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This was called “loop switching” when it was introduced by
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A system of interconnected loops
and the corresponding graph G



G - graph



The distance d  (u,v) between u and v is defined to be
the minimum number of edges in any path joining u and v.
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The distance d  (u,v) between u and v is defined to be
the minimum number of edges in any path joining u and v.
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d  (u,v) = 4G
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Routing messages in G

v
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If we are currently at v and our final destination is v*
then we go to v’ provided that v’ is closer to v* than v is,
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d  (v’,v*) < d  (v,v*)G G
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Of course, this only works if the Hamming distances between
addresses accurately reflects the actual graph distances in G.
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An assignment v:     A(v) of binary N-tuples to the vertices of G

is called a valid addressing of G (of length N) provided we have:

d  (u,v) =
G
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for all vertices u and v in G.

Note that a valid addressing of G is actually an isometric embedding

of G into an N-cube!
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A valid extended addressing of G is an assignment A(v) to each vertex v in G

 an N-tuple of 0, 1, and *’s so that for all vertices u and v in G,

d  (u,v) =
G

d  (A(u),A(v))H

Theorem: Valid extended addresses exist for every graph G.
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Unfortunately, the length of the addresses maybe very long

by using this method!

Define N(G) to be the least N such that a valid (extended)

addressing of G of length N exists.

Conjecture:Conjecture:   If G has n vertices then N(G)  !  n – 1.
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[(x ... x x ... x ) (x ... x x ... x ) ]

Thus, Q(G) is congruent to a quadratic form which has N positive squares

and N negative squares.
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Question: How close to the truth is this bound?
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If T   is a tree with n vertices then

!= !detD(T 1 1) ( ) (n )2 -2n-1 n
n

independent of the structure of the tree.

This implies = = !n 1 1(T ) , n (T ) n+ -n n

and so,
= ! 1N(T ) nn

n

for any tree T  tree with n vertices.n
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Some questionsSome questions

Is it true that =N(G) max {n (G),n (G)}?+ -

No! Take G = K      .2,3

n (G) = 2,     n (G) = 3,     N(G) = 4+ -

What is the value of N(K    ) in general?s,t

(It is between s+t-2 and s+t-1).

Why is n  (G) so small in general?+
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What does det D(G) mean?

!= !detD(T 1 1) ( ) (n )2 -2n-1 n
nFor example, for any tree T  .n

n - 1 is the number of edges in T  .n

In general, one could look at the characteristic polynomial of D(G), i.e.,

det (D(G) – xI)  (where I denotes the n by n identity matrix).

The constant term is just det D(G).

What do the other coefficients of det (D(G) – xI) mean?

For G = T  , we understand them (Graham/Lovász).n
For example, the coefficient of x is

4 #(      ) + 2 #(         ) + 4 #(     )  - 4
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Which graphs have valid addressings which use only 0’s and 1’s (i.e., no *’s)?

That is, which graphs can be isometrically embedded in an N-cube?

TheoremTheorem (Djokovič)

G can be isometrically embedded into an N-cube if and only if

for every edge {u,v} of G, the set of vertices S(u) which are closer to

u than to v is closed under taking shortest paths, i.e., all shortest paths

between any two vertices in S(u) stay within S(u).

More generally, there is now a rather complete theory as to when graphs

can be isometrically embedded in a cartesian product of smaller graphs

(Graham/Winkler).
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Define N*(G) to be the least N for which a valid addressing

of the directed graph G exists.



Define N*(G) to be the least N for which a valid addressing

of the directed graph G exists.

Theorem If G has n vertices then

On the other hand, there exists a directed graph G’ with n vertices

such that

 N *(G) ! 3
4 n2 + o(n2).

 N *(G) > 1
8 n2.



Define N*(G) to be the least N for which a valid addressing

of the directed graph G exists.

What is the right constant here??

Theorem If G has n vertices then

On the other hand, there exists a directed graph G’ with n vertices

such that

 N *(G) ! 3
4 n2 + o(n2).

 N *(G) > 1
8 n2.
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(a directed cycle on n vertices)

3
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53 1
3 32 *
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($100) Determine the correct exponent of n.



The simplest strongly connected directed graph C*n

(a directed cycle on n vertices)

3

C*3

00110*

1000*1010*10

N*(C*) ! 63

There exists positive constants c and c’ such that

< <cn N *(C ) c'n (log n)
53 1
3 32 *

n

Clearly, there is lots more to be done!

($100) Determine the correct exponent of n.



