Finding your way in a graph

Finding your way in a graph

- = station

One loop

A system of interconnected loops

What is the best way to go from L to L^{\prime} ?

What is the best way to go from L to L^{\prime} ?

What is the best way to go from L to L^{\prime} ?

What is the best way to go from L to L^{\prime} ?

This was called "loop switching" when it was introduced by John Pierce at Bell Labs in the late '60's.

This was called "loop switching" when it was introduced by John Pierce at Bell Labs in the late '60's.

Holder of more than 90 patents, and author of 14 technical books and over 200 technical articles, he sold two poems and one painting and received royalties from Decca records ("Music from Mathematics" and "The Voice of the Computer"). He also published 20 science fiction stories, under the pseudonym "J. J. Coupling." He also invented the John R. Pierce word "transistor".

This was called "loop switching" when it was introduced by John Pierce at Bell Labs in the late '60's.

Holder of more than 90 patents, and author of 14 technical books and over 200 technical articles, he sold two poems and one painting and received royalties from Decca records ("Music from Mathematics" and "The Voice of the Computer"). He also published 20 science fiction stories, under the pseudonym "J. J. Coupling." He also invented the John R. Pierce word "transistor".
"John Pierce has done more than any other individual to bring about the age of space communications."

Arthur C. Clarke (1986)

This was called "loop switching" when it was introduced by John Pierce at Bell Labs in the late '60's.

Holder of more than 90 patents, and author of 14 technical books and over 200 technical articles, he sold two poems and one painting and received royalties from Decca records ("Music from Mathematics" and "The Voice of the Computer"). He also published 20 science fiction stories, under the pseudonym "J. J. Coupling." He also invented the John R. Pierce word "transistor".
1910-2002
"John Pierce has done more than any other individual to bring about the age of space communications."

Arthur C. Clarke (1986)

This was called "loop switching" when it was introduced by John Pierce at Bell Labs in the late '60's.

Holder of more than 90 patents, and author of 14 technical books and over 200 technical articles, he sold two poems and one painting and received royalties from Decca records ("Music from Mathematics" and "The Voice of the Computer"). He also published 20 science fiction stories, under the pseudonym "J. J. Coupling." He also invented the John R. Pierce word "transistor".
1910-2002
"John Pierce has done more than any other individual to bring about the age of space communications."

Arthur C. Clarke (1986)

Loop switching was a precursor to what is now called packet switching.

A system of interconnected loops

A system of interconnected loops

A system of interconnected loops and the corresponding graph G

The distance $d_{G}(u, v)$ between u and v is defined to be the minimum number of edges in any path joining u and v.

The distance $d_{G}(u, v)$ between u and v is defined to be the minimum number of edges in any path joining u and v.

The Hamming distance between two binary n-tuples is defined to be the number of positions in which they differ.

Denote Hamming distance by d_{H}.

For example, if $s=(1,0,0,1,0,1,1,1,0)$ and $t=(0,0,1,1,0,0,1,0,1)$ then $d_{H}(s, t)=5$.

The Hamming distance between two binary n-tuples is defined to be the number of positions in which they differ.

Denote Hamming distance by d_{H}.

For example, if $s=(1,0,0,1,0,1,1,1,0)$ and $\dagger=(0,0,1,1,0,0,1,0,1)$ then $d_{H}(s, t)=5$.

The Hamming distance between two binary n-tuples is defined to be the number of positions in which they differ.

Denote Hamming distance by d_{H}.

For example, if $s=(1,0,0,1,0,1,1,1,0)$ and $\dagger=(0,0,1,1,0,0,1,0,1)$ then $d_{H}(s, t)=5$.

The Hamming distance between two binary n-tuples is defined to be the number of positions in which they differ.

Denote Hamming distance by d_{H}.

For example, if $s=(1,0,0,1,0,1,1,1,0)$ and $\dagger=(0,0,1,1,0,0,1,0,1)$ then $d_{H}(s, t)=5$.

Hamming is perhaps best known for his pioneering work in error correcting codes that are now ubiquitous in computer hardware, compact discs, hard drives, digital communication systems, etc. He is also known for his work on integrating differential equations and the spectral window which bears his name.

Richard Hamming

The Hamming distance between two binary n-tuples is defined to be the number of positions in which they differ.

Denote Hamming distance by d_{H}.

For example, if $s=(1,0,0,1,0,1,1,1,0)$ and $\dagger=(0,0,1,1,0,0,1,0,1)$ then $d_{H}(s, t)=5$.

Hamming is perhaps best known for his pioneering work in error correcting codes that are now ubiquitous in computer hardware, compact discs, hard drives, digital communication systems, etc. He is also known for his work on integrating differential equations and the spectral window which bears his name.

Richard Hamming
1915-1998

Routing messages in G

If we are currently at v and our final destination is v^{*} then we go to v^{\prime} provided that v^{\prime} is closer to v^{*} than v is, i.e.,

$$
d_{G}\left(v^{\prime}, v^{\star}\right)<d_{G}\left(v, v^{\star}\right)
$$

Hamming distance routing

Assign to each vertex v of G, a suitable binary N-tuple $A(v)$, called its address.

Hamming distance routing

Assign to each vertex v of G, a suitable binary N-tuple $A(v)$, called its address.

If we are currently at v and our final destination is v^{*} then we go to v' provided that

$$
d_{H}\left(A\left(v^{\prime}\right), A\left(v^{\star}\right)\right)<d_{H}\left(A(v), A\left(v^{\star}\right)\right)
$$

Of course, this only works if the Hamming distances between addresses accurately reflects the actual graph distances in G.

For example:

G

Of course, this only works if the Hamming distances between addresses accurately reflects the actual graph distances in G.

For example:

$$
d_{G}(a, c)=2=d_{H}(000,011)
$$

Of course, this only works if the Hamming distances between addresses accurately reflects the actual graph distances in G.

