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Setup
We consider nonlinear discrete time control systems

x(n+ 1) = f(x(n), u(n))

with x(n) ∈ X, u(n) ∈ U , X, U arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon
optimal control:

For a running cost ` : X × U → R+
0 penalizing the distance to

the desired equilibrium solve

minimize J∞(x, u) =
∞∑

n=0

`(x(n), u(n)) with u(n) = F (x(n)),

subject to state/control constraints x ∈ X, u ∈ U
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Model predictive control
Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

minimize J∞(x, u) =
∞∑

n=0

`(x(n), u(n))

by the iterative (online) solution of finite horizon problems

minimize JN(x, u) =
N−1∑
k=0

`(xu(k), u(k))

with xu(k) ∈ X, u(k) ∈ U

We obtain a feedback law FN by a moving horizon technique
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Model predictive control
Basic moving horizon MPC concept:

At each time instant n solve for the current state x(n)

minimize JN(x, u) =
N−1∑
k=0

`(xu(k), u(k)), xu(0) = x(n)

 optimal trajectory xopt(0), . . . , xopt(N − 1)

 with optimal control uopt(0), . . . , uopt(N − 1)

 MPC feedback law FN(x(n)) := uopt(0)

 closed loop system

x(n+ 1) = f(x(n), FN(x(n))) = f(xopt(0), uopt(0)) = xopt(1)
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 4



Model predictive control
Basic moving horizon MPC concept:

At each time instant n solve for the current state x(n)

minimize JN(x, u) =
N−1∑
k=0

`(xu(k), u(k)), xu(0) = x(n)

 optimal trajectory xopt(0), . . . , xopt(N − 1)

 with optimal control uopt(0), . . . , uopt(N − 1)

 MPC feedback law FN(x(n)) := uopt(0)

 closed loop system

x(n+ 1) = f(x(n), FN(x(n))) = f(xopt(0), uopt(0)) = xopt(1)
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MPC from the trajectory point of view

0

n

x

0 1 2 3 4 5 6

x

black = predictions (open loop optimization)

red = MPC closed loop x(n+ 1) = f(x(n), FN(x(n)))
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 5



MPC from the trajectory point of view

3

n

x

0 1 2 3 4 5 6

...
x

black = predictions (open loop optimization)

red = MPC closed loop x(n+ 1) = f(x(n), FN(x(n)))
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MPC: Questions
Questions in this talk:

When does MPC stabilize the system?

How good is the MPC feedback law compared to the
infinite horizon optimal solution?

Part 1: stabilizing MPC — survey on recent results

Part 2: economic MPC — some very recent results

In stabilizing MPC, stability can be ensured by including
additional “stabilizing” terminal constraints in the finite
horizon problem. Here we consider problems without such
stabilizing constraints.

Main motivation: even for small optimization horizons N we
can — in principle — obtain large feasible sets, i.e., sets of
initial values for which the finite horizon problem is well defined

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 6
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 6



MPC: Questions
Questions in this talk:

When does MPC stabilize the system?

How good is the MPC feedback law compared to the
infinite horizon optimal solution?

Part 1: stabilizing MPC

— survey on recent results

Part 2: economic MPC — some very recent results

In stabilizing MPC, stability can be ensured by including
additional “stabilizing” terminal constraints in the finite
horizon problem. Here we consider problems without such
stabilizing constraints.

Main motivation: even for small optimization horizons N we
can — in principle — obtain large feasible sets, i.e., sets of
initial values for which the finite horizon problem is well defined
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Stability without stabilizing terminal constraints
Without stabilizing constraints, stability is known to hold for
“sufficiently large optimization horizon N” [Alamir/Bornard ’95,

Jadbabaie/Hauser ’05, Grimm/Messina/Tuna/Teel ’05]

How large is “sufficiently large”?

For obtaining a quantitative estimate we need quantitative
information.

