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Part I: Curvature of second order dynamical systems
• Second order dynamical systems DS
• Curvature of DS
• Position focusing

Part II Feedback focusing
• Second order control systems CS
• Feedback focusing problem
• Curvature and feedback focusing

Part III
• Curvature of control systems

Most results are based on a joint work with W. Kryński

3



Second order dynamical system

By second order dynamical system DS we mean

ẍ = F (t, x, ẋ), x ∈ Rn.

It will be written as:

ẋ = y, ẏ = F (t, x, y), (DS)

where x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn,
F = (F1, . . . , Fn).

In mechanics:

x - generalized position,

y - generalized velocity,

F (t, x, y) - ”force”.
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Curvature of second order dynam. system

Def Curvature of DS is the n× n matrix K = K(t, x, y),

K = −Fx −
1

4
F2

y +
1

2
FFyy +

1

2
yFxy +

1

2
Fty,

where Fx = (F i
xj) - matrix of partial deriv. with respect to xj,

Fy = (F i
yj) - matrix of partial deriv. with respect to yj,

Fty = (F i
tyj) - matrix of second partial deriv. w. r. to t and yj,

Fyy = (F i
yjyk) - n matrices of partial der. with respect to yj, yk

Fxy = (F i
xjyk) - n matrices of partial der. with respect to xj, yk

K = (Ki
j), where, with the summation convention,

Ki
j = −F i

xj −
1

4
F i

ykF
k
yj +

1

2
F kF i

ykyj +
1

2
ykF i

xkyj +
1

2
F i

tyj ,

5



Example: potential force

If the ”force” F = F (t, x) depends on position and time, only,

then

K = −Fx(x) =

(
∂F i

∂xj

)
.

This happens, for example, if the force is potential,

F = F (x) = −φx(x),

where φ : Rn → R - a potential. Then the curvature is given by

the Hessian of the potential,

K = φxx =
(
φxixj

)
,

and is a symmetric matrix.
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Transformation rule for curvature

With a change of coordinates

x = x(x̃)

the curvature matrix K = (Ki
j) transforms according to

K̃ = A−1KA,

where A is the Jacobi matrix,

A =

(
∂xj

∂x̃i

)
.
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Position focusing

Def We will say that a second order dynamical system

ẋ = y, ẏ = F (t, x, y), (DS)

has a position focusing property along a trajectory

γ : [0, T ] 3 t 7→ (x(t), y(t))

if there is t∗ ∈ (0, T ] such that all trajectories starting from the

initial position x0 = x(0), with arbitrary initial velocities y(0),

end at the same position x(t∗), with some velocities y(t∗).
Thus, for all of them:

x(0) are the same and x(t∗) are the same.
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Position focusing II

Question 1 When a second order dynamical system

ẋ = y, ẏ = F (t, x, y), (DS)

has the position focusing property (along a given trajectory or
along any trajectory)?

THM (Sufficient condition) Given a trajectory γ of DS, if the
curvature matrix K is constant along γ on [0, T ] and equal to a
positive multiple of identity,

K(t, x(t), y(t)) = κ I, κ >
π2

T2
,

then DS has the focusing property along γ and the trajectories
starting from x(0) = x0 focus at x(t∗), where

t∗ =
π
√

κ
.
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Part II: Second order control systems

Main message:

We may modify the curvature of a system by using
feedback control so that the system has desired
properties (e.g. feedback focusing).
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Second order control system

Consider a control system

ẋ = y, ẏ = F (t, x, y) + G(t, x, y)u, (CS)

where x ∈ Rn, y ∈ Rn, u ∈ Rn or in open subsets in Rn.
G is n× n matrix, assumed invertible.
We call such systems fully actuated.

Question 2 Does there exist a feedback control

u = u(t, x, y)

such that the resulting dynamical system

ẋ = y, ẏ = F (t, x, y) + G(t, x, y)u(t, x, y), (DS)

has the position focusing property?
If so, we say that CS has the feedback focusing property.
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Feedback focusing

THM Any fully actuated second order control system has the

feedback focusing property, along any trajectory.

Moreover, given any trajectory γ of the dynamical system

ẋ = y, ẏ = F (t, x, y),

the focusing feedback control u(t, x, y) along γ vanishes on γ, i.e.

can be taken so that

u(t, x(t), y(t)) = 0, for (x(t), y(t)) = γ(t).
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Constructing focusing feedback

Suppose, we have a trajectory γ : [0, T ] → Rn × Rn of DS.

We want to find feedback control u = u(x, y) such that the

resulting DS has the feedback focusing property along γ,

at a given time t∗ ∈ (0, T ].

Take a system given by geodesic equations on the sphere Sn of

radius r = t∗
π :

ẋ = y, ẏ = FS(x, y). (S)

Take a geodesic γS of (S) (half of a great circle) and map it onto

γ|[0,t∗], together with its nbhd. Denote the system transformed

by this mapping, by

ẋ = y, ẏ = F̃S(x, y) (S̃)

(the transformed variables are still denoted x and y).
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Constructing focusing feedback II

Feedback control u = u(x, y) applied in CS produces the dynam-

ical system:

ẋ = y, ẏ = F (t, x, y) + G(t, x, y)u(t, x, y).

