
Relational Nonlinear FIR Filters

Ronald K. Pearson

Daniel Baugh Institute for Functional

Genomics and Computational Biology

Thomas Jefferson University

Philadelphia, PA

Moncef Gabbouj

Institute of Signal Processing

Tampere University of Technology

Tampere, Finland

DIMACS Workshop on Data

Quality, Data Cleaning and

Treatment of Noisy Data

November 3-4, 2003

1

Topics

1. A very brief description of the problem

2. Nonlinear FIR filters for data cleaning

3. The relational data model

4. Relational sequence filters

5. Relational region filters

6. Relational cluster filters

7. Summary

2

What Is the Problem?

• Dasu and Johnson, 2003:
Take NOTHING for granted. The data are never

what they are supposed to be, even after they are

“cleaned up.” The schemas, layout, content, and

nature of content are never completely known or

documented and continue to change dynamically.

• Mendelzon and Mihaila (2001) note that

consistency problems are particularly

common in applications that combine data

from multiple sources

• CAMDA: microarray data analysis contest

– CAMDA 2002: 2 challenge datasets

– normal mouse dataset: 3 tissue-specific

datasets, constructed from 72 microarrays

 data transfer error caused 1, 932 of 5, 304

genes to be mis-indexed in one dataset

3

Nonlinear FIR Filters

• General notion:

– given an input sequence {xk}

– desire a related sequence {yk} = F{xk}

 motivation: noise reduction, outlier

elimination, trend removal, feature

detection, etc.

• The NFIR solution:

yk = Φ(xk−m, . . . , xk−n)

• Some important examples:

– linear Finite Impulse Response (FIR)

filters (e.g., weighted averages)

 effective in many applications, but not in

outlier elimination

– the standard median filter:

yk = median {xk−K , . . . , xk, . . . , xk+K}

 rejects outliers, but usually introduces

unacceptable distortion

4

A Contaminated Data Sequence

x(
k)

0 50 100 150 200

0
5

10

5

Median Filter Response

K = 2

x(
k)

0 50 100 150 200

-2
-1

0
1

2

6

The Hampel Filter

• Basic idea:

1. form moving data window:

wk = {xk−K , . . . , xk, . . . , xk+K}

2. test: is xk an outlier in wk?

a. yes ⇒ replace with median of wk

b. no ⇒ make no change

• Outlier detection:

1. compute MAD scale estimate for wk

Sk = 1.4826 median {|xk − median {wk}|}

2. test: |xk − median {wk}| > tSk ⇒ outlier

• Tuning parameters:

– K = moving window width ∼

“bandwidth” (esp., patchy outliers)

– t = threshold ⇒ “aggressiveness”

∗ t = 0 ⇒ median filter (most aggressive)

∗ t → ∞ ⇒ no filtering∗ (least aggressive)

7

Hampel Filter Response

K = 3, t = 3

x(
k)

0 50 100 150 200

-3
-2

-1
0

1
2

8

The Relational Data Model

• Basic structure:

– relation ' data table

– tuple ' table row

– attribute ' table column

• Duplications forbidden:

– no duplicate tuples (rows)

– no duplicate attributes (columns)

 practical problem: duplicates and

near-duplicates exist in real databases

• Relational operators preserve tables

• Example: INTERSECT

– A, B = data tables

– A ∩ B = table containing common tuples

from A and B

⇒ A and B must have tuples of the same

types (i.e., must have the same attributes)

9

Keys

• Basic idea:

keys uniquely identify tuples

• More specifically,

1. a key K is a collection of attributes

2. t1(K) 6= t2(K) for any distinct tuples t1, t2

3. condition 2 fails for any proper subset of K

• Practical issues:

– keys must be distinct

 in practice, they may not be

– missing keys are not permitted

 in practice, keys are sometimes missing

 Dasu and Johnson (2003), p. 174:
In many cases, we have been given datasets in

which the field which is supposed to be the

primary key was not actually unique in all

records, but we were able to find other keys in

the table and use them to join tables or to verify

approximate joins.

10

The Join Operation

• Basic idea:

combine two tables with one or more

common attributes

• Illustrative example:

– Table A has attributes

{X1, . . . , Xn, Y1, . . . , Ym}

– Table B has attributes

{X1, . . . , Xn, Z1, . . . , Zp}

– A ./ B = A JOIN B has attributes

{X1, . . . , Xn, Y1, . . . , Ym, Z1, . . . , Zp}

– tuples in A ./ B are those with the same

values for attributes X1, . . . , Xn in Tables

A and B

• Important operation in practice:

intended basis for the CAMDA normal

mouse dataset: each organ-specific

dataset should have contained the joins

of all 24 individual microarray datasets

11

Relational Sequence Filters

• Basic idea:

extend NFIR filter class from

real-valued sequences {xk} to

sequences {Tk} of data tables

• Motivations:

1. relational data sequences are becoming

increasingly important , e.g.