A suitable condition is “exponential controllability through ` ”:

there exist constants C > 0, σ ∈ (0, 1) such that for each
xu(0) ∈ X there is u(·) with xu(k) ∈ X, u(k) ∈ U and

`(xu(k), u(k)) ≤ Cσk`∗(xu(0))

with `∗(x) = min
u∈U

`(x, u)
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Stability and performance conditions
C, σ-exp. controllability: `(x(k), u(k)) ≤ Cσk`∗(xu(0))

Define α := 1−
(γN − 1)

N∏
i=2

(γi − 1)

N∏
i=2

γi −
N∏

i=2

(γi − 1)
with γi =

i−1∑
k=0

Cσk

Theorem: If α > 0, then the MPC feedback FN stabilizes all
C, σ-exponentially controllable systems and we get

J∞(x, FN) ≤ inf
u∈U∞

J∞(x, u)/α

If α < 0 then there exists a C, σ-exponentially controllable
system, which is not stabilized by FN

Moreover, α→ 1 as N →∞

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 8
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 8



Stability chart for C and σ

(Figure: Harald Voit)

Conclusion: try to reduce C, e.g., by choosing ` appropriately
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A PDE example

We illustrate this with the 1d controlled PDE

yt = yx + νyxx + µy(y + 1)(1− y) + u

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = y(t, 1) = 0

parameters ν = 0.1 and µ = 10

and distributed control u : R× Ω→ R

Discrete time system: y(n) = y(nT, ·) for some T > 0

(“sampled data system with sampling time T”)

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 10
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The uncontrolled PDE
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 11



The uncontrolled PDE

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t=0.225

uncontrolled (u ≡ 0)
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MPC for the PDE example

yt = yx + νyxx + µy(y + 1)(1− y) + u

Goal: stabilize the sampled data system y(n) at y ≡ 0

For y ≈ 0 the control u must compensate for yx  u ≈ −yx

This observation and a little computation reveals:

For the (usual) quadratic L2 cost

`(y(n), u(n)) = ‖y(n)‖2L2 + λ‖u(n)‖2L2

the constant C is much larger than for the quadratic H1 cost

`(y(n), u(n)) = ‖y(n)‖2L2 + ‖yx(n)‖2L2︸ ︷︷ ︸
=‖y(n)‖2

H1

+λ‖u(n)‖2L2 .

 H1 should perform better that L2

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 12
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MPC with L2 vs. H1 cost
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 13



MPC with L2 vs. H1 cost

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
t=0.1

 

 
N= 3, L2
N=11, L2
N= 3, H1

MPC with L2 and H1 cost, λ = 0.1, sampling time T = 0.025
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

yt = yx + νyxx + µy(y + 1)(1− y)

with

domain Ω = [0, 1]

solution y = y(t, x)

boundary conditions y(t, 0) = u0(t), y(t, 1) = u1(t)

parameters ν = 0.1 and µ = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
 L2 should perform better that H1
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Boundary control, L2 vs. H1, N = 20
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 15



Boundary control, L2 vs. H1, N = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t=0.425

 

 
Horizont 20 (L2)
Horizont 20 (H1)

Boundary control, λ = 0.001, sampling time T = 0.025
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Proofs, references etc.

For proofs, references, histor-
ical notes etc. please see:

www.nmpc-book.com

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 16



Economic MPC

In principle, the receding horizon MPC paradigm can also be
applied for stage cost ` not related to any stabilization problem

[Angeli/Rawlings ’09, Angeli/Amrit/Rawlings ’10, Diehl/Amrit/

Rawlings ’11] consider MPC for the infinite horizon averaged
performance criterion

J∞(x, u) = lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k))

Here ` reflects an “economic” cost (like, e.g., energy
consumption) rather than penalizing the distance to some
desired equilibrium

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 17
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Economic MPC with terminal constraints
Typical result: Let x∗ ∈ X be an equilibrium for some u∗ ∈ U,
i.e., f(x∗, u∗) = x∗. Consider an MPC scheme where in each
step we minimize

JN(x, u) =
1

N

N−1∑
k=0

`(xu(k), u(k))

subject to the terminal constraint xu(N) = x∗.

Then for any
feasible initial condition x ∈ X we get the inequality

J∞(x, FN) ≤ `(x∗, u∗)

Question: Does this also work without the terminal constraint
xu(N) = x∗, i.e., is MPC able to find a good equilibrium x∗

“automatically”?

