The Containment Problem

Michael Capalbo

mcapalbo@dimacs.rutgers.edu

(Joint work with James Abello)

Let G = (V, E) be a network (e.g., social, computer network, ect.), and let S_0 be any subset of V.

 \triangleright Every node in S_0 is infected with a virus that spreads from each infected node to all of its nonvaccinated neighbors in one time-step.

 \triangleright Our allowed response: vaccinate a limited number (about a_l) of nodes during each time step $l = 1, 2, 3, \ldots, t$

▷ Our goal: find what nodes to vaccinate each step to minimize the total number *m* of nodes that eventually become infected.

We call this the Containment Problem (input is G, S_0 , and the a_l 's).

Why would we care about solving the Containment Problem?

▷ Limited supply of vaccine available initially to stop an infection.

▷ Containment of computer virus spreading through a network.

Blocking off suspects from escaping the scene of a crime where only a limited number of policeman are available initially. Note that it is always at least as effective to vaccinate a node earlier rather than later.

Lemma 1 Let C be the set of nodes that we vaccinate at some point or another. If each node v in C is vaccinated before the infection reaches it, then the number of nodes that eventually become infected is the number of nodes that share a component in $G \setminus C$ with a node in S_0 . Unfortunately, the Containment Problem (CP) is NP-hard: It is probably impossible to devise a tractable algorithm that returns an optimum strategy.

So we devise a tractable approximation algorithm for CP that returns a (slightly) inferior vaccination strategy:

- ▷ have to vaccinate slightly more $(O(\log |V(G)|) \times a_l \text{ nodes instead of only } a_l \text{ nodes as before})$ at each time-step l, and
- > the total number of nodes that become infected is no more than 3m (instead of the minimum m as before).

And we also require that the network G satisfy the following expansion property: Every subset S of no more than a quarter of the nodes of G has at least |S| neighbors outside S.

Empirical evidence: social networks resemble random graphs

▷ Random graphs have expansion property

 \triangleright So our assumption about the expansion properties of G is reasonable.

Overview of the approximation algorithm for the CP

Lemma 2 If G is an expander, then it is possible to vaccinate only twice as many nodes per time-step as before for the first $t = \log |V(G)|$ time-steps, and then none after, so that no more than nodes than before become infected.

 \triangleright Formulate CP as an integer program (IP), where we vaccinate $2a_l$ nodes per time-step $l \leq t$ (and none thereafter) instead of only a_l .

▷ State and solve an appropriate linear relaxation (LP) of (IP).

 \triangleright Use combinatorial techniques (and that t in Lemma 2 is small) to convert the solution for (LP) into a vaccination strategy.

 \triangleright Formulate the CP as an integer program (IP). \leftarrow

- ▷ State and solve an appropriate linear relaxation (LP) of (IP).
- ▷ Use combinatorial techniques...

(IP) Minimize

$$\sum_{v \in V} \sum_{i=0}^{|V|} |x_{v,i}|$$

subject to

$$\sum_{i=1}^{l+1} y_{v,i} + \sum_{i=1}^{l+1} x_{v,i} \geq \sum_{i=1}^{l} x_{u,i}, \ \forall v \in V, \ \forall \{u,v\} \in E, \text{ and} \\ \forall j = 1, 2, \dots \\ \geq \sum_{v \in V} y_{v,l} \leq 2a_l, \ \forall l = 1, 2, \dots, t, \text{ and } y_{v,l} = 0 \text{ for all } l > t. \\ \geq x_{s,0} = 1, \ \forall s \in S_0, \text{ and} \\ \geq x_{v,i}, y_{v,i} \in \{0,1\}, \ \forall v \in V; \ \forall i = 1, 2, \dots, |V|.$$

 \triangleright Formulate the CP as an integer program (IP). \checkmark

- \triangleright State and solve an appropriate linear relaxation (LP) of (IP). \leftarrow
- ▷ Use combinatorial techniques...

(LP) Minimize

$$\sum_{v \in V} \sum_{i=0}^{|V|} |x_{v,i}|$$

subject to

$$\sum_{i=1}^{l+1} y_{v,i} + \sum_{i=1}^{l+1} x_{v,i} \geq \sum_{i=1}^{l} x_{u,i}, \forall v \in V, \forall \{u,v\} \in E, \text{ and} \\ \forall l = 1, 2, \dots \\ \triangleright \sum_{v \in V} y_{v,l} \leq 2a_l, \forall l = 1, 2, \dots, t, \text{ and } y_{v,l} = 0 \text{ for all } l > t. \\ \triangleright x_{s,0} = 1, \forall s \in S_0, \text{ and} \\ \triangleright 0 \leq x_{v,i}, y_{v,i} \leq 1, \forall v \in V; \forall i = 1, 2, \dots, |V|.$$

- \triangleright Formulate the CP as an integer program (IP). \checkmark
- \triangleright State and solve an appropriate linear relaxation (LP) of (IP). \checkmark

Sol'n of LP \rightarrow vaccination strategy

▷ Let $\{x_{v,i}, y_{v,i} | v \in V; i = 0, 1, ..., |V|\}$ be the sol'n to (LP). ▷ Set S to be the nodes v s.t. $\sum_i x_{v,i} \ge \frac{2}{3}$, and T to be the nodes vs.t. $\sum_i x_{v,i} < \frac{1}{3}$, and let C be a min-cut in G between S and T. ▷ Let C_1 be the vertices v in S such that $y_{v,1} \ge \frac{1}{3t}$. For general l < t, set C_{l+1} to be the vertices v in S of distance at least l+1 from a vertex in S_0 in $G \setminus (C_1 \cup \ldots \cup C_l)$, s.t. $\sum_{i=1}^l y_{v,i} \ge \frac{1}{3t}$.

 \triangleright For each l < t, vaccinate the vertices in C_l at time step l, and the vertices in $C_t \cup C$ at time step t, and return.

Further research directions

 \triangleright Remove the condition that G is an expander.

▷ Improve the approximation factors of the algorithm.

▷ Establish stronger hardness results.