
Bayesian Borel Games
David BanksDuke Uni�rsity

1



1. Introdution

Classial game theory has foused upon situations in whih outomes are known.When unertainty is addressed, it makes unreasonable assumptions about ommonknowledge (f. Harsanyi, 1967/68a,b). Also, game theory makes unreasonableassumptions about human deision-making (Camerer, 2003).Classial risk analysis has foused upon situations in whih the hazards arise atrandom. This is appropriate for aident and life insurane, but it does not applywhen hazards result from the ations of an intelligent adversary.Corporate ompetition, federal regulation, and ounterterrorism all entailgame-theoreti problems with unertain outomes and partial information about thegoals and ations of the opponents. This talk desribes a Bayesian approah toadversarial risk analysis. It extends the deision analysis of Kadane and Larkey(1982) and Rai�a (1982) through the use of a mirroring argument.
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Myerson (1991, p. 114) points up this problem learly:�A fundamental di�ulty may make the deision-analyti approahimpossible to implement, however. To assess his subjetiveprobability distribution over the other players' strategies, player imay feel that he should try to imagine himself in their situations.When he does so, he may realize that the other players annotdetermine their optimal strategies until they have assessed theirsubjetive probability distributions over i's possible strategies.Thus, player i may realize that he annot predit his opponents'behavior until he understands what an intelligent person wouldrationally expet him to do, whih is, of ourse, the problem thathe started with. This di�ulty would fore i to abandon thedeision analyti approah and instead undertake a game-theoretiapproah, in whih he tries to solve all players' deision problemssimultaneously.�However, instead of following Myerson in defaulting bak to game theory, we use themirroring method. It may be viewed as a Bayesian version of Level-k thinking (Stahland Wilson, 1995). 3



2. Autions

Suppose Apollo is bidding for a �rst edition of the Theory of Games and EonomiBehavior. He is the only bidder, but the owner has set a seret reservation prie v∗below whih the book will not be sold. Apollo does not know v∗, and expresses hisunertainty as a subjetive Bayesian distribution F (v).Apollo's utility funtion is linear in money and his personal valuation of the book is

a∗. If money is in�nitely divisible, his hoie set is A = IR+. so his expeted utilityfrom a bid of a is (a∗ − a)IP[a > V ∗]. Thus Apollo should maximize his expetedutility by bidding

a0 = argmax
a∈IR+(a∗ − a)F (a).

This is the standard approah in Bayesian aution theory (f. Rai�a, 2002).
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Now suppose that Apollo and Daphne are bidding against eah other to own the �rstedition. Apollo needs to perform a game-theoreti alulation to �nd his subjetivedistribution F over Daphne's bid D0. Then Apollo an maximize his expeted utilityby bidding a0 = argmax
a∈IR+(a∗ − a)F (a).In order to �nd F , Apollo uses the fat that Daphne must make the symmetrialulation. This is the mirroring argument.Spei�ally, suppose Daphne values the book at d∗ and has distribution G on Apollo'sbid a0. Then Daphne would solve d0 = argmax

d∈IR+(d∗ − d)G(d); and symmetrially,to obtain G(d), Daphne would need to mirror Apollo's alulation.But Apollo annot dupliate Daphne's alulation sine he does not know her valuefor the book, nor the value she thinks Apollo puts on the book, nor the value shethinks Apollo believes is her value for the book. As a Bayesian, Apollo must expresshis unertainty on all three quantities through distributions.
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The notation beomes ompliated; the following key is helpful:

• a∗ is Apollo's value for the book
• D∗ is Daphne's value for the book; sine it is unknown to Apollo, he assigns itthe distribution HD

• A∗ is the random variable that Apollo thinks Daphne uses to represent Apollo'svalue for the book; it has distribution HA

• F is Apollo's belief about the distribution of Daphne's bid.

• D0 is Daphne's bid
• G is Apollo's inferene about Daphne's distribution on Apollo's bid.

