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Control Lyapunov functions and Eduardo

Control Lyapunov function is a very powerful tool for stabilization of
nonlinear control system in finite dimension. Let us mention that this tool
has been strongly developed by Eduardo. In particular, in his following
seminal works the Lyapunov approach is a key step.

1 A Lyapunov-like characterization of asymptotic controllability (1983),

2 A “universal” construction of Artstein’s theorem on nonlinear
stabilization (1989),

3 Smooth stabilization implies coprime factorization (1989),

4 New characterizations of input to state stability (1996; with Yuandan
Lin and Yuan Wang),

5 Asymptotic controllability implies feedback stabilization (1996; with
F.H. Clarke, Yu S. Ledyaev and A.I. Subbotin),

6 A Lyapunov characterization of robust stabilization (1999; with Y.
Ledyaev),

Sontag+Lyapunov gives 20,000 results with google.



Lyapunov function and PDE

Lyapunov is also a powerful tool for PDE (linear and nonlinear). However
one of the problem is the LaSalle invariance principle: one needs to prove
the precompactness of the trajectories, which is difficult to get for nonlinear
PDE. Hence it is better to have strict Lyapunov functions. In this talk we
present an example of application of strict Lyapunov function to 1−D
hyperbolic systems.



The hyperbolic system considered

The dynamical (control) system is, with yt = ∂y/∂t and yx = ∂y/∂x,

(1) yt +A(y)yx = 0, y ∈ R
n, x ∈ [0, 1], t ∈ [0,+∞).

At time t, the state is the map x ∈ [0, 1] 7→ y(t, x) ∈ R
n. We assume that

• Assumptions on A:

A(0) = diag (λ1, λ2, . . . , λn),(2)

λi > 0, ∀i ∈ {1, . . . ,m}, λi < 0, ∀i ∈ {m+ 1, . . . , n},(3)

λi 6= λj, ∀(i, j) ∈ {1, . . . , n}2 such that i 6= j.(4)



• Boundary conditions on y:

(1)

(

y+(t, 0)
y−(t, 1)

)

= G

(

y+(t, 1)
y−(t, 0)

)

, t ∈ [0,+∞),

where

(i) y+ ∈ R
m and y− ∈ R

n−m are defined by

y =

(

y+
y−

)

,(2)

(ii) the map G : Rn → R
n vanishes at 0.

In many situations G is a feedback that can be (partially) chosen. We then
have a control system and we want to stabilize the origin ȳ ≡ 0.



Notations

For K ∈ Mn,m(R),

‖K‖ := max{|Kx|;x ∈ R
n, |x| = 1}.(1)

If n = m,

ρ1(K) := Inf {‖∆K∆−1‖; ∆ ∈ Dn,+},(2)

where Dn,+ denotes the set of n× n real diagonal matrices with strictly
positive diagonal elements. H2(0, 1) denotes the Sobolev space of
y : [0, 1] → R

n such that y, yx and yxx are in L2. It is equipped with the
norm

|y|H2(0,1) :=

(
∫ 1

0
(|y|2 + |yx|2 + |yxx|2)dx

)1/2

.(3)



Theorem (JMC-G. Bastin-B. d’Andréa-Novel (2008))

If ρ1(G
′(0)) < 1, then the equilibrium ȳ ≡ 0 of the quasi-linear hyperbolic

system

yt +A(y)yx = 0,(1)

with the above boundary conditions, is locally exponentially stable for the
Sobolev H2-norm.

Complements:

yt +A(x)yx +B(x)y = 0: G. Bastin and JMC (2010), A. Diagne, G.
Bastin and JMC (2010), R. Vazquez, M. Krstic and JMC (2011),

yt +A(x, y)yx +B(x, y)y = 0: A. Diagne and A. Drici (2011), R.
Vazquez, JMC, M. Krstic and G. Bastin (2011),

Integral action: V. Dos Santos, G. Bastin, JMC and B.
d’Andréa-Novel (2008), A. Drici (2010).