Thus we should solve for u the equation

F (t, x, y) + G(t, x, y)u(t, x, y) = F̃S(x, y).

The solution is

u(t, x, y) = G−1(t, x, y)(F̃S(x, y)− F (t, x, y)).

By construction, this feedback control is focusing.
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Non-exact feedback focusing

What happens if, in the above construction, the feedback control

u = u(t, x, y)

is only approximately equal to the feedback focusing one?

Claim. Then feedback focusing on the interval [0, t∗] is lost but
a weaker property holds:
There are n conjugate times, counted with multiplicity, close to
the focusing time t∗.

This is proved by using our recent common results with
Wojciech Kryński on estimates from below and from above for
conjugate times of general systems. Classical methods do not
work because the system and its curvature are not symmetric.
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Part III:

Curvature(s) of general control systems
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Control-affine systems

The above results can be generalized to control-affine systems

Σ : ẋ = X(x) +
n∑

j=1

ujYj(x),

x ∈ R2n or x ∈ M2n,

satisfying 1-regularity condition:

The vector fields

Y1, . . . , Yn, [X, Y1], . . . , [X, Yn] are pointwise linearly independent.

We denote M = R2n, or M = M2n.
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Curvature of control system

Arrange control vector fields and Lie brackets into row vectors:

Y = (Y1, . . . , Yn),

[X, Y ] = ([X, Y1], . . . , [X, Yn]),

[X, [X, Y ]] = ([X, [X, Y1]], . . . , [X, [X, Yn]]).

1-regularity implies that there are n × n matrices H0, H1 such
that

[X, [X, Y ]] = Y H0 + [X, Y ]H1.

Def The curvature matrix of a control system Σ is

K = −H0 +
1

2
X(H1)−

1

4
H2

1 .

18



Conjugate points I

Let

D(x) = span {Y1(x), . . . , Yn(x)}

be the distribution spanned by control vector fields.

Let c : [0, T ] → M - trajectory of X, c(0) = x0. The following

definition and results generalize classical theorems of Cartan-

Hadamard and Bonnet-Myers. Specified to Hamiltonian setting

give results of Agrachev et. al.

Def (Agrachev?) A point 0 < τ ≤ T is called conjugate time if

exp(τX)∗D(x0) ∩D(c(τ)) 6= {0}.
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Normal basis of D

We will use special bases of control distribution

D(x) = span {Y1(x), . . . , Yn(x)}.

Def A basis Ŷ1, . . . , Ŷn of D is normal if ∃ functions K
j
i s.t.

[X, [X, Ŷi]] =
∑
j

K
j
i Ŷj.

Fact 1 Normal bases exist.

Fact 2 The matrix K = (Kj
i ) coincides with the curvature matrix

of system Σ.
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Conjugate points II

Let K(t) = (Ki
j(t)) - curvature of Σ along c(t), t ∈ [0, T ], in a

normal basis Ŷ1, . . . , Ŷn.

THM (a) If the largest eigenvalue λK(t) of the symmetric part

of K(t) satisfies

λK(t) ≤ λ, t ∈ [0, T ],

for a constant λ ≤ 0, then there are no conjugate times in (0, T ].

If λ > 0 then there are no conjugate times in (0, T ], if T < π√
λ
.

(b) If K(t) is symmetric along c, tr K0 > κ > 0 and T ≥ π
√

m
κ ,

then there is a conjugate time in (0, T ].
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Remarks

• A priori, there is no metric in the statement of our result.

The curvature matrix K is symmetric:

• in the Riemannian case,
• in the case of X being a Hamiltonian vector field and V being
a Lagrangian distribution on a symplectic manifold (M, σ)
(Agrachev, Gamkrelidze, Chtcherbakova, Zelenko).
Our definition of curvature is much simpler in this case.

Conjugate points can also be defined for control systems satis-
fying a r-regularity condition. In this case one can prove, for V
of rank one, that there are no conjugate points if all curvatures
K0, . . . , Kr−1 are nonpositive scalars (BJ 2009).
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r-regular control systems

Consider a scalar-control system

Σ : ẋ = X(x) + uY (x).

Def Σ is r-regular at x, r ≥ 1, if X(x) 6= 0, the vector fields

Y, adXY, . . . adr
XY

are linearly independent at x and there are functions h0, . . . , hr

such that, in a nbhd of x,

adr+1
X = h0Y + h1adXY + · · ·+ hrad

r
XY.

Fact. In a nbhd of a r-regular point there is a non-vanishing
function g such that the vector field Ŷ = gY satisfies

adr+1
X Ŷ = −k0Ŷ + k1adXŶ + · · ·+ (−1)rkr−1ad

r−1
X Ŷ .

Def The functions k0, . . . kr−1 are called curvatures of Σ.
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Absence of conjugate points

Claim If Σ is r-regular and the curvatures k0, . . . , kr−1 are non-
positive, then Σ has no conjugate points.

Precisely, let c : [0, T ] → M be a trajectory of X.

Def A point 0 < τ ≤ T is conjugate time for r-regular Σ, if

exp(τX)∗D(x0) ∩ (D + adXD + · · ·+ adr−1
X D)(c(τ)) 6= {0}.

THM (BJ 2009) If the system Σ is r-regular along c and all
curvatures k0, . . . , kr−1 are nonpositive along c, then Σ has no
conjugate times.
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