• A0 is Apollo's bid from Daphne's perspetive.These probabilities are all belong to Apollo; he imputes the beliefs that Daphne holds.If he is mistaken, he diminishes his hane of maximizing his gain.
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To determine his bid a0, Apollo needs F , the distribution of Daphne's bid. He knowsthat Daphne's bid D0 should satisfy D0 = argmax

d∈IR+(D∗ − d)G(d) where D∗ isDaphne's value (a random variable, to Apollo) for the book and G(d) is Apollo'sestimate of Daphne's probability that a bid of d exeeds Apollo's bid A0.And, to Daphne, A0 = argmax
d∈IR+(A∗ − a)F (a) where A∗ is Daphne's belief aboutApollo's value for the book and F (a) is Apollo's estimate of Daphne's probabilitythat a bid of a exeeds her bid D0. Thus D0 ∼ F and A0 ∼ G.Apollo must �nd his personal belief about F by solving:argmax

d∈IR+(D∗ − d)G(d) ∼ Fargmax
a∈IR+(A∗ − a)F (a) ∼ G.The distributions for D∗ and A∗ are HD and HA, respetively.One Apollo has F , he solves a0 = argmax

a∈IR+(a∗ − a)F (a) to determine his bid.
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To solve this system of equations, one iteratively alternates between the two equationsuntil onvergene:1. Selet F0 and G0 arbitrarily.2. Simulate a large number of samples from HA, and solve the argmax problemunder Gi. The distribution of those solutions gives Fi+1.3. Simulate a large number of samples from HD, and solve the argmax problemunder Fi+1. The distribution of those solutions gives Gi+1.4. If some onvergene threshold δ is satis�ed (e.g., ‖Fi − Fi+1‖ < δ and

‖Gi − Gi+1‖ < δ), then stop. Otherwise, return to step 2.In simulation, this iterative solution has always onverged. But one wants a�xed-point theorem, and the key issue is to show this iteration is a ontrationoperator. For a �nite dimensional spae (roughly orresponding to bids in pennies,rather than in�nitely divisible money), I think this an be done in terms ofGauss-Siedel systems of equations.
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The following �gures illustrate the �xed point solution. (Note that the aptionreverses the roles of Apollo and Daphne.) The starting points for HD and HA weredistint triangular distributions on [0, 100].

The left panel shows the third iterate; the right panel shows the tenth iterate.
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These panels show the result of a algorithm. The left is the expeted utility Daphnebelieves Apollo thinks he will get from a given bid. The right shows the expetedutility that Daphne will reeive from a given bid.Caveat: I am not ertain that these �gures are orret.
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Note: This framework allows Apollo to inorporate seret information.For example, suppose Apollo alone knows that the book was owned by Sir RonaldFisher, with annotations in his hand. In that ase, his personal value a∗ is high, buthis distribution for Daphne's value, HD, will onentrate on muh smaller values.Similarly, he might know that Daphne knows the provenane of the book but thinksthat Daphne believes (falsely) that Apollo does not. In that ase HD will giveonentrate on large values, but Apollo's belief about what Daphne thinks is his valuefor the book, HA, will onentrate on small values.In priniple, one ould go into an in�nite regress:Apollo thinks that Daphne thinks thatApollo thinks that Daphne thinks that . . ..But for human reasoning, it is probably quite reasonable to stop at the third step,with the distribution HA for A∗, as desribed in the mirroring analysis.
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3. La Relane: A Primitive Version of Poker

Pokeresque games have reeived onsiderable attention in the game theory literature.Early work by von Neumann and Morgenstern (1947) and Borel (1938) developedsolutions under various simplifying assumptions. More reently, Ferguson andFerguson (2008) provide approximate analyses pertinent to more omplex games, suhas Texas hold'em.In the following, assume that Bart and Lisa play a game in whih eah privately andindependently draws a U [0, 1] random number. Eah must ante an amount a = 1.First, Bart examines his number X and deides whether to bet b or fold. Then Lisaexamines her Y and deides whether to bet b or fold. If both players bet, theyompare their draws to determine who wins the pot. Otherwise, the �rst person tofold forfeits his or her ante.
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Let Vx be the amount Bart wins. The table shows the four possible situations:

Vx Bart's Deision Lisa's Deision Outome-1 fold1 bet fold1+b bet bet X > Y-(1+b) bet bet X < YFrom the table, the expeted amount won by Bart, given his draw X = x, is:IE[Vx] = −IP[ Bart folds ] + IP[ Bart bets and Lisa folds ]

+(1 + b)IP[ Lisa bets and loses ]