For example:

$$
\begin{aligned}
& d_{G}(a, c)=2=d_{H}(000,011) \\
& d_{G}(e, b)=3=d_{H}(110,001), \text { etc. }
\end{aligned}
$$

$$
G
$$

An assignment $v: \rightarrow A(v)$ of binary N-tuples to the vertices of G is called a valid addressing of G (of length N) provided we have:

$$
d_{G}(u, v)=d_{H}(A(u), A(v))
$$

for all vertices u and v in G.

An assignment $v: \rightarrow A(v)$ of binary N-tuples to the vertices of G is called a valid addressing of G (of length N) provided we have:

$$
d_{G}(u, v)=d_{H}(A(u), A(v))
$$

for all vertices u and v in G.

Note that a valid addressing of G is actually an isometric embedding of G into an N-cube!

A valid addressing of G.

Trees

A tree T

Trees

$$
\begin{aligned}
& a-0 \\
& b-1
\end{aligned}
$$

So far, so good!

A tree T

Trees

$$
\begin{aligned}
& a-00 \\
& b-10 \\
& c-11
\end{aligned}
$$

A tree T

Trees

$$
\begin{aligned}
& a-000 \\
& b-100 \\
& c-110 \\
& d-101
\end{aligned}
$$

A tree T

Trees

$$
\begin{aligned}
& a-0000 \\
& b-1000 \\
& c-1100 \\
& d-1010 \\
& e-1011
\end{aligned}
$$

A tree T

Trees

$$
\begin{aligned}
& a-00000 \\
& b-10000 \\
& c-11000 \\
& d-10100 \\
& e-10110 \\
& f-10101
\end{aligned}
$$

A tree T

Trees

A tree T
a-000000
b-100000
c-110000
$d-101000$
e-101100
f - 101010
g-101011

Trees

A tree T

$$
\begin{aligned}
& a-000000 \\
& b-100000 \\
& c-110000 \\
& d-101000 \\
& e-101100 \\
& f-101010 \\
& g-101011
\end{aligned}
$$

A valid addressing of T

What about a triangle? ?

What about a triangle? ?

Introduce a new symbol *, and define $d_{H}(0, *)=d_{H}\left(1,{ }^{*}\right)=0$.

What about a triangle? ?

Introduce a new symbol * , and define $d_{H}(0, *)=d_{H}(1, *)=0$.

For example, $d_{H}\left(01^{*} 0 * 101, * 01 * * 011\right)=3$

Now we can address a triangle

What about a triangle? ?

Introduce a new symbol *, and define $d_{H}(0, *)=d_{H}\left(1,{ }^{*}\right)=0$.

$$
\text { For example, } d_{H}(01 * 0 * 101, * 01 * * 011)=3
$$

What about a triangle? ?

Introduce a new symbol *, and define $d_{H}(0, *)=d_{H}\left(1,{ }^{*}\right)=0$.

$$
\text { For example, } \mathrm{d}_{H}(01 * 0 * 101, * 01 * * 011)=3
$$

Now we can address a triangle

What about a triangle? ?

Introduce a new symbol *, and define $d_{H}(0, *)=d_{H}\left(1,{ }^{*}\right)=0$.

$$
\text { For example, } d_{H}(01 * 0 * 101, * 01 * * 011)=3
$$

A valid extended addressing of G is an assignment $A(v)$ to each vertex v in G an N-tuple of 0,1 , and *'s so that for all vertices u and v in G,

$$
d_{G}(u, v)=d_{H}(A(u), A(v))
$$

A valid extended addressing of G is an assignment $A(v)$ to each vertex v in G an N-tuple of 0,1 , and *'s so that for all vertices u and v in G,

$$
d_{G}(u, v)=d_{H}(A(u), A(v))
$$

Theorem: Valid extended addresses exist for every graph G.

Proof:

$$
\begin{aligned}
& A\left(v_{1}\right)=\overbrace{0 \ldots \ldots}^{d_{G}\left(v_{1}, v_{2}\right)} \\
& A\left(v_{2}\right)=1 \ldots \ldots .1
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& A\left(v_{1}\right)=\overbrace{0 \ldots \ldots .}^{d_{6}\left(v_{1}, v_{2}\right)} \overbrace{0 \ldots \ldots . d_{G}\left(v_{1}, v_{3}\right)}^{0} \\
& A\left(v_{2}\right)=1 \ldots . . .1 * \ldots . . * \\
& A\left(v_{3}\right)=* \ldots . .{ }^{*} 1 \ldots \ldots .1
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& A\left(v_{2}\right)=1 \ldots \ldots .1^{*} \ldots \ldots . .^{*} . ~ \\
& A\left(v_{3}\right)=*{ }^{\star} 1 \ldots \ldots . . \ldots . ~ \\
& A\left(v_{i}\right)={ }^{*}{ }^{*} \text { *...... ... } \\
& A\left(v_{j}\right)={ }^{*} \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

Unfortunately, the length of the addresses maybe very long by using this method!

Define $N(G)$ to be the least N such that a valid (extended) addressing of G of length N exists.

Unfortunately, the length of the addresses maybe very long by using this method!

Define $N(G)$ to be the least N such that a valid (extended) addressing of G of length N exists.

Conjecture: If G has n vertices then $N(G) \leq n-1$.

Unfortunately, the length of the addresses maybe very long by using this method!

Define $N(G)$ to be the least N such that a valid (extended) addressing of G of length N exists.

Conjecture: If G has n vertices then $N(G) \leq n-1$.
Theorem (Peter Winkler)

Unfortunately, the length of the addresses maybe very long by using this method!

Define $N(G)$ to be the least N such that a valid (extended) addressing of G of length N exists.

Conjecture: If G has n vertices then $N(G) \leq n-1$.
Theorem (Peter Winkler - \$100)

Unfortunately, the length of the addresses maybe very long by using this method!

Define $N(G)$ to be the least N such that a valid (extended) addressing of G of length N exists.