“Adding two numbers which probably have never been added
before is not considered a mathematical breakthrough.”
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41



Super-base-2 expansion

41 = 25 + 23 + 1
(32  +   8    +   1)
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Super-base-2 expansion

41 = 25 + 23 + 1 = 222 + 1 + 22 + 1 + 1

First step: Replace each 2 by 3, subtract 1, and
write the result in a super-base-3 expansion;

Thus , 41 ! 333 + 1
+ 33 + 1 + 1 – 1 = 22876792455042

Next step: Replace each 3 by a 4, subtract 1, and
write the result in a super-base-4 expansion;

333 + 1
+ 33 + 1 ! 444 + 1

+ 44 + 1 – 1



Super-base-2 expansion

41 = 25 + 23 + 1 = 222 + 1 + 22 + 1 + 1

First step: Replace each 2 by 3, subtract 1, and
write the result in a super-base-3 expansion;

Thus , 41 ! 333 + 1
+ 33 + 1 + 1 – 1 = 22876792455042

Next step: Replace each 3 by a 4, subtract 1, and
write the result in a super-base-4 expansion;

333 + 1
+ 33 + 1 ! 444 + 1

+ 44 + 1 – 1

= 444 + 1
+ 3 ! 44 + 3 ! 43 + 3 ! 42 + 3 ! 4 + 3



444 + 1
+ 3 ! 44 + 3 ! 43 + 3 ! 42 + 3 ! 4 + 3

5363123171977038839829609999282338450991746328236957/
35108942457748870561202941879072074971926676137107601/
27432745944203415015531247786279785734596024337407

=



444 + 1
+ 3 ! 44 + 3 ! 43 + 3 ! 42 + 3 ! 4 + 3

5363123171977038839829609999282338450991746328236957/
35108942457748870561202941879072074971926676137107601/
27432745944203415015531247786279785734596024337407

=

The general step: Replace the current super-base b by
b+1, subtract 1, and then express the new number in a
super-base-(b+1) expansion.

For example, the next step for us would be

444 + 1
+ 3 ! 44 + 3 ! 43 + 3 ! 42 + 3 ! 4 + 3

! 555 + 1
+ 3 " 55 + 3 " 53 + 3 " 52 + 3 " 5 + 2



95550629897273876017820227985198229959904052449504716856975639462326026512130
79015060296932598699251327932200778972311176796063943369034861442050734579933
01043980948378597850919640830169023805612987766813050500741325561706573884126
20574654722358848264137814259836875719767877123954660960332094150589358456127
62105350253545323371914354257249751282930972307715917556899245668458899640637
16920215774618427763391798187051052665773015676862662874318454579889345164133
22959149190761514346828643684571132406564587188106816286516082264148974343128
81226811090088366124702838214096800393603569185361776527231780769732005926742
46896359757297252754116374610802924456455472594979974343099771573833469006518
58808179629723987308211002544253973490224356660256658036956711527009943628501
91649006230250985067336985879545136947469619086578934984229498973905340214112
18046891973167632711407852151416221192757541158245483642856085854061616395240
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49834377526252197109116095678611527033357686687124271822831891022850827296609
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555 + 1
+ 3 ! 55 + 3 ! 53 + 3 ! 52 + 3 ! 5 + 2 =
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Let G(n) denote the number of steps it takes to reach 0.

For example, G(2) = 3, G(3) = 5. What is G(4)?

G(4) = 3!227 (23!227
– 1) + 44 > 10 100 ,000
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Goodstein’s Theorem:

For every integer n, if we apply the preceding
process starting with the super-base-2 expansion
of n, we must eventually reach 0.
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For example, G(2) = 3, G(3) = 5. What is G(4)?

G(4) = 3!227 (23!227
– 1) + 44 > 10 100 ,000

No one has ever computed G(5) exactly.



(Unbelievable) Fact: If we keep on repeating this
process, we will eventually reach 0 !

Goodstein’s Theorem:

For every integer n, if we apply the preceding
process starting with the super-base-2 expansion
of n, we must eventually reach 0.

Let G(n) denote the number of steps it takes to reach 0.

For example, G(2) = 3, G(3) = 5. What is G(4)?

G(4) = 3!227 (23!227
– 1) + 44 > 10 100 ,000

No one has ever computed G(6) exactly. $25





I hear they are doing some amazing
things with computers these days.



“Very creative. Very imaginative. Logic……that’s  what’s missing.”



“But this is the simplified version for the general public.”
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K       - complete bipartite graph3,4

N(K ) = n-1n

Equivalent statement: K   cannot be decomposed into fewer than

n-1 complete bipartite edge-disjoint subgraphs
n

+ + + + + +
sr 1 21 2 j j ji i i(x x ... x )(x x ... x )(since each term

corresponds to a complete bipartite subgraph K    ).r,s

in the sum
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Therefore, x  = 0 for all i.
i

Thus, the number of equations must be at least as large as the
number of variables, i.e., t + 1 ! n, as claimed.