−(1 + b)IP[ Lisa bets and wins ].Bart must use mirroring to �nd a subjetive distribution for the probabilities, basedon the adversarial analysis he expets Lisa to perform.
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Assume that Bart uses a �blu�ng funtion� g(x); given x, he bets with probability

g(x). Then IE[Vx] = −[1 − g(x)] + g(x)IP[ Lisa folds | Bart bets ]

+(1 + b)g(x)xIP[ Lisa bets | Bart bets ]

−(1 + b)g(x)(1 − x)IP[ Lisa bets | Bart bets ].For optimal play, Bart needs to �nd IP[ Lisa bets | Bart bets ].So Bart must �mirror� the thinking that Lisa will perform in deiding whether to bet.He knows that Lisa's opinion about X is updated by the knowledge that Bart deidedto bet. Further, suppose Bart has a subjetive belief that Lisa thinks that his blu�ngfuntion is g̃(x). In that ase, Lisa should alulate the onditional density of X,given that Bart deided to bet, as
f̃(x) =

g̃(x)
∫

g̃(z) dz
.
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Note: If g̃ is a step funtion (i.e., Lisa believes that Bart does not bet if x is less thansome value x0, but always bets if it is greater), then the posterior distribution on Xis trunated below the X value orresponding to x0 and the weight is realloatedproportionally to values above x0.From this analysis, Bart believes that Lisa alulates her probability of winning asIP[X ≤ y| Bart bet ] = F̃ (y), where Y = y is unknown to Bart. And thus Bartbelieves that Lisa will bet if the expeted value of her return Vy from betting b isgreater than the loss of a that results from folding; i.e., Lisa would bet ifIE[Vy] = (1 + b)F̃ (y) − (1 + b)[1 − F̃ (y)] ≥ −1.So Bart believes Lisa will bet if and only if F̃ (y) ≥ b/2(1 + b).Set ỹ = inf{y : F̃ (y) ≥ b/2(1 + b)}. The probability that Lisa has drawn Y > ỹ is

1 − ỹ and this is the probability that she bets. So the expeted value of the game forBart, given X = x, is:

Vx = −[1 − g(x)] + g(x)ỹ + (1 + b)g(x)[x − ỹ]+ − (1 + b)g(x)(1 − ỹ − [x − ỹ]+).Bart should hoose g(x) to maximize Vx. 15



Bart's expeted value has the form −1 + cg(x), where

c = 1 + ỹ + (1 + b)[x − ỹ]+ − (1 + b)(1 − ỹ − [x − ỹ]+).To maximize the expetation, Bart should make g(x) as small as possible when c isnegative (i.e., g(x) = 0), but as large as possible when c is positive (i.e., g(x) = 1).Thus the optimal g(x) is a step funtion. It implies that Bart should never blu�, nomatter what he believes about the playing strategy used by Lisa.When x ≤ ỹ, Bart bets if ỹ > b/(b + 2), he folds if ỹ < b/(b + 2), and he may do as hepleases when ỹ = b/(b+2). When x > ỹ, then Bart bets if x > x̃ = [b(1+ ỹ)]/[2(1+b)],folds if x < x̃, and may do as he pleases when x = x̃.As a sanity hek, if b = 0 then Lisa should always bet. Here x̃ = 0, properly implyingthat Bart also always bets.The expeted value of the game, to Bart, is V =
∫ 1

0
Vx dx. Its value depends on hisbelief about Lisa's play.
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Case I: Bart Believes that Lisa Plays Minimax.The traditional minimax solution has ỹ = b/(b + 2). In that ase it is known thatBart should bet if x > ỹ, and he should bet with probability 2/(b + 2) when x ≤ ỹ.The value of the game (to Bart) is V = −b2/(b + 2)2; he is disadvantaged by thesequene of play.In ontrast, the ARA analysis �nds that when Lisa uses the minimax threshold

ỹ = b/(b + 2), then Bart may bet or not, as he pleases, when x ≤ x̃. This is slightlydi�erent from the minimax solution.The di�erene arises beause, if Lisa knows that Bart's blu�ng funtion does not betwith probability 2/(b + 2) when x ≤ b/(b + 2), then she an improve her expetedvalue for the game by hanging the threshold at whih she alls.In the minimax game, Bart's blu� pins Lisa down, preventing her from using a morepro�table rule. But for either game, the value for Bart is unhanged: −(
b

b+2

)2.
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Case II: Bart Believes that Lisa Is Rash.Suppose that Bart's analysis leads him to think that Lisa is rekless, alling with