Conjecture: If G has n vertices th Theorem (Peter Winkler - \$100)

	A	B	C	D	E	F
A	0	1	1	2	2	3
B	1	0	1	1	2	2
C	1	1	0	2	1	2
D	2	1	2	0	2	1
E	2	2	1	2	0	1
F	3	2	2	1	1	0

Distance matrix $D(G)=\left(d_{i j}\right)$

vertex - address
$A-00000$
$B-1 * 00 *$
$C-0100 *$
$D-1 * 1 * 0$
$E-0101 *$
$F-* * 111$

	A	B	C	D	E	F
A	0	1	1	2	2	3
B	1	0	1	1	2	2
C	1	1	0	2	1	2
D	2	1	2	0	2	1
E	2	2	1	2	0	1
F	3	2	2	1	1	0

Distance matrix $D(G)=\left(d_{i j}\right)$

vertex - address
$A-000000$
$B-1 * 00 *$
$C-0100 *$
$D-1 * 1 * 0$
$E-0101 *$
$F-* * 111$

	A	B	C	D	E	F
A	0	1	1	2	2	3
B	1	0	1	1	2	2
C	1	1	0	2	1	2
D	2	1	2	0	2	1
E	2	2	1	2	0	1
F	3	2	2	1	1	0

Distance matrix $D(G)=\left(d_{i j}\right)$

vertex - address
$A-000000$
$B-1 * 00 *$
$C-0100 *$
$D-1 * 1 * 0$
$E-0101 *$
$F-* * 111$

A	vertex	-	address
,	A	-	00000
$B \longrightarrow C$	B	-	1*00*
,	C		0100 *
$D>E$	D	-	1* 1 * 0
F	E	-	0101 *
	F		**111

	B	C	C	D	E	F
A	1			1		
B						
C	1			1		
D						
E	1			1		
F						

$A C E \times B D$

vertex - address
$A-000000$
$B-1 * 00 *$
$C-0100 *$
$D-1 * 1 * 0$
$E-0101 *$
$F-* * 111$

$$
A C E \times B D=B D \times A C E
$$

vertex - address
$A-00000$
$B-1 * 00 *$
$C-0100 *$
$D-1 * 1 * 0$
$E-C 101 *$
$F-* * 111$

$$
A \times C E
$$

vertex - address
$A-00000$
$B-1 * 00 *$
$C-0100 *$
$D-1 * 1 * 0$
$E-0101 *$
$F-* * 111$

	A	B	C	D	E	F
A	0	1	1	2	2	3
B	1	0	1	1	2	2
C	1	1	0	2	1	2
D	2	1	2	0	2	1
E	2	2	1	2	0	1
F	3	2	2	1	1	0

$$
\begin{aligned}
& \text { column contribution } \\
& \text { Distance matrix } D(G)=\left(d_{i j}\right) \\
& Q(G)=1 / 2 \sum_{1 \leq i, j \leq n} d_{i j} x_{i} x_{j}=\left(x_{1}+x_{3}+x_{5}\right)\left(x_{2}+x_{4}\right) \\
& +x_{1}\left(x_{3}+x_{5}\right) \\
& +\left(x_{1}+x_{2}+x_{3}+x_{5}\right)\left(x_{4}+x_{6}\right) \\
& +\left(x_{1}+x_{2}+x_{3}\right)\left(x_{5}+x_{6}\right) \\
& +\left(x_{1}+x_{4}\right) x_{6}
\end{aligned}
$$

A valid extended addressing of G using N-tuples corresponds exactly to a decomposition of $Q(G)=1 / 2 \sum_{1 \leq i, j \leq n} d_{i j} x_{i} x_{j}$ into a sum of N terms of form $\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{r}}\right)\left(x_{j_{1}}+x_{j_{2}}+\ldots+x_{j_{s}}\right)$.

A valid extended addressing of G using N-tuples corresponds exactly to a decomposition of $Q(G)=1 / 2 \sum_{1 \leq i, j \leq n} d_{i j} x_{i} x_{j}$ into a sum of N terms of form $\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{r}}\right)\left(x_{j_{1}}+x_{j_{2}}+\ldots+x_{j_{s}}\right)$.

However, since $A B=\frac{1}{4}\left[(A+B)^{2}-(A-B)^{2}\right]$
then

$$
\begin{aligned}
Q(G) & =\sum_{N}\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{r}}\right)\left(x_{j_{1}}+x_{j_{2}}+\ldots+x_{j_{s}}\right) \\
& =\sum_{N} \frac{1}{4}\left[\left(x_{i_{1}}+\ldots+x_{i_{r}}+x_{j_{1}}+\ldots+x_{j_{s}}\right)^{2}-\left(x_{i_{1}}+\ldots+x_{i_{r}}-x_{j_{1}}-\ldots-x_{j_{s}}\right)^{2}\right]
\end{aligned}
$$

A valid extended addressing of G using N-tuples corresponds exactly to a decomposition of $Q(G)=1 / 2 \sum_{1 \leq i, j \leq n} d_{i j} x_{i} x_{j}$ into a sum of N terms of form $\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{r}}\right)\left(x_{j_{1}}+x_{j_{2}}+\ldots+x_{j_{s}}\right)$.

However, since $A B=\frac{1}{4}\left[(A+B)^{2}-(A-B)^{2}\right]$
then

$$
\begin{aligned}
Q(G) & =\sum_{N \text { terms }}\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{r}}\right)\left(x_{j_{1}}+x_{j_{2}}+\ldots+x_{j_{s}}\right) \\
& =\sum_{N} \frac{1}{4}\left[\left(x_{i_{1}}+\ldots+x_{i_{r}}+x_{j_{1}}+\ldots+x_{j_{s}}\right)^{2}-\left(x_{i_{1}}+\ldots+x_{i_{r}}-x_{j_{1}}-\ldots-x_{j_{s}}\right)^{2}\right]
\end{aligned}
$$

Thus, $Q(G)$ is congruent to a quadratic form which has N positive squares and N negative squares.