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 18
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Economic MPC without terminal constraints
We investigate this question for the following optimal
invariance problem:

Keep the state of the system inside an admissible set X with
minimal infinite horizon averaged cost

J∞(x, u) = lim sup
K→∞

1

K

K−1∑
k=0

`(xu(k, x), u(k))

Example: x(k + 1) = 2x(k) + u(k)

with X = [−2, 2], U = [−2, 2] and `(x, u) = u2

For this example, it is optimal to control the system to x∗ = 0
and keep it there with u∗ = 0  inf

u∈U∞
J∞(x, u) = 0

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 19
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 19
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 20



Optimal invariance example

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
open loop trajectories (black) and closed loop trajectory (red)

n

x
(n

)

N = 5
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 20



Optimal invariance example

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
open loop trajectories (black) and closed loop trajectory (red)

n

x
(n

)

N = 5

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
open loop trajectories (black) and closed loop trajectory (red)

n

x
(n

)

N = 10
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Optimal invariance: observations
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equilibrium and then tend to the boundary of X = [−2, 2]

closed loop trajectories follow the “good part” of the
open loop trajectories

the larger N , the “better” the closed loop trajectories.
This is also reflected in the average closed loop costs
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 21



Optimal invariance: observations

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
open loop trajectories (black) and closed loop trajectory (red)

n

x
(n

)

N = 5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
open loop trajectories (black) and closed loop trajectory (red)

n

x
(n

)

N = 10

optimal open loop trajectories first approach the optimal
equilibrium and then tend to the boundary of X = [−2, 2]

closed loop trajectories follow the “good part” of the
open loop trajectories

the larger N , the “better” the closed loop trajectories.
This is also reflected in the average closed loop costs
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Optimal invariance: closed loop performance
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Can we prove this behavior?

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 22



Optimal invariance: closed loop performance

2 4 6 8 10 12 14 16
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

N

in
fi
n

it
e

 h
o

ri
z
o

n
 a

v
e

ra
g

e
 c

o
s
t

J∞(0.5, FN) depending on N , logarithmic scale

Can we prove this behavior?
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Optimal invariance result
Theorem [Gr. 11] Assume that there are N0 ≥ 0, `0 ∈ R and
δ1, δ2 ∈ L such that for each x ∈ X and N ≥ N0 there exists
a control sequence uN,x ∈ UN+1 satisfying

• xuN,x
(k, x) ∈ X, k = 0, . . . , N + 1 admissibility

• JN(x, uN,x) ≤ inf
u∈U∞

JN(x, u) + δ1(N)/N near optimality

• `(xuN,x
(N, x), uN,x(N)) ≤ `0 + δ2(N) small terminal value

Then J∞(x, FN(x)) ≤ `0 + δ1(N − 1) + δ2(N − 1) follows
for all x ∈ X.

These assumptions can be ensured by suitable controllability
conditions plus bounds on the performance of certain
trajectories. For our invariance example, this allows to
rigorously prove J∞(x, FN)→ 0 as N →∞

Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 23
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rigorously prove J∞(x, FN)→ 0 as N →∞
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Summary and outlook
MPC without terminal constraints shows excellent results
both for stabilizing and for economic problems

for stabilizing MPC, a controllability based analysis helps
to identify and design stage costs ` for obtaining stability
with small control horizons

for economic MPC, under suitable conditions an average
performance close to that of an optimal equilibrium
without a priori knowledge of this equilibrium can be
achieved

Future work:

I extension of economic MPC results to more general
problem classes and optimal periodic orbits

I (practical) asymptotic stability analysis of economic
MPC without terminal constraints
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Lars Grüne, Model predictive control without terminal constraints: stability and performance, p. 24



Summary and outlook
MPC without terminal constraints shows excellent results
both for stabilizing and for economic problems

for stabilizing MPC, a controllability based analysis helps
to identify and design stage costs ` for obtaining stability
with small control horizons

for economic MPC, under suitable conditions an average
performance close to that of an optimal equilibrium
without a priori knowledge of this equilibrium can be
achieved

Future work:

I extension of economic MPC results to more general
problem classes and optimal periodic orbits

I (practical) asymptotic stability analysis of economic
MPC without terminal constraints
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Happy Birthday Eduardo!
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