ỹ < b/(b + 2). Then the previous ARA shows that his blu�ng funtion should be

g(x) =







0 if 0 ≤ x ≤ max{ỹ, x̃}

1 if max{ỹ, x̃} < x ≤ 1where x̃ = [b(1 + ỹ)]/[2(1 + b)].The value of this ARA game to Bart is
V = −

∫ x̃

0

dx +

∫ 1

x̃

−1 + 2x + 2bx − bỹ − b dx

= bx̃ − bỹ(1 − x̃) − (1 + b)x̃2.The value of this ARA game is stritly larger than the minimax value.
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Case III: Bart Believes that Lisa Is Conservative.Suppose Bart believes that Lisa is risk averse, alling with ỹ > b/(b + 2). Then

Vx = −1 + g(x)

[

1 + ỹ + (1 + b)(1 − ỹ)
x − ỹ

1 − ỹ
− (1 + b)(1 − ỹ)

(

1 −
x − ỹ

1 − ỹ

)]

.When x > ỹ, Bart's optimal play is to bet. On the other hand, when x < ỹ, Bart'spayo� is

Vx = −1 + g(x) [1 + ỹ − (1 + b)(1 − ỹ)] .For ỹ > b/(b + 2), the quantity in the square brakets is stritly positive. Thus, when

x < ỹ, Bart should bet.The value V of this game is

V =

∫ ỹ

0

ỹ − (1 + b)(1 − ỹ) +

∫ 1

ỹ

ỹ + (1 + b)(x − ỹ) − (1 + b)(1 − x).Solving the integral shows V = −bỹ + ỹ2(1 + b). This value is inreasing in ỹ for

ỹ > b/(2 + b) and it is equal to the minimax value at ỹ = b/(b + 2). Thus the value ofthe ARA game when Lisa is onservative is stritly larger than the minimax value.19



Note: This analysis of the Borel Game extends immediately to situations in whihthe two players draw independently from a ontinuous distribution W with density w.In that ase, the onditional distribution that Bart imputes to Lisa is

f̃(x) =
g̃(W (x))w(x)

∫
g̃(W (z))w(z) dzand Bart's blu�ng funtion takes its step at

x̃ =
1

2

[

1 −
1

1 + b

1 + W (ỹ)

1 − W (ỹ

]

.If Bart and Lisa draw from a bivariate, possibly disrete distribution W (x, y) (e.g., adek of ards) then the analysis is trivial (in G. H. Hardy's sense): Bart's distributionfor Y is the onditional W (y|X = x), and he knows that Lisa's analysis is symmetri.Note: Some may be unomfortable with the spei�ity in requiring Bart to assumethat Lisa thinks his blu�ng funtion is ˜g(x). They might argue that Bart ould notguess that exatly�that it would be more reasonable to say that he has a subjetivedistribution over the set G of all possible blu�ng funtions. But when Bart integratesover that spae with respet to his subjetive distribution, he then obtains the g̃ thathe needs for this analysis. 20



Example: The g̃ is a power funtion.Suppose that Bart believes that Lisa thinks his blu�ng funtion has the form

g(x) = xp for some �xed value p > −1. Then ỹ = p+1

√
1
2

b
1+b

. Large values of p implythat Lisa believes Bart tends to bet for large values of x, leading Lisa to fold morefrequently and inreasing Bart's expeted payo�.
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The left panel shows, for b = 2, the minimum value of x at whih Bart should bet as afuntion of p. The right panel shows the game value, to Bart, as a funtion of p.21



Continuous BetsConsider a modi�ation of the Borel Game, in whih Bart is not onstrained to betany amount on some interval (ǫ, K].De�ne the following notation:
ǫ, K: the lower and upper bounds of the bets Bart an hoose, if he deides to bet;i.e. [ǫ, K] is Bart's betting strategy spae, where 0 < ǫ ≪ K (usually ǫ is a verysmall positive number).
g(x): the probability that Bart deides to bet after learning X = x.

h(b|x): a probability density on [ǫ, K] that Bart will use to selet his bet onditionalon his deision to bet.