Estimate on the exponential decay rate

Let

ν ∈ (0,−min{|λ1|, . . . , |λn|} ln(ρ1(G′(0)))).(1)

Then there exist ε > 0 and C > 0 such that, for every y0 ∈ H2((0, 1),Rn)
satisfying |y0|H2((0,1),Rn) < ε (and the usual compatibility conditions at
x = 0 and x = L), the classical solution y to the Cauchy problem

yt +A(y)yx = 0, y(0, x) = y0(x) + boundary conditions(2)

is defined on [0,+∞) and satisfies

|y(t, ·)|H2((0,1),Rn) 6 Ce−νt|y0|H2((0,1),Rn), ∀t ∈ [0,+∞).(3)



The Li Tatsien condition

R2(K) := Max {
n
∑

j=1

|Kij |; i ∈ {1, . . . , n}},(1)

ρ2(K) := Inf {R2(∆K∆−1); ∆ ∈ Dn,+}.(2)

Theorem (Li Tatsien, 1994)

If ρ2(G
′(0)) < 1, then the equilibrium ȳ ≡ 0 of the quasi-linear hyperbolic

system

yt +A(y)yx = 0,(3)

with the above boundary conditions, is locally exponentially stable for the
C1-norm.

The Li Tatsien proof relies mainly on the use of direct estimates of the
solutions and their derivatives along the characteristic curves.



C1/H2-exponential stability

1 Open problem: Does there exists K such that one has local
exponential stability for the C1-norm but not for the H2-norm?

2 Open problem: Does there exists K such that one has local
exponential stability for the H2-norm but not for the C1-norm?



Comparison of ρ2 and ρ1

Proposition

For every K ∈ Mn,n(R),

ρ1(K) 6 ρ2(K).(1)

Example where (1) is strict: for a > 0, let

Ka :=

(

a a
−a a

)

∈ M2,2(R).(2)

Then

ρ1(Ka) =
√
2a < 2a = ρ2(Ka).(3)

Open problem: Does ρ1(K) < 1 implies the local exponential stability for
the C1-norm?



Comparison with stability conditions for linear hyperbolic

systems

Let us first point that in the linear case (i.e. when A does not depend on y
and G is linear) one has the following theorem.

Theorem

Exponential stability for the C1-norm is equivalent to the exponential
stability in the H2-norm.

For simplicity we now assume that the λi’s are all positive: We consider
the special case of linear hyperbolic systems

yt + Λyx = 0, y(t, 0) = Ky(t, 1),(1)

where

Λ := diag (λ1, . . . , λn), with λi > 0, ∀i ∈ {1, . . . , n}.(2)



A Necessary and sufficient condition for exponential stability

Notation:

ri =
1

λi
, ∀i ∈ {1, . . . , n}.(1)

Theorem

ȳ ≡ 0 is exponentially stable for the system

yt + Λyx = 0, y(t, 0) = Ky(t, 1)(2)

if and only if there exists δ > 0 such that

(

det (Idn − (diag (e−r1z, . . . , e−rnz))K) = 0, z ∈ C

)

⇒ (ℜ(z) 6 −δ).

(3)



An example

This example is borrowed from the book Hale-Lunel (1993). Let us choose
λ1 := 1, λ2 := 2 (hence r1 = 1 and r2 = 1/2) and

Ka :=

(

a a
a a

)

, a ∈ R.(1)

Then ρ1(K) = 2|a|. Hence ρ1(Ka) < 1 is equivalent to a ∈ (−1/2, 1/2).
However exponential stability is equivalent to a ∈ (−1, 1/2).



Robustness issues

For a positive integer n, let

λ1 :=
4n

4n + 1
, λ2 =

4n

2n+ 1
.(1)

Then
(

y1
y2

)

:=

(

sin
(

4nπ(t− (x/λ1))
)

sin
(

4nπ(t− (x/λ2))
)

)

(2)

is a solution of yt + Λyx = 0, y(t, 0) = K−1/2y(t, 1) which does not tends
to 0 as t → +∞. Hence one does not have exponential stability. However
limn→+∞ λ1 = 1 and limn→+∞ λ2 = 2. The exponential stability is not
robust with respect to Λ: small perturbations of Λ can destroy the
exponential stability.



Robust exponential stability

Notation:

ρ0(K) := max{ρ(diag (eιθ1 , . . . , eιθn)K); (θ1, . . . , θn)
tr ∈ R

n}.(1)

Theorem (R. Silkowski, 1993)

If the (r1, . . . , rn) are rationally independent, ȳ ≡ 0 is exponentially stable
for the linear system yt +Λyx = 0, y(t, 0) = Ky(t, 1), if and only if
ρ0(K) < 1.

Note that ρ0(K) depends continuously on K and that “(r1, . . . , rn) are
rationally independent” is a generic condition. Therefore, if one wants to
have a natural robustness property with respect to the ri’s, the condition
for exponential stability is

ρ0(K) < 1.(2)

This condition does not depend on the λi’s!



