 0 -1, 1

-1, 1 1, -1 0, 0
-1, 1 0, 0

, , ,



Iterated dominance: path (in)dependence
Iterated weak dominance is path-dependent: 

sequence of eliminations may determine whichsequence of eliminations may determine which 
solution we get (if any)

(whether or not dominance by mixed strategies allowed)

0, 1 0, 0

1, 0 1, 0

0, 1 0, 0

1, 0 1, 0

0, 1 0, 0

1, 0 1, 0

0, 0 0, 1 0, 0 0, 1 0, 0 0, 1

Iterated strict dominance is path-independent: elimination 
process will always terminate at the same point

( h th t d i b i d t t i ll d)(whether or not dominance by mixed strategies allowed)



“2/3 of the average” game revisited

100

dominated

(2/3)*100
dominated after removal of 

(originally) dominated strategies
(2/3)*(2/3)*100

(originally) dominated strategies

…

00



Mixed strategies
• Mixed strategy for player i = probability 

distribution over player i’s (pure) strategies

• E g 1/3 1/3 1/3• E.g. 1/3        , 1/3       , 1/3

• Example of dominance by a mixed strategy:p y gy

3, 0 0, 01/2 , ,
0, 0 3, 01/2 0, 0 3, 0
1, 0 1, 0

1/2

1, 0 1, 0



Checking for dominance by mixed strategies 
• Linear program for checking whether strategy si*

is strictly dominated by a mixed strategy:
• maximize ε
• such that:such that: 

– for any s-i, Σsi
psi

ui(si, s-i) ≥ ui(si*, s-i) + ε
– Σsi

psi
= 1Σsi

psi
 1

• Linear program for checking whether strategy s *• Linear program for checking whether strategy si
is weakly dominated by a mixed strategy:

• maximize Σ (Σ p u (s s )) u (s * s )• maximize Σs-i
(Σsi

psi
ui(si, s-i)) - ui(si , s-i)

• such that: 
f Σ ( ) ≥ ( * )– for any s-i, Σsi

psi
ui(si, s-i) ≥ ui(si*, s-i)

– Σsi
psi

= 1



The presentation game

Put effort into Do not put effort into

Presenter

Pay attention

Put effort into 
presentation (E) 

Do not put effort into 
presentation (NE)

Pay attention 
(A) 4, 4 -16, -14Audience

Do not pay 
attention (NA) 0, -2 0, 0

• Pure-strategy Nash equilibria: (A, E), (NA, NE)

• Mixed-strategy Nash equilibrium:Mixed strategy Nash equilibrium: 

((1/10 A, 9/10 NA), (4/5 E, 1/5 NE))

– Utility 0 for audience, -14/10 for presentery , p

– Can see that some equilibria are strictly better for both players than other equilibria, i.e. 
some equilibria Pareto-dominate other equilibria



A poker-like gameA poker like game

“nature”

1 gets King 1 gets Jack

bet betstay stay

player 1player 1
0, 0 0, 0 1, -1 1, -1

cc cf fc ff

bb
bet betstay stay

call fold call fold call fold call fold

player 2 player 2
.5, -.5 1.5, -1.5 0, 0 1, -1

-.5, .5 -.5, .5 1, -1 1, -1sb

ss

bs

2 1 1 1 -2 -11 1

0, 0 1, -1 0, 0 1, -1
ss



A poker-like gameA poker like game
“nature”

2/31 gets King 1 gets Jack

player 1player 1
0, 0 0, 0 1, -1 1, -1

cc cf fc ff

bb

2/3 1/3

1/3
bet betstay stay

ll f ld ll f ld ll f ld ll f ld

player 2 player 2
.5, -.5 1.5, -1.5 0, 0 1, -1

-.5, .5 -.5, .5 1, -1 1, -1sb

bs2/3

call fold call fold call fold call fold

2 1 1 1 -2 -11 1

0, 0 1, -1 0, 0 1, -1
ss

• To make player 1 indifferent between bb and bs, we need:

utility for bb = 0*P(cc)+1*(1-P(cc)) = .5*P(cc)+0*(1-P(cc)) = utility for bsy ( ) ( ( )) ( ) ( ( )) y

That is, P(cc) = 2/3

• To make player 2 indifferent between cc and fc, we need:

utility for cc = 0*P(bb)+(-.5)*(1-P(bb)) = -1*P(bb)+0*(1-P(bb)) = utility for fc

That is, P(bb) = 1/3



Rock-paper-scissors

0 0 1 1 1 10, 0 -1, 1 1, -1
1 1 0 0 1 11, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

• Any pure-strategy Nash equilibria?

• But it has a mixed-strategy Nash equilibrium:

Both players put probability 1/3 on each action

• If the other player does this, every action will give you expected utility 0

– Might as well randomize



Nash equilibria of “chicken”
S DS D

S
D S

D S

0, 0 -1, 1D

1, -1 -5, -5S
• (D, S) and (S, D) are Nash equilibria

– They are pure-strategy Nash equilibria: nobody randomizes

– They are also strict Nash equilibria: changing your strategy will make you 
t i tl ffstrictly worse off

• No other pure-strategy Nash equilibria



Nash equilibria of “chicken”…
D S

0, 0 -1, 1D

D S
, ,

1, -1 -5, -5
D

S , ,S
• Is there a Nash equilibrium that uses mixed strategies?  Say, where player 1 uses a mixed 

strategy?

• If a mixed strategy is a best response, then all of the pure strategies that it randomizes over 
must also be best responses

• So we need to make player 1 indifferent between D and S• So we need to make player 1 indifferent between D and S

• Player 1’s utility for playing D = -pc
S

• Player 1’s utility for playing S = pc
D - 5pc

S = 1 - 6pc
SPlayer 1 s utility for playing S  p D 5p S  1 6p S

• So we need -pc
S = 1 - 6pc

S which means pc
S = 1/5

• Then, player 2 needs to be indifferent as wellp y

• Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))

– People may die!  Expected utility -1/5 for each player



Ranges for the follower payoffsRanges for the follower payoffs

• Suppose we just know a range within which 
each follower payoff lieseach follower payoff lies

L R
U 1, [0,3] 2, 3
D 0, [1,3] 1, [1,2]

• NP-hard if payoffs are adversarially drawn
– We do not know about (in)approximability…

– except for a richer variant… except for a richer variant



Extension of the BvN theorem
• Every m x n doubly substochastic matrix 

can be represented as a convex 
combination of m x n matrices withcombination of m x n matrices with 
elements from {0, 1} such that every row 
and column contains “1” in at most one 

ll .1 .4 .5cell. .1 .4 .5
.3 .5 .2
.6 .1 .3

1 0 0
0 0 1= 1

0 1 0
0 0 1+ 1

0 0 1
0 1 0+ 5

0 1 0
1 0 0+ 30 0 1

0 1 0

=.1 0 0 1
1 0 0

+.1 0 1 0
1 0 0

+.5 1 0 0
0 0 1

+.3



[backup] Will compact LP work 
for homogeneous resources?

• Suppose that every resource can be 
assigned to any scheduleassigned to any schedule. 

• We can still find a counter-example for p
this case: t

5 5 t
5

t t

.5 .5

t t

.5 .5

.5 .5

r rr
3 homogeneous resources



Stackelberg games in extensive formg g

(1,3)(2,2)(2.5,1)

Player 2

(2.5,1)(2,2)(3,0)
(1,3)(0,1)

Player 1 Player 1

50% 50%50% 50%

2, 1 (0, 1) (2, 2)(1, 3) (3, 0)

Pure strategy commitmentMixed strategy commitmentSubgame Perfect Nash Equilibrium