Bx: a random variable with value in [ǫ, K] representing Bart's bet after he learns

X = x.Let IPh(·|x)[·] and IEh(·|x)[·] denote the probability and expetation omputed usingthe probability measure indued by the density h(·|x).22



Bart must �mirror� Lisa's analysis given that she observes Bart's bet Bx = b. De�ne

g̃(x): Bart's belief about Lisa's belief of the probability that he deides to bet with

X = x.
h̃(b|x): Bart's belief about Lisa's belief of the density on [ǫ, K] that Bart uses to bet.

f̃(x|b): Bart's belief about Lisa's posterior density for X after she observes that hebets b:
f̃(x|b) =

h̃(b|x)g̃(x)
∫ 1

0
h̃(b|z)g̃(z) dz

.

Given g(x) and h(·|x), then Vx = IEg(x),h(·|x) [VB |X = x]:
Vx = −(1 − g(x))

︸ ︷︷ ︸Bart folds+g(x)
{IEh(·|x)

[IPf̃(·|Bx)[ Lisa folds | Bart bets Bx] |X = x
]

+IEh(·|x)

[IPf̃(·|Bx)[ Lisa loses | Bart bets Bx] · (1 + Bx) |X = x
]

−IEh(·|x)

[IPf̃(·|Bx)[ Lisa wins | Bart bets Bx] · (1 + Bx) |X = x
]}

.
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Bart's �rst-order ARA solution is

{g∗(x), h∗(·|x)} ∈ argmax

g(x),h(·|x)

IEg(x),h(·|x) [VB |X = x] .To solve for {g∗(x), h∗(·|x)}, he studies Lisa's strategy and rolls bak.Bart believes Lisa will form the posterior assessment f̃(·|b) on his X, so for Y = y,Bart believes Lisa thinks her probability of winning isIPf̃(·|Bx)[X ≤ Y |Bx, Y = y] =

∫ y

0

f̃(z|Bx) dz.So Bart believes that Lisa is, by alling, expeting a payo� of
Vy = IPf̃(·|Bx)[ Lisa wins |Bx, Y = y, Lisa alls ] · (1 + Bx)

−IPf̃(·|Bx)[ Lisa loses |Bx, Y = y, Lisa alls ] · (1 + Bx)

= 2(1 + Bx)

∫ y

0

f̃(z|Bx) dz − (1 + Bx).

24



So Bart believes Lisa will all if and only if

−1 ≤ 2(1 + Bx)

∫ y

0

f̃(z|Bx) dz − (1 + Bx).Sine f̃(z|Bx) ≥ 0, then for all y ≥ ỹ∗(Bx) we must have

∫ y

0

f̃(z|Bx) dz ≥

∫ ỹ∗

0

(Bx)f̃(z|Bx) dz ≥
Bx

2(1 + Bx)
.Then Lisa will all if and only if

Y ≥ ỹ∗(Bx) ≡ inf

{

y ∈ [0, 1] :

∫ y

0

f̃(z|Bx) dz ≥
Bx

2(1 + Bx)

}

.Hene, Bart believes that the probability Lisa will all after he bets the amount Bxshould beIPf̃(·|Bx)[ Lisa alls | Bart bets Bx] = IP[Y ≥ ỹ∗(Bx) |Bx] = 1 − ỹ∗(Bx).
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Now Bart is able to ompute the following quantities:IPf̃(·|Bx)[ Lisa folds | Bart bets Bx] = ỹ∗(Bx);IPf̃(·|Bx)[ Lisa loses | Bart bets Bx] = IP[ỹ∗(Bx) ≤ Y ≤ x|Bx]

= [x − ỹ∗(Bx)]+;IPf̃(·|Bx)[ Lisa wins | Bart bets Bx] = IPf̃(·|Bx)[ Lisa alls | Bart bets Bx]

−IPf̃(·|Bx)[ Lisa loses | Bart bets Bx]

= 1 − ỹ∗(Bx) − [x − ỹ∗(Bx)]+.