Comparison of ρ0 and ρ1

Proposition (JMC-G. Bastin-B. d’Andréa-Novel, 2008)

For every n ∈ N and for every K ∈ Mn,n(R),

ρ0(K) 6 ρ1(K).(1)

For every n ∈ {1, 2, 3, 4, 5} and for every K ∈ Mn,n(R),

ρ0(K) = ρ1(K).(2)

For every n ∈ N \ {1, 2, 3, 4, 5}, there exists K ∈ Mn,n(R) such that
ρ0(K) < ρ1(K).

Open problem: Is ρ0(G
′(0)) < 1 a sufficient condition for local exponential

stability (for the H2-norm) in the nonlinear case?



Commercial break

JMC, Control and nonlinearity,
Mathematical Surveys and
Monographs, 136, 2007, 427 p. Pdf
file freely available from my web
page.





Proof of the exponential stability if A is constant and G is

linear

Main tool: a Lyapunov approach. A(y) = Λ, G(y) = Ky. For simplicity,
all the λi’s are positive. A Lyapunov function candidate is

(1) V (y) :=

∫ 1

0
ytrQye−µxdx, Q is positive symmetric.

If Q is diagonal, one gets

(2)

V̇ = −
∫ 1

0
(ytr

xΛQy + ytrQΛyx)e
−µxdx

= −µ

∫ 1

0
ytrΛQy e−µxdx−B,

with

(3) B := [ytrΛQye−µx]x=1
x=0 = y(1)tr(ΛQe−µ −KtrΛQK)y(1).



Let D ∈ Dn,+ be such that ‖DKD−1‖ < 1 and let ξ := Dy(1). We take
Q = D2Λ−1. Then

B = e−µ|ξ|2 − |DKD−1ξ|2.(1)

Therefore it suffices to take µ > 0 small enough.

Remark

Introduction of µ:

• JMC (1998) for the global asymptotic stabilization of the Euler
equations.

• Cheng-Zhong Xu and Gauthier Sallet (2002) for symmetric linear
hyperbolic systems.



New difficulties if A(y) depends on y

We try with the same V :

(1)
V̇ = −

∫ 1
0

(

ytr

xA(y)
trQy + ytrQA(y)yx

)

e−µxdx

= −µ
∫ 1
0 ytrA(y)Qye−µxdx−B +N1 +N2

with

N1 :=

∫ 1

0
ytr(QA(y)−A(y)Q)yxe

−µxdx,(2)

N2 :=

∫ 1

0
ytr

(

A′(y)yx
)

tr

Qye−µxdx(3)



Solution for N1

Take Q depending on y such that A(y)Q(y) = Q(y)A(y),
Q(0) = D2F (0)−1. (This is possible since the eigenvalues of F (0) are
distinct.) Now

V̇ = −µ

∫ 1

0
ytrA(y)Q(y)ye−µxdx−B +N2(1)

with

N2 :=

∫ 1

0
ytr

(

A′(y)yxQ(y) +A(y)Q′(y)yx
)

tr

ye−µxdx.(2)

What to do with N2?



Solution for N2

New Lyapunov function:

(1) V (y) = V1(y) + V2(y) + V3(y)

with

V1(y) =

∫ 1

0
ytrQ(y)y e−µxdx,(2)

V2(y) =

∫ 1

0
ytr

xR(y)yx e−µxdx,(3)

V3(y) =

∫ 1

0
ytr

xxS(y)yxx e−µxdx,(4)

where µ > 0, Q(y), R(y) and S(y) are symmetric positive definite
matrices.



Choice of Q, R and S

• Commutations:

A(y)Q(y)−Q(y)A(y) = 0,(1)

A(y)R(y)−R(y)A(y) = 0,(2)

A(y)S(y)− S(y)A(y) = 0.(3)

•

Q(0) = D2A(0)−1, R(0) = D2A(0), S(0) = D2A(0)3.(4)



Estimates on V̇

Lemma

If µ > 0 is small enough, there exist positive real constants α, β, δ such
that, for every y : [0, 1] → R

n such that |y|C0([0,1]) + |yx|C0([0,1]) 6 δ, we
have

1

β

∫ 1

0
(|y|2 + |yx|2 + |yxx|2)dx 6 V (y) 6 β

∫ 1

0
(|y|2 + |yx|2 + |yxx|2)dx,

V̇ 6 −αV.

...



Why this miracle?