Hence, by Sylvester's law of inertia,
$N \geq n_{+}(G)=$ number of positive eigenvalues of $D(G)$; and
$N \geq n_{-}(G)=$ number of negative eigenvalues of $D(G)$;

Hence, by Sylvester's law of inertia,
$N \geq n_{+}(G)=$ number of positive eigenvalues of $D(G)$; and
$N \geq n_{-}(G)=$ number of negative eigenvalues of $D(G)$;

Theorem: (Graham, Pollak, Witsenhausen)
$N(G) \geq \max \left\{n_{+}(G), n_{-}(G)\right\}$

Hence, by Sylvester's law of inertia,
$N \geq n_{+}(G)=$ number of positive eigenvalues of $D(G)$; and
$N \geq n_{-}(G)=$ number of negative eigenvalues of $D(G)$;

Theorem: (Graham, Pollak, Witsenhausen)
$N(G) \geq \max \left\{n_{+}(G), n_{-}(G)\right\}$

Hence, by Sylvester's law of inertia,
$N \geq n_{+}(G)=$ number of positive eigenvalues of $D(G)$; and
$N \geq n_{-}(G)=$ number of negative eigenvalues of $D(G)$;

Theorem: (Graham, Pollak, Witsenhausen)
$N(G) \geq \max \left\{n_{+}(G), n_{-}(G)\right\}$

Hence, by Sylvester's law of inertia,
$N \geq n_{+}(G)=$ number of positive eigenvalues of $D(G)$; and
$N \geq n_{-}(G)=$ number of negative eigenvalues of $D(G)$;

Theorem: (Graham, Pollak, Witsenhausen)
$N(G) \geq \max \left\{n_{+}(G), n_{-}(G)\right\}$

Question: How close to the truth is this bound?

$$
T_{n}-a \text { tree with } n \text { vertices }
$$

T_{n} - a tree with n vertices

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} \\
& D\left(T_{5}\right)
\end{aligned}
$$

$\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 3 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 1 \\ 3 & 2 & 1 & 0 & 2 \\ 3 & 2 & 1 & 2 & 0\end{array}\right]$
$D(T 5)$

\[

\]

T_{n} - a tree with n vertices

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} \\
& D\left(T_{5}\right) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

$\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 3 \\ 1 & 0 & 1 & 2 & 2 \\ 2 & 1 & 0 & 1 & 1 \\ 3 & 2 & 1 & 0 & 2 \\ 3 & 2 & 1 & 2 & 0\end{array}\right]$
$D(T 5)$
$n_{+}=1$
$n_{-}=4$
$\left[\begin{array}{lllll}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 2 & 2 & 2 \\ 1 & 2 & 0 & 2 & 2 \\ 1 & 2 & 2 & 0 & 2 \\ 1 & 2 & 2 & 2 & 0\end{array}\right]$
$D\left(T_{5}^{\prime \prime}\right)$

$n_{+}=1$

n

T_{n} - a tree with n vertices

$$
\begin{gathered}
{\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 & 2 \\
1 & 2 & 0 & 2 & 2 \\
1 & 2 & 2 & 0 & 2 \\
1 & 2 & 2 & 2 & 0
\end{array}\right]} \\
\\
D\left(T_{5}^{\prime \prime}\right) \\
\\
\\
\\
n_{+}=1 \\
n_{-}=4
\end{gathered}
$$

$\operatorname{det} D\left(T_{5}\right)=32$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 3 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 1 \\
3 & 2 & 1 & 0 & 2 \\
3 & 2 & 1 & 2 & 0
\end{array}\right]} \\
& D(T 5) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} \\
& D\left(T_{5}\right) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

T_{n} - a tree with n vertices

$$
\begin{gathered}
{\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 & 2 \\
1 & 2 & 0 & 2 & 2 \\
1 & 2 & 2 & 0 & 2 \\
1 & 2 & 2 & 2 & 0
\end{array}\right]} \\
\\
D\left(T_{5}^{\prime \prime}\right) \\
\\
\\
\\
n_{+}=1 \\
n_{-}=4
\end{gathered}
$$

$\operatorname{det} D\left(T_{5}\right)=32 \quad \operatorname{det} D\left(T_{5}^{\prime}\right)=32!$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 3 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 1 \\
3 & 2 & 1 & 0 & 2 \\
3 & 2 & 1 & 2 & 0
\end{array}\right]} \\
& D(T 5) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} \\
& D\left(T_{5}\right) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

T_{n} - a tree with n vertices

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} \\
& D\left(T_{5}\right) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 3 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 1 \\
3 & 2 & 1 & 0 & 2 \\
3 & 2 & 1 & 2 & 0
\end{array}\right]} \\
& D(T 5) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

$\operatorname{det} D\left(T_{5}\right)=32$
$\operatorname{det} D\left(T_{5}^{\prime}\right)=32!$
$\operatorname{det} D\left(T_{5}^{\prime \prime}\right)=32!!$

T_{n} - a tree with n vertices

$\left[\begin{array}{lllll}0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 2 & 1 & 0\end{array}\right]$
$D\left(T_{5}\right)$
$n_{+}=1$
$n_{-}=4$
$\operatorname{det} D\left(T_{5}\right)=32$
A coincidence?
T_{n} - a tree with n vertices

$$
\begin{gathered}
{\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 3 \\
1 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 1 & 1 \\
3 & 2 & 1 & 0 & 2 \\
3 & 2 & 1 & 2 & 0
\end{array}\right]} \\
\\
D\left(T_{5}^{\prime}\right)
\end{gathered}
$$

$\operatorname{det} D\left(T_{5}\right)=32$
$\left.\operatorname{det} D(T \cdot)^{\prime}\right)=32!$
$\operatorname{det} D\left(T_{5}^{\prime \prime}\right)=32!!$
A coincidence? (or an example of the law of small numbers?)

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
1 & 0 & 1 & 2 & 3 \\
2 & 1 & 0 & 1 & 2 \\
3 & 2 & 1 & 0 & 1 \\
4 & 3 & 2 & 1 & 0
\end{array}\right]} \\
& D\left(T_{5}\right) \\
& n_{+}=1 \\
& n_{-}=4
\end{aligned}
$$

If T_{n} is a tree with n vertices then

$$
\operatorname{det} D\left(T_{n}\right)=(-1)^{n-1}(n-1) 2^{n-2}
$$

independent of the structure of the tree.