Combining these expressions shows:
Vx = −(1 − g(x)) +

g(x)IEh(·|x)

[
ỹ∗(Bx) + 2[x − ỹ∗(Bx)]+(1 + Bx) − (1 − ỹ∗(Bx))(1 + Bx)

]
.
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Theorem: For x ∈ [0, 1] and given f̃(·|b) positive and ontinuous in b ∈ [ǫ, K], let

b∗(x) ∈ argmax
b∈[ǫ,K]

ỹ∗(b) + 2(x − ỹ∗(b))+(1 + b) − (1 − ỹ∗(b))(1 + b),

∆∗(x) ≡ max
b∈[ǫ,K]

ỹ∗(b) + 2(x − ỹ∗(b))+(1 + b) − (1 − ỹ∗(b))(1 + b).Then, Bart's �rst-order ARA solution is
g∗(x) =







0 if ∆∗(x) < −1

1 if ∆∗(x) ≥ −1;

h∗(b|x) = δ(b − b∗(x)),where δ(·) is the Dira delta funtion.In other words, when he observes X = x, Bart will fold with probability 1 if

∆∗(x) < −1 and bet b∗(x) with probability 1 if ∆∗(x) ≥ −1. Of ourse, the regularityondition requiring that f̃(·|b) be positive and ontinuous in b ∈ [ǫ, K] is purelysu�ient but not neessary.
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Example: Lisa has a step-funtion posterior.To illustrate the use of the theorem to �nd the ARA solution in a Borel game withontinuous bets, suppose f̃(·|b) is of the following form:

h̃(x|b) =







1+K
1+b

if 0 ≤ x ≤ 1+b
1+K

0 otherwise.

It is easy to see that ỹ∗(b) = b
2(1+K) , and

ỹ∗(b) + 2(x − ỹ∗(b))+(1 + b) − (1 − ỹ∗(b))(1 + b)

=







− b2

2(1+K) + (2x − 1)(b + 1) if b ≤ 2(1 + K)x

b2

2(1+K) −
K

1+K
b − 1 if b > 2(1 + K)x.
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Assume that ǫ is small enough that ǫ2+2(1+K)ǫ
4(1+K)(1+ǫ) < 1

2 + ǫ
2(1+K) . Consider the followingases:1. For x < ǫ2+2(1+K)ǫ

4(1+K)(1+ǫ) , then b∗(x) = ǫ and ∆∗(x) = − ǫ2

2(1+K) + (2x− 1)(ǫ + 1) < −1.By the theorem, g∗(x) = 1; i.e., Bart will fold w.p. 1. There is no need to speify

h∗(·|x).2. For ǫ2+2(1+K)ǫ
4(1+K)(1+ǫ) ≤ x < 1

2 + ǫ
2(1+K) , then b∗(x) = ǫ and

∆∗(x) = − ǫ2

2(1+K) + (2x − 1)(ǫ + 1) ≥ −1. By the theorem, g∗(x) = 1 and

h∗(b|x) = δ(b − ǫ), i.e. Bart will bet ǫ w.p. 1.3. For 1
2 + ǫ

2(1+K) ≤ x < 1
2 + K

2(1+K) , then b∗(x) = 2(1 + K)x − (1 + K) and

∆∗(x) = 1+K
2 (2x − 1)2 + (2x − 1) ≥ −1. By the theorem, g∗(x) = 1 and

h∗(b|x) = δ(b − (2(1 + K)x − (1 + K))); i.e., Bart will bet 2(1 + K)x − (1 + K)w.p. 1.4. For x ≥ 1
2 + K

2(1+K) , then b∗(x) = K and ∆∗(x) = − K2

2(1+K) +(2x−1)(K+1) ≥ −1.Then, by the Theorem, g∗(x) = 1 and h∗(b|x) = δ(b − K); i.e., Bart will bet Kw.p. 1.
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0 1 xǫ2+2(1+K)ǫ
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4. Conlusions

The ARA approah has a number of attrative features:

• It is simpler to alulate than Nash equilibria. Sort of.

• It an take advantage of soft information.
• Its deisions that seem loser to the kind of strategizing that humans use.In partiular, for the Borel game, it is notable that many things that are di�ult orstill unresolved are straightforward (if tedious). The minimax solution was found byBorel; Bellman & Blakwell extended it to a game with two levels of bet, as did vonNeumann and Morgenstern. Karlin and Restrepo (1957) obtained a solution whenthe minimum bet is one unit and there are a �nite number of possible larger bids.Ferguson and Ferguson (2007) report unpublished work by W. H. Cutler in 1976 thataddresses the ase of ontinuous bets in the ontext of the poker endgame. And thereare no good minimax solutions for games with dependent non-uniform distributions.
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