∗ stock market price data

∗ meterological event data

∗ customer purchase pattern data

 Sadri et al. (2001): SQL-TS = “Simple

Query Language for Time Series”

2. sequential case represents simplest

extension of scalar NFIR filters

 Key NFIR constraint:

filter output {Yk} should be a sequence

of valid data tables, computed from

{Tk−K , . . . , Tk, . . . , Tk+K}

12

Two Practical Details

1. Key validation: what do we do about missing

(i.e., null) or duplicate keys?

a. strong form: halt processing

b. semi-strong form: extract the valid

subsequence {T ′
k} of {Tk} for subsequent

processing

⇒ filter must be able to process incomplete

data windows

c. weak form: create new, unique keys for

each tuple in any table in {Tk} with a

missing or duplicate key

2. Sequence extension: what about end effects?

 {Tk−K , . . . , Tk+K} not all defined for

1 ≤ k < K or N − K < k ≤ N

– extension strategy (J.W. Tukey): define

Tj = T1 for j = −K + 1, . . . , 0 and

Tj = TN for j = N + 1, . . . , N + K

13

Two Filtering Strategies

 Basic view:

represent a table Tk with p tuples and

q attributes as a p × q matrix

1. Diagonal filtering strategy:

Y
ij
k = Φij(T

ij
k−K , . . . , T

ij
k , . . . , T

ij
k+K)

– equivalent to pq scalar NFIR filters

– advantage: simplicity

– disadvantage: takes no advantage of any

useful intra-table data dependences

2. Full filtering strategy:

Yk = Φ(Tk−K , . . . ,Tk, . . . ,Tk+K)

– equivalent to a MIMO filter with pq inputs

and pq outputs

– advantage: can take full advantage of

useful intra-table dependences

– disadvantage: complexity

14

A Third Strategy:

Block-structured Filtering

• Basic idea:

partition data tables Tk into smaller

subtables T`
k of related variables

 Note that blocks need not be disjoint:

T`
k and Tm

k can share variables for

m 6= ` but should not be identical

• Implementation:

Y`
k = Φ`(T

`
k−K , . . . ,T`

k, . . . ,T`
k+K)

• Equivalent to applying a MIMO filter of the

appropriate dimension to each subtable T`
k

• Advantage: can be tailored to take advantage

of the most useful intra-table dependences

• Disadvantage: more complex to implement

than the diagonal strategy, but simpler than

the full strategy

15

Domain Restrictions

• Traditional NFIR filters map real numbers

into real numbers

 Relational data tables often contain other

data types, e.,g. integers, category

designations, character strings

⇒ Data table validity requirements may impose

significant restrictions on the function Φ(·)

– consequence: certain “standard”

operations may be forbidden

– example: xk must be an integer

Φ(wk) =
1

2K + 1

K
∑

j=−K

xk

⇒ averages inadmissable

Φ(wk) = median {xk−K , . . . , xk+K}

⇒ odd medians admissable

 Particular challenge: block-structured

filtering with mixed data types

16

Relational Region Filters

• Motivation: image processing

– replace 1D sequence with 2D sequence

– i.e., {xk−K , . . . , xk, . . . , xk+K} →

{xk−K,`−L, . . . , xk,`, . . . , xk+K,`+L}

• Relational region filter:

– replace table sequence {Tk} with

multiply-indexed sequence

– example: sales data tables {Ttksz}

∗ t = product type

∗ k = day or week of transaction

∗ s = store location

∗ z = customer zipcode

→ Two new issues:

1. total vs. partial orders

2. window complexity

17

A 3 × 3 Window Example

xk−1,`−1

xk−1,`

xk−1,`+1

xk,`−1

xk,`

xk,`+1

xk+1,`−1

xk+1,`

xk+1,`+1

18

Total vs. Partial Orders

• Total order: for every i and j

1. i preceeds j ⇔ i < j

2. i follows j ⇔ i > j

3. i is the same as j ⇔ i = j

• Fourth possibility for a partial order:

4. i neither preceeds nor follows j and i 6= j

 In a total order, i < j < k ⇒ Ti is further

from Tk than Tj

– useful, e.g., downweight “remote” tables

– does not extend to partial orders

 For a one–dimensional sequence {Tk}, k

defines a total order, but for multi-

dimensional sequences like {Ttksz}, indices

only define a partial order

 e.g., does xk,`+1 preceed or follow xk+1,`?