If T_{n} is a tree with n vertices then

$$
\operatorname{det} D\left(T_{n}\right)=(-1)^{n-1}(n-1) 2^{n-2}
$$

independent of the structure of the tree.

This implies

$$
n_{+}\left(T_{n}\right)=1, \quad n_{-}\left(T_{n}\right)=n-1
$$

and so,

$$
N\left(T_{n}\right)=n-1
$$

for any tree T_{n} tree with n vertices.

Some questions

Is it true that $N(G)=\max \left\{n_{+}(G), n_{-}(G)\right\}$?

Some questions

Is it true that $N(G)=\max \left\{n_{+}(G), n_{-}(G)\right\}$?

No! Take G $=K_{2,3}$.

$$
n_{+}(G)=2, \quad n_{-}(G)=3, \quad N(G)=4
$$

Some questions

Is it true that $N(G)=\max \left\{n_{+}(G), n_{-}(G)\right\}$?

No! Take G $=\mathrm{K}_{2,3}$.

$n_{+}(G)=2, \quad n_{-}(G)=3, \quad N(G)=4$

What is the value of $N\left(K_{S, t}\right)$ in general?
($I \dagger$ is between $s+t-2$ and $s+t-1$).

Some questions

Is it true that $N(G)=\max \left\{n_{+}(G), n_{-}(G)\right\}$?

No! Take $G=K_{2,3}$.

$n_{+}(G)=2, \quad n_{-}(G)=3, \quad N(G)=4$

What is the value of $N\left(K_{s, t}\right)$ in general?
($I \dagger$ is between $s+\dagger-2$ and $s+\dagger-1$).
Why is $n_{+}(G)$ so small in general?

What does det $D(G)$ mean?

For example, $\operatorname{det} D\left(T_{n}\right)=(-1)^{n-1}(n-1) 2^{n-2}$ for any tree T_{n}.
$n-1$ is the number of edges in T_{n}.

What does det $D(G)$ mean?

For example, $\operatorname{det} D\left(T_{n}\right)=(-1)^{n-1}(n-1) 2^{n-2}$ for any tree T_{n}.
$n-1$ is the number of edges in T_{n}.
In general, one could look at the characteristic polynomial of $D(G)$, i.e., $\operatorname{det}(D(G)-x I)$ (where I denotes the n by n identity matrix).

The constant term is just det $D(G)$.
What do the other coefficients of $\operatorname{det}(D(G)-x I)$ mean?

What does det $D(G)$ mean?

For example, $\operatorname{det} D\left(T_{n}\right)=(-1)^{n-1}(n-1) 2^{n-2}$ for any tree T_{n}.
$n-1$ is the number of edges in T_{n}.

In general, one could look at the characteristic polynomial of $D(G)$, i.e., $\operatorname{det}(D(G)-x I)$ (where I denotes the n by n identity matrix).

The constant term is just det $D(G)$.
What do the other coefficients of $\operatorname{det}(D(G)-x I)$ mean?
For $G=T_{n}$, we understand them (Graham/Lovász).
For example, the coefficient of x is

$$
4 \#(\bullet-\bullet)+2 \#(\bullet \bullet)+4 \#(\bullet \bullet)-4
$$

Which graphs have valid addressings which use only 0's and 1's (i.e., no *'s)?

That is, which graphs can be isometrically embedded in an N -cube?

Which graphs have valid addressings which use only 0's and 1's (i.e., no *'s)?

That is, which graphs can be isometrically embedded in an N -cube?

Theorem (Djokovič)
G can be isometrically embedded into an N-cube if and only if for every edge $\{u, v\}$ of G, the set of vertices $S(u)$ which are closer to u than to v is closed under taking shortest paths, i.e., all shortest paths between any two vertices in $S(u)$ stay within $S(u)$.

What about addressing directed graphs?

Again, we use N-tuples of O's, 1's and *'s. Now, however, we modify the "Hamming distance" between two N -tuples so that
$d_{H^{*}}(a, b)=1$ if and only if $a=0$ and $b=1$ (so that $d_{H^{*}}(1,0)=0$).

What about addressing directed graphs?

Again, we use N-tuples of O's, 1's and *'s. Now, however, we modify the "Hamming distance" between two N -tuples so that
$d_{H^{*}}(a, b)=1$ if and only if $a=0$ and $b=1$ (so that $d_{H^{*}}(1,0)=0$).

Thus, $\mathrm{d}_{\mathrm{H}^{*}}\left(00110^{\star}, 1000^{\star} 1\right)=1$, and $\mathrm{d}_{\mathrm{H}^{\star}}\left(1000^{\star} 1,00110^{\star}\right)=2$.

What about addressing directed graphs?

Again, we use N-tuples of O's, 1's and *'s. Now, however, we modify the "Hamming distance" between two N -tuples so that
$d_{H^{*}}(a, b)=1$ if and only if $a=0$ and $b=1$ (so that $d_{H^{*}}(1,0)=0$).

Thus, $d_{H^{\star}}\left(00110^{\star}, 1000^{\star} 1\right)=1$, and $d_{H^{\star}}\left(1000^{\star 1}, 00110^{\star}\right)=2$.

Theorem (Chung, Graham, Winkler)
Any strongly connected directed graph has a valid addressing using 0's, 1's and *'s.

What about addressing directed graphs?

Again, we use N-tuples of O's, 1's and *'s. Now, however, we modify the "Hamming distance" between two N -tuples so that
$d_{H^{*}}(a, b)=1$ if and only if $a=0$ and $b=1$ (so that $d_{H^{*}}(1,0)=0$).

Thus, $\mathrm{d}_{\mathrm{H}^{*}}\left(00110^{\star}, 1000^{\star} 1\right)=1$, and $\mathrm{d}_{\mathrm{H}^{\star}}\left(1000^{\star 1}, 00110^{\star}\right)=2$.

Theorem (Chung, Graham, Winkler)
Any strongly connected directed graph has a valid addressing

What about addressing directed graphs?