To explain simply the reason of this miracle, we assume that n = 1: there
is no more problem of commutation of matrices. We simply take

V1 :=

∫ 1

0
y2e−µxdx, V2 :=

∫ 1

0
α2e−µxdx, V2 :=

∫ 1

0
β2e−µxdx,(1)

with α := yx and β := yxx. Note that, differentiating yt +A(y)yx = 0
with respect to x, one gets

αt +A(y)αx +A′(y)α2 = 0.(2)

V̇2 = −2

∫ 1

0
(A(y)αx +A′(y)α2)αe−µxdx

= −
∫ 1

0
(µ(A(y)α2 +A′(y)α3)e−µxdx+ boundary terms.

(3)

Still not good: one can not bound
∫ 1
0 |α3|dx by (

∫ 1
0 α2dx)3/2. But it

sounds better since we do not have to bound a derivative of a function by
the function. Encouraged, one keeps going.



Differentiating αt +A(y)αx +A′(y)α2 = 0 with respect to x, one gets

βt +A(y)βx + 3A′(y)αβ +A′′(y)α3 = 0.(1)

Hence

V̇2 = −2

∫ 1

0
(A(y)βx + 3A′(y)αβ +A′′(y)α3)βe−µxdx

= −
∫ 1

0
(µA(y)β2 + 5A′(y)αβ2 + 2A′′(y)α3β)e−µxdx

+ boundary terms.

(2)

It then suffices to use the Sobolev inequality

max{|ϕ(x)|; x ∈ [0, 1]} 6 C

(
∫ 1

0
(ϕ2 + ϕ′2)dx

)1/2

.(3)

...



La Sambre (The same + Luc Moens)







x
L0

H(t,x)

V(t,x)

u
0

uL

Z
0



The Saint-Venant equations

The index i is for the i-th reach.
Conservation of mass:

Hit + (HiVi)x = 0,(1)

Conservation of momentum:

Vit +

(

gHi +
V 2
i

2

)

x

= 0.(2)

Flow rate: Qi = HiVi.



Barré de Saint-Venant
(Adhémar-Jean-Claude)
1797-1886
Théorie du mouvement non perma-
nent des eaux, avec applications aux
crues des rivières et à l’introduction
des marées dans leur lit, C. R. Acad.
Sci. Paris Sér. I Math., vol. 53
(1871), pp.147–154.



Boundary conditions

Underflow (sluice)

u

u

Overflow (spillway)

34

u

u



La Sambre: Gates



Closed loop versus open loop



Closed loop versus open loop
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Work in progress: La Meuse



Balance laws

The partial differential system is now

yt +A(x, y)yx +B(x, y) = 0 + boundary conditions.(1)

We study only the linearized system around y = 0, i.e. the linear system

yt + Λyx + Ly = 0 + linear boundary conditions.(2)

We also assume that we control y+(t, 0) and y−(t, 1). Hence the control
system is (2) together with the boundary conditions y+(t, 0) = u+(t),
y−(t, 1) = u−(t). Since the system is linear, one does not need to consider
anymore V2 and V3. Then natural candidates for (control) Lyapunov are
the basic functional

V (y) :=

∫ 1

0
ytrQ(x)ydx,where Q(x)tr = Q(x) and Q(x) > 0.(3)

Note that the interest of these basic (potential) control Lyapunov functions
is that they lead to “local” control laws: the feedback laws depend only on
the value of y−(t, 0) and y+(t, 1). (These values are usually easy to
measure.)



A necessary and sufficient condition when n = 2 and m = 1

Open problem: Find a necessary and sufficient condition for the existence
of a basic control Lyapunov. However we know the answer for n = 2 and
m = 1. In this case, after a suitable change of variables the linear system
takes the form:

{

y1t + λ1(x)y1x + a(x)y2 = 0,
y2t + λ2(x)y2x + b(x)y1 = 0.

(1)

with λ1(x) > 0 > λ2(x). Let us recall that control is on both sides:

y1(t, 0) = u1(t), y2(t, 1) = u2(t).(2)

Theorem (G. Bastin and JMC (2010))

There exists a basic control Lyapunov function for (1)-(2) if and only if the
maximal solution η of the Cauchy problem

η′ =
∣

∣a+ bη2
∣

∣ , η(0) = 0,(3)

is defined on [0, 1].



Complements

There are linear cases where there are no stabilizing feedback laws of the
form (y1(0), y2(1))

tr = K(y1(1), y2(0))
tr.

A solution: Use Krstic’s backstepping approach (R. Vazquez, M. Krstic and
JMC (2011); R. Vazquez, JMC, M. Krstic and G. Bastin (2011)).
An open problem: Stabilization of the following 1−D water tank control
system around equilibria.

u := F

This system is modeled with the Saint-Venant equations. The local
controllability of this control around equilibria is already known: JMC
(2002).
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Sketch of the proof of the local controllability
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