19

Window Complexity Issues

• Size depends strongly on index dimension

– 1D, symmetric window: S = 2K + 1

– 2D, square window: S = (2K + 1)2

– general nD, full window: S = (2K + 1)n

• Some representative full window sizes:

K 1D 2D 3D 4D 5D

1 3 9 27 81 243

2 5 25 125 625 3, 125

3 7 49 343 2, 401 16, 807

4 9 81 729 6, 561 59, 049

5 11 121 1, 331 14, 641 161, 051

20

Two Practical Compromises

• Compromise 1:

impose structure to reduce size

• Image processing examples:

– full square window: S = (2K + 1)2

– cross-shaped window: S = 4K + 1

– X-shaped window: S = 4K + 1

• General extensions:

– full hypercube window: S = (2K + 1)n

– cross-shaped window:

S = (2K + 1) + (n − 1) · 2K = 2nK + 1

– X-shaped window: S = 2nK + 1

• Compromise 2:

combine 1D subwindows using

composite filters

• 2D example—separable median filter:

yk,` = median {median {wD
k,`},

median {w
H
k,`}, median {w

V
k,`}}

21

Relational Cluster Filters

• Basic idea:

– relational region filters are based on

indices of adjacent records

 underlying assumption for data cleaning:

adjacent records should be similar

→ alternative measures of record similarity?

• Related idea: cluster analysis

– basic problem: partition a set S of objects

into k disjoint subsets

– clustering algorithms typically based on

dissimilarities between objects

• Specific extension for relational filters:

– for each data table Tk, select its 2K most

similar neighbors

– apply a relational sequence filter based on

Tk and its 2K most similar neighbors

 can these neighbors be ordered? If not,

use permutation-invariant filters

22

Dissimilarity Measures

• Basic idea: dij measures the degree of

dissimilarity between objects i and j

• Standard requirements:

– nonnegativity: dij ≥ 0

– self-similarity: dii = 0

– symmetry: dij = dji

• Examples:
– Euclidean distance:

dij =

√

√

√

√

n
∑

k=1

(xi
k
− x

j

k
)2

 any norm defines a dissimilarity

 different data types require alternatives
– e.g., Jaccard measure for binary data:

dij =
b + c

a + b + c

a = |{ i, j | xi = xj = 1}|

b = |{ i, j | xi = 1, xj = 0}|

c = |{ i, j | xi = 0, xj = 1}|

23

Relational Dissimilarities

• Attributes can be of many different types

• Some simple combined measures have been

proposed (Gordon, 1999)

 An interesting extension:

– compute dissimilarity matrices ∆` for

individual attributes or related subsets

– combine {∆`} to form ∆

– possible combinations:

∗ sum rule:

∆ =

r
∑

`=1

∆`

∗ Haddamard product:

∆ij =
r

∏

`=1

∆`
ij

 must preserve dissimilarity properties

⇒ standard matrix products excluded

24

Approximate Join Filters

• Problem:

– Table A contains part of the information

– Table B contains the rest

⇒ desired information is in the join A ./ B

 tables are incomplete/corrupted

• Statistical file merging (Barr & Turner, 1990):

– Table A = {X1, . . . , Xn, Y1, . . . , Ym}

– Table B = {X ′
1, . . . , X

′
n, Z1, . . . , Zp}

– exact match records for which X ′
i = Xi

generally do not exist

 alternative: match records for which X ′
i is

as similar to Xi as possible and form the

approximate join: A � B =

{X1, . . . , Xn, Y1, . . . , Ym, Z ′
1, . . . , Z

′
p}

• Approximate join cluster filter:

A ◦ B = {X1, . . . , Xn, Y1, . . . , Ym, Ẑ1, . . . , Ẑp}

where Ẑi is obtained from a cluster filter

based on 2K nearest neighbor tuples from B

25

Summary

• Preliminary overview of what appears to be a

promising research area

• Key ideas:

– extend nonrecursive NFIR filter class to

relational data objects

– use local neighborhood information

• Key issues:

 how do we define local neighborhoods?

 how do we combine different data types?

 how do we manage window complexity?

• A useful extension:

nonlinear FIR filters for cleaning

semi-structured data objects (e.g.,

XML documents)

26