Again, we use N-tuples of 0's, 1's and *'s. Now, however, we modify the "Hamming distance" between two N -tuples so that
$d_{H^{*}}(a, b)=1$ if and only if $a=0$ and $b=1$ (so that $d_{H^{*}}(1,0)=0$).

Thus, $d_{H^{\star}}\left(00110^{\star}, 1000^{\star} 1\right)=1$, and $d_{H^{\star}}\left(1000^{\star} 1,00110^{\star}\right)=2$.

Theorem (Chung, Graham, Winkler)

Any strongly connected directed graph has a valid addressing

Define $N^{*}(G)$ to be the least N for which a valid addressing of the directed graph G exists.

Define $N^{*}(G)$ to be the least N for which a valid addressing of the directed graph G exists.

Theorem If G has n vertices then $N *(G) \leq \frac{3}{4} n^{2}+o\left(n^{2}\right)$.
On the other hand, there exists a directed graph G^{\prime} with n vertices such that $N^{*}(G)>\frac{1}{8} n^{2}$.

Define $N^{*}(G)$ to be the least N for which a valid addressing of the directed graph G exists.

Theorem If G has n vertices then $N^{*}(G) \leq \frac{3}{4} n^{2}+o\left(n^{2}\right)$.
On the other hand, there exists a directed graph G^{\prime} with n vertices such that $N^{*}(G)>\frac{1}{8} n^{2}$.

What is the right constant here??

The simplest strongly connected directed graph C_{n}^{\star}

(a directed cycle on n vertices)

The simplest strongly connected directed graph C_{n}^{\star}

(a directed cycle on n vertices)

The simplest strongly connected directed graph C_{n}^{\star}

(a directed cycle on n vertices)

The simplest strongly connected directed graph C_{n}^{\star}

(a directed cycle on n vertices)

There exists positive constants c and c^{\prime} such that

$$
c n^{\frac{3}{2}}<N^{*}\left(C_{n}^{*}\right)<c^{\prime} n^{\frac{5}{3}}(\log n)^{\frac{1}{3}}
$$

The simplest strongly connected directed graph C_{n}^{\star}

(a directed cycle on n vertices)

There exists positive constants c and c^{\prime} such that

$$
c n^{\frac{3}{2}}<N^{*}\left(C_{n}^{\star}\right)<c^{\prime} n^{\frac{5}{3}}(\log n)^{\frac{1}{3}}
$$

(\$100) Determine the correct exponent of n.

The simplest strongly connected directed graph C_{n}^{\star}

(a directed cycle on n vertices)

There exists positive constants c and c^{\prime} such that

$$
c n^{\frac{3}{2}}<N^{*}\left(C_{n}^{*}\right)<c^{\prime} n^{\frac{5}{3}}(\log n)^{\frac{1}{3}}
$$

(\$100) Determine the correct exponent of n.
Clearly, there is lots more to be done!

"Adding two numbers which probably have never been added before is not considered a mathematical breakthrough."

CENTER II2I-MATHEMATICS AND STATISTICS RESEARCH

Really LARGE numbers

Really LARGE numbers

Super-base-2 expansion

$$
\begin{array}{r}
4=2^{5}+2^{3}+1 \\
(32+8+1)
\end{array}
$$

Super-base-2 expansion

$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$

Super-base-2 expansion

$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$
First step: Replace each 2 by 3 , subtract 1 , and write the result in a super-base-3 expansion;

Super-base-2 expansion

$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$
First step: Replace each 2 by 3 , subtract 1 , and write the result in a super-base-3 expansion;

$$
\boldsymbol{G}, 4 \rightarrow 3^{3^{3+1}}+3^{3+1}+1-1
$$

Super-base-2 expansion
$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$
First step: Replace each 2 by 3 , subtract 1 , and write the result in a super-base-3 expansion;

有, $4 \rightarrow 3^{3^{3+1}}+3^{3+1}+1-1=22876792455042$

Super-base-2 expansion

$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$
First step: Replace each 2 by 3 , subtract 1 , and write the result in a super-base-3 expansion:

目, $4 \rightarrow 3^{3^{3+1}}+3^{3+1}+1-1=22876792455042$
Next step: Replace each 3 by a 4 , subtract 1 , and write the result in a super-base-4 expansion:

Super-base-2 expansion

$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$
First step: Replace each 2 by 3 , subtract 1 , and write the result in a super-base-3 expansion:

目, $4 \rightarrow 3^{3^{3+1}}+3^{3+1}+1-1=22876792455042$
Next step: Replace each 3 by a 4 , subtract 1 , and write the result in a super-base-4 expansion:

$$
3^{3^{3+1}}+3^{3+1} \rightarrow 4^{4^{4+1}}+4^{4+1}-1
$$

Super-base-2 expansion

$\#=2^{5}+2^{3}+1=2^{2^{2}+1}+2^{2+1}+1$
First step: Replace each 2 by 3 , subtract 1 , and write the result in a super-base-3 expansion:

日, $4 \rightarrow 3^{3^{3+1}}+3^{3+1}+1-1=22876792455042$
Next step: Replace each 3 by a 4 , subtract 1 , and write the result in a super-base-4 expansion:

$$
\begin{aligned}
& 3^{3^{3+1}}+3^{3+1} \rightarrow 4^{4^{4+1}}+4^{4+1}-1 \\
& \quad=4^{4^{4+1}}+3 \cdot 4^{4}+3 \cdot 4^{3}+3 \cdot 4^{2}+3 \cdot 4+3
\end{aligned}
$$

$$
4^{4^{4+1}}+3 \cdot 4^{4}+3 \cdot 4^{3}+3 \cdot 4^{2}+3 \cdot 4+3
$$

5363123171977038839829609999282338450991746328236957/
$=35108942457748870561202941879072074971926676137107601 /$ 27432745944203415015531247786279785734596024337407

$$
4^{4^{4+1}}+3 \cdot 4^{4}+3 \cdot 4^{3}+3 \cdot 4^{2}+3 \cdot 4+3
$$

5363123171977038839829609999282338450991746328236957/
$=$ 35108942457748870561202941879072074971926676137107601/ 27432745944203415015531247786279785734596024337407

The general step: Replace the current super-base b by $b+1$, subtract 1 , and then express the new number in a super-base-(b+1) expansion.

