The Containment Problem

Michael Capalbo

mcapalbo@dimacs.rutgers.edu

(Joint work with James Abello)

Let $G=(V, E)$ be a network (e.g., social, computer network, ect.), and let S_{0} be any subset of V.
\triangleright Every node in S_{0} is infected with a virus that spreads from each infected node to all of its nonvaccinated neighbors in one time-step.
\triangleright Our allowed response: vaccinate a limited number (about a_{l}) of nodes during each time step $l=1,2,3, \ldots, t$
\triangleright Our goal: find what nodes to vaccinate each step to minimize the total number m of nodes that eventually become infected.

We call this the Containment Problem (input is G, S_{0}, and the a_{l} 's).

Why would we care about solving the Containment Problem?

\triangleright Limited supply of vaccine available initially to stop an infection.
\triangleright Containment of computer virus spreading through a network.
\triangleright Blocking off suspects from escaping the scene of a crime where only
a limited number of policeman are available initially.

Note that it is always at least as effective to vaccinate a node earlier rather than later.

Lemma 1 Let C be the set of nodes that we vaccinate at some point or another. If each node v in C is vaccinated before the infection reaches it, then the number of nodes that eventually become infected is the number of nodes that share a component in $G \backslash C$ with a node in S_{0}.

Unfortunately, the Containment Problem (CP) is NP-hard: It is probably impossible to devise a tractable algorithm that returns an optimum strategy.

So we devise a tractable approximation algorithm for CP that returns a (slightly) inferior vaccination strategy:
\triangleright have to vaccinate slightly more $\left(O(\log |V(G)|) \times a_{l}\right.$ nodes instead of only a_{l} nodes as before) at each time-step l, and
\triangleright the total number of nodes that become infected is no more than $3 m$ (instead of the minimum m as before).

And we also require that the network G satisfy the following expansion property: Every subset S of no more than a quarter of the nodes of G has at least $|S|$ neighbors outside S.
\triangleright Empirical evidence: social networks resemble random graphs
\triangleright Random graphs have expansion property
\triangleright So our assumption about the expansion properties of G is reasonable.

Overview of the approximation algorithm for the CP

Lemma 2 If G is an expander, then it is possible to vaccinate only twice as many nodes per time-step as before for the first $t=\log |V(G)|$ time-steps, and then none after, so that no more than nodes than before become infected.
\triangleright Formulate CP as an integer program (IP), where we vaccinate $2 a_{l}$ nodes per time-step $l \leq t$ (and none thereafter) instead of only a_{l}.
\triangleright State and solve an appropriate linear relaxation (LP) of (IP).
\triangleright Use combinatorial techniques (and that t in Lemma 2 is small) to convert the solution for (LP) into a vaccination strategy.
\triangleright Formulate the CP as an integer program (IP). \leftarrow
\triangleright State and solve an appropriate linear relaxation (LP) of (IP).
\triangleright Use combinatorial techniques...

(IP) Minimize

$$
\sum_{v \in V} \sum_{i=0}^{|V|}\left|x_{v, i}\right|
$$

subject to
$\triangleright \sum_{i=1}^{l+1} y_{v, i}+\sum_{i=1}^{l+1} x_{v, i} \geq \sum_{i=1}^{l} x_{u, i}, \forall v \in V, \forall\{u, v\} \in E$, and $\forall j=1,2, \ldots$
$\triangleright \sum_{v \in V} y_{v, l} \leq 2 a_{l}, \forall l=1,2, \ldots, t$, and $y_{v, l}=0$ for all $l>t$.
$\triangleright x_{s, 0}=1, \forall s \in S_{0}$, and
$\triangleright x_{v, i}, y_{v, i} \in\{0,1\}, \forall v \in V ; \forall i=1,2, \ldots,|V|$.
\triangleright Formulate the CP as an integer program (IP). $\sqrt{ }$
\triangleright State and solve an appropriate linear relaxation (LP) of (IP). \leftarrow
\triangleright Use combinatorial techniques...

(LP) Minimize

$$
\sum_{v \in V} \sum_{i=0}^{|V|}\left|x_{v, i}\right|
$$

subject to
$\triangleright \sum_{i=1}^{l+1} y_{v, i}+\sum_{i=1}^{l+1} x_{v, i} \geq \sum_{i=1}^{l} x_{u, i}, \forall v \in V, \forall\{u, v\} \in E$, and $\forall l=1,2, \ldots$
$\triangleright \sum_{v \in V} y_{v, l} \leq 2 a_{l}, \forall l=1,2, \ldots, t$, and $y_{v, l}=0$ for all $l>t$.
$\triangleright x_{s, 0}=1, \forall s \in S_{0}$, and
$\triangleright 0 \leq x_{v, i}, y_{v, i} \leq 1, \forall v \in V ; \forall i=1,2, \ldots,|V|$.
\triangleright Formulate the CP as an integer program (IP). $\sqrt{ }$
\triangleright State and solve an appropriate linear relaxation (LP) of (IP). $\sqrt{ }$
\triangleright Use combinatorial techniques (and the fact that t (number of time-steps) is small) to convert the solution of (LP) into a vaccination strategy \leftarrow

Sol'n of LP \rightarrow vaccination strategy
\triangleright Let $\left\{x_{v, i}, y_{v, i}|v \in V ; i=0,1, \ldots,|V|\}\right.$ be the sol'n to (LP).
\triangleright Set S to be the nodes v s.t. $\sum_{i} x_{v, i} \geq \frac{2}{3}$, and T to be the nodes v s.t. $\sum_{i} x_{v, i}<\frac{1}{3}$, and let C be a min-cut in G between S and T.
\triangleright Let C_{1} be the vertices v in S such that $y_{v, 1} \geq \frac{1}{3 t}$. For general $l<t$, set C_{l+1} to be the vertices v in S of distance at least $l+1$ from a vertex in S_{0} in $G \backslash\left(C_{1} \cup \ldots \cup C_{l}\right)$, s.t. $\sum_{i=1}^{l} y_{v, i} \geq \frac{1}{3 t}$.
\triangleright For each $l<t$, vaccinate the vertices in C_{l} at time step l, and the vertices in $C_{t} \cup C$ at time step t, and return.

Further research directions
\triangleright Remove the condition that G is an expander.
\triangleright Improve the approximation factors of the algorithm.
\triangleright Establish stronger hardness results.