For example, the next step for us would be

$$
\begin{aligned}
& 4^{4^{4+1}}+3 \cdot 4^{4}+3 \cdot 4^{3}+3 \cdot 4^{2}+3 \cdot 4+3 \\
\rightarrow & 5^{5^{5+1}}+3 \cdot 5^{5}+3 \cdot 5^{3}+3 \cdot 5^{2}+3 \cdot 5+2
\end{aligned}
$$

$5^{5^{5+1}}+3 \cdot 5^{5}+3 \cdot 5^{3}+3 \cdot 5^{2}+3 \cdot 5+2=$
95550629897273876017820227985198229959904052449504716856975639462326026512130 79015060296932598699251327932200778972311176796063943369034861442050734579933 01043980948378597850919640830169023805612987766813050500741325561706573884126 20574654722358848264137814259836875719767877123954660960332094150589358456127 62105350253545323371914354257249751282930972307715917556899245668458899640637 16920215774618427763391798187051052665773015676862662874318454579889345164133 22959149190761514346828643684571132406564587188106816286516082264148974343128 81226811090088366124702838214096800393603569185361776527231780769732005926742 46896359757297252754116374610802924456455472594979974343099771573833469006518 58808179629723987308211002544253973490224356660256658036956711527009943628501 91649006230250985067336985879545136947469619086578934984229498973905340214112 18046891973167632711407852151416221192757541158245483642856085854061616395240 90863416375505637339115870549294434185426100035586674612695666115037807359021 45037638388966761531003091430062276271215305034474027232923524103254913321596 80480194368129255373537170318143488288351349629324976778988159086951275445665 61164737196517197808066416703641583174912907261343100215389954234405190209368 41624004519367981064598168012915603908368368712666614396484536027452978107034 44412995622290921189798931738242157836880461812545185755899470712131135110033 14324343393435509149043640128034655097464041541252209921239839602945440855616 35961507277914583733975987152740132023234270013669969303992972329807508762934 82905723784255020784343865451856241267671919642698799374729248525019112506244 64200091329502812564309381496902220367007117353102789265266251745909479485359 96528310942564815937508717679801411005191058080242725605196566561281661303832 18118344148425104419748071415242369556995834811324974281842617356436647398340 44225470294697555232547206895475113827282656650933531676066151423025971719069 99052807003262976503658953863555328917470873213423604780673236638742921191374 49834377526252197109116095678611527033357686687124271822831891022850827296609 07702677419680712533224929270165373323427094507406717385732515751897708788931 14058882929384708404541025467

(Unbelievable) Fact: If we keep on repeating this

 process, we will eventually reach 0!(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .
(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .

Let $G(n)$ denote the number of steps it takes to reach 0 .
For example, $G(2)=3, G(3)=5$.
(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .

Let $G(n)$ denote the number of steps it takes to reach 0 .
For example, $G(2)=3, G(3)=5$. What is $G(4)$?
(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .

Let $G(n)$ denote the number of steps it takes to reach 0 .
For example, $G(2)=3, G(3)=5$. What is $G(4)$?

$$
G(4)=3 \cdot 2^{z}\left(2^{3 \cdot 2^{z}}-1\right)+4
$$

(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .

Let $G(n)$ denote the number of steps it takes to reach 0 .
For example, $G(2)=3, G(3)=5$. What is $G(4)$?

$$
G(4)=3 \cdot 2^{2}\left(2^{3 \cdot 2^{z}}-1\right)+4>0^{0}, 0
$$

(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .

Let $G(n)$ denote the number of steps it takes to reach 0 .
For example, $G(2)=3, G(3)=5$. What is $G(4)$?

$$
G(4)=3 \cdot 2^{2}\left(2^{3 \cdot 2^{2}}-1\right)+4>0^{0} 0
$$

No one has ever computed $G(5)$ exactly.
(Unbelievable) Fact: If we keep on repeating this process, we will eventually reach 0!

Goodstein's Theorem:
For every integer n, if we apply the preceding process starting with the super-base-2 expansion of n, we must eventually reach 0 .

Let $G(n)$ denote the number of steps it takes to reach 0 .
For example, $G(2)=3, G(3)=5$. What is $G(4)$?

$$
G(4)=3 \cdot 2^{2}\left(2^{3 \cdot 2^{2}}-1\right)+4>0^{0} 0
$$

No one has ever computed G(6) exactly. \$25

THE CARDINALS

THE OrDinals

I hear they are doing some amazing things with computers these days.

"Very creative. Very imaginative. Logic......that's what's missing."

"But this is the simplified version for the general public."

Example: $G=K_{n}$, the complete graph on n vertices.
$D\left(K_{n}\right)=\left(\begin{array}{l}0,1,1, \ldots \ldots, 1 \\ 1,0,1, \ldots \ldots, 1 \\ 1,1,0, \ldots \ldots \ldots \ldots \\ \ldots \ldots \ldots \ldots . . \\ 1,1,1, \ldots \ldots, 0\end{array}\right)$

Example: $G=K_{n}$, the complete graph on n vertices.

$\left(\begin{array}{l}0,1,1, \ldots \ldots, 1 \\ 1,0,1, \ldots \ldots, 1 \\ 1,1,0, \ldots \ldots, 1 \\ \ldots \ldots \ldots \ldots \ldots . . \\ 1,1,1, \ldots \ldots, 0\end{array}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)=\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)$

Example: $G=K_{n}$, the complete graph on n vertices.

$\left(\begin{array}{l}0,1,1, \ldots \ldots, 1 \\ 1,0,1, \ldots \ldots, 1 \\ 1,1,0, \ldots \ldots, 1 \\ \ldots \ldots \ldots \ldots \ldots . . \\ 1,1,1, \ldots \ldots, 0\end{array}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)=\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)$

But $\quad\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)= \begin{cases}-1 & \text { if } r^{n}=1, r \neq 1 \\ n-1 & \text { if } r=1\end{cases}$

Example: $G=K_{n}$, the complete graph on n vertices.
$D\left(K_{n}\right)=\left(\begin{array}{c}0,1,1, \ldots \ldots, 1 \\ 1,0,1, \ldots . .1 \\ 1,1,0, \ldots \ldots .1 \\ \ldots . ~ \\ 1,1,1, \ldots . . .\end{array}\right) \quad$ If r is an nth root of unity then
$\left(\begin{array}{l}0,1,1, \ldots \ldots, 1 \\ 1,0,1, \ldots \ldots, 1 \\ 1,1,0, \ldots \ldots, 1 \\ \ldots \ldots \ldots \ldots \ldots . . \\ 1,1,1, \ldots \ldots, 0\end{array}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)=\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)$

But $\quad\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)= \begin{cases}-1 & \text { if } r^{n}=1, r \neq 1 \\ n-1 & \text { if } r=1\end{cases}$
Thus, $n^{+}\left(K^{n}\right)=1, n^{-}\left(K^{n}\right)=n-1$, and so, $N\left(K^{n}\right) \geq n-1$.

Example: $G=K_{n}$, the complete graph on n vertices.

$\left(\begin{array}{l}0,1,1, \ldots \ldots, 1 \\ 1,0,1, \ldots \ldots, 1 \\ 1,1,0, \ldots \ldots, 1 \\ \ldots \ldots \ldots \ldots \ldots . \\ 1,1,1, \ldots \ldots, 0\end{array}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)=\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)\left(\begin{array}{l}1 \\ r \\ r^{2} \\ \cdot \\ \cdot \\ r^{n-1}\end{array}\right)$

But $\quad\left(r+r^{2}+r^{3}+\ldots+r^{n-1}\right)= \begin{cases}-1 & \text { if } r^{n}=1, r \neq 1 \\ n-1 & \text { if } r=1\end{cases}$
Thus, $n^{+}\left(K^{n}\right)=1, n^{-}\left(K^{n}\right)=n-1$, and so, $N\left(K^{n}\right) \geq n-1$.
Consequently, $N(K)=n-1$

$K_{3,4}$-complete bipartite graph

$$
N\left(K_{n}\right)=n-1
$$

Equivalent statement: K_{n} cannot be decomposed into fewer than n-1 complete bipartite edge-disjoint subgraphs
(since each term $\left(x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{r}}\right)\left(x_{\mathrm{j}_{1}}+x_{\mathrm{j}_{2}}+\ldots+x_{\mathrm{j}_{s}}\right)$ in the sum corresponds to a complete bipartite subgraph $K_{r, s}$).

For example, K_{5}

For example, K_{5}

For example, K_{5}

For example, K_{5}

For example, K_{5}

For example, K_{5}

For example, K_{5}

complete bipartite graph on vertex sets A and B
K_{n} cannot be decomposed into fewer than
$n-1$ complete bipartite edge-disjoint subgraphs

In other words,

$$
K_{n}=\sum_{k=1}^{t} K\left(A_{k}, B_{k}\right) \Rightarrow t \geq n-1
$$

K_{n} cannot be decomposed into fewer than n -1 complete bipartite edge-disjoint subgraphs

In other words,

$$
K_{n}=\sum_{k=1}^{+} K\left(A_{k}, B_{k}\right) \Rightarrow t \geq n-1
$$

K_{n} cannot be decomposed into fewer than n -1 complete bipartite edge-disjoint subgraphs

In other words,

$$
K_{n}=\sum_{k=1}^{+} K\left(A_{k}, B_{k}\right) \Rightarrow t \geq n-1
$$

Non-eigenvalue proof (H. Tverberg)

K_{n} cannot be decomposed into fewer than
n -1 complete bipartite edge-disjoint subgraphs

In other words,

$$
K_{n}=\sum_{k=1}^{+} K\left(A_{k}, B_{k}\right) \Rightarrow t \geq n-1
$$

Non-eigenvalue proof (H. Tverberg)

Hypothesis implies

K_{n} cannot be decomposed into fewer than n -1 complete bipartite edge-disjoint subgraphs

In other words,

$$
K_{n}=\sum_{k=1}^{+} K\left(A_{k}, B_{k}\right) \Rightarrow t \geq n-1
$$

Non-eigenvalue proof (H. Tverberg)

Hypothesis implies

$$
\sum_{i<j} x_{i} x_{j}=\sum_{k=1}^{\dagger}\left(\sum_{a \in A_{k}} x_{a}\right)\left(\sum_{b \in B_{k}} x_{b}\right)
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to (\#) must satisfy

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to (\#) must satisfy

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to (\#) must satisfy

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0=\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j}
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution ($x_{1}, x_{2}, \ldots, x_{n}$) to (\#) must satisfy

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0 & =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{k=1}^{+}\left(\sum_{a \in A_{k}} x_{a}\right)\left(\sum_{b \in B_{k}} x_{b}\right)
\end{aligned}
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution ($x_{1}, x_{2}, \ldots, x_{n}$) to (\#) must satisfy

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0 & =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{k=1}^{t}\left(\sum_{a \in A_{k}} x_{a}\right)\left(\sum_{b \in B_{k}} x_{b}\right)
\end{aligned}
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to (\#) must satisfy

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0 & =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{k=1}^{\dagger}\left(\sum_{a \in A_{k}} x_{a}\right)\left(\sum_{b \in B_{k}} x_{b}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Consider the system of $t+1$ homogeneous linear equations in the n variables x_{i} :

$$
\sum_{a \in A_{k}} x_{a}=0,1 \leq k \leq t, \text { and } \sum_{k=1}^{n} x_{k}=0
$$

Any solution $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to (\#) must satisfy

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=0 & =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{i<j} x_{i} x_{j} \\
& =\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{k=1}^{\dagger}\left(\sum_{a \in A_{k}} x_{a}\right)\left(\sum_{b \in B_{k}} x_{b}\right) \\
& =\sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Therefore, $x_{i}=0$ for all i.
Thus, the number of equations must be at least as large as the number of variables, i.e., $t+1 \geq n$, as claimed.

