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Linear Switched Systems

Linear Switched System (continuous time) :

(S) ẋ(t) = A(t)x(t) x ∈ Rn, A(t) ∈ A ⊂ Rn×n.

A(·) = any meas. function [0,+∞) → A; referred as a switching law.

A compact.
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Linear Switched Systems

Linear Switched System (continuous time) :

(S) ẋ(t) = A(t)x(t) x ∈ Rn, A(t) ∈ A ⊂ Rn×n.

A(·) = any meas. function [0,+∞) → A; referred as a switching law.

A compact.

Example : A = {A0,A1} or A = {λA0 + (1 − λ)A1 : λ ∈ [0, 1]}

Remark : wlog A can be taken convex
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Stability and Lyapunov exponent

Maximal Lyapunov Exponent of A defined as

ρ(A) = sup
A(·),x(0)=1

(

lim sup
t→∞

1

t
log ‖x(t)‖

)

.

If A = {A}, ρ(A) = maxλ∈σ(A) ℜ(λ).
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Stability and Lyapunov exponent

Maximal Lyapunov Exponent of A defined as

ρ(A) = sup
A(·),x(0)=1

(

lim sup
t→∞

1

t
log ‖x(t)‖

)

.

If A = {A}, ρ(A) = maxλ∈σ(A) ℜ(λ).

ρ(A) < 0

(S) Uniformly Globally Asymptotic Stable (UGAS)
→ Uniformly Exponentially Stable (UES), i.e. ∃M, λ > 0 s.t. ∀x(0) ∈ Rn ,
t ≥ 0, A(·) ‖x(t)‖ ≤ Me−λt‖x(0)‖.

ρ(A) = 0

(S) marginally stable: all traj. bounded and ∃ traj. not CV to 0,

(S) marginally unstable: ∃ unbounded traj.

ρ(A) > 0

(S) unstable: ∃ traj. going to ∞ exponentially.
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Case ρ(A) = 0 and Irreducibility

Recall that marginal instability ⇒ ρ(A) = 0.

up to a translation, A ; A− ρ(A)Idn, reduce to ”Case ρ(A) = 0”.

⇒ Study of the case ρ(A) = 0 crucial to understand stability properties.

But computation of ρ(A) is VERY HARD in general even numerically.
(Maybe not?? new results from Jungers, Parillo, ...!)

Definition

A irreducible if ∄ 0 ( V ( Rn invariant for every A ∈ A.
A reducible otherwise.

N.B.

A reducible ⇐⇒ A =

(

A11 A12

0 A22

)

∀A ∈ A
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Barabanov Norm

ρ(A) = 0 and A irreducible; ‖ · ‖ fixed norm.

∀x0 ∈ Rn, v(x0) := sup
A(·)

lim sup
t→∞

‖x
(

t, x0;A(·)
)

‖.
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Barabanov Norm

ρ(A) = 0 and A irreducible; ‖ · ‖ fixed norm.

∀x0 ∈ Rn, v(x0) := sup
A(·)

lim sup
t→∞

‖x
(

t, x0;A(·)
)

‖.

Theorem (N. Barabanov)

ρ(A) = 0 and A irreducible. Then v : Rn → [0,+∞) is a norm s. t.:

v(x(t)) ≤ v(x(0)) for every switching law A(·) and initial cond. x(0);

∀x(0), ∃ traj. x(·) s. t. v(x(·)) ≡ v(x(0)).

(Unit) Barabanov sphere Sv = {x ∈ Rn, v(x) = 1}.

If ρ(A) = 0 and A irreducible, system is marginally stable.
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2D systems

ẋ = σ(t)A0x + (1 − σ(t))A1x x ∈ R2, σ(t) ∈ {0, 1}.

Solved (e.g. cf. U. Boscain): complete description of stability cases.
→ Method based on notion of worst trajectory WT

worst trajectory  : forms the smallest angle instabilityexponential stability
with the exiting radial direction

If ρ(A) = 0, (often) WT corr. periodic pw. cst switching law s.t.
−1 eigenvalue of et0A

0

et1A
1

.
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Reducibility and Invariant flags

Maximal invariant flag for A:

{0} = E0 ( E1 ( · · · ( Ek−1 ( Ek = Rn

where

Ei invariant w.r.t. each A ∈ A,

∄V invariant w.r.t. A such that Ei−1 ( V ( Ei .

Coordinate system
adapted to the flag

→ A =















A11 A12 · · ·
0 A22 A23 · · ·
0 0 A33 A34 · · ·
...

. . .
. . .

. . .

0 · · · · · · 0 Akk















, ∀A ∈ A

Define Ai = {Aii : A ∈ A}. Then Ai irreducible and ρ(A) = maxi ρ(Ai ).

Remark: maximal invariant flag for A not unique.

However, from Jordan-Hölder Theorem, subsystems Ai independent on the flag
up to permutations.
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Worst ”polynomial” behavior - First Estimate

From now on assume ρ(A) = 0

Let {0} = E0 ( E1 ( · · · ( Ek−1 ( Ek = Rn a maximal invariant flag.Then

ρ(Ai) ≤ 0 i = 1, . . . , k and L := # {Ai , ρ(Ai) = 0} ≥ 1.
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Worst ”polynomial” behavior - First Estimate

From now on assume ρ(A) = 0

Let {0} = E0 ( E1 ( · · · ( Ek−1 ( Ek = Rn a maximal invariant flag.Then

ρ(Ai) ≤ 0 i = 1, . . . , k and L := # {Ai , ρ(Ai) = 0} ≥ 1.

Theorem (V. Protasov)

Block form + variation of constant → ∃C > 0, ∀x(0) ∈ Rn

‖x(t)‖ ≤ C (1 + tL−1)‖x(0)‖, ∀t ≥ 0.

In principle the system could be unstable with polynomial growth.

?? Relationships between subsystems to get unbounded growth ??
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Towards ”polynomial” blow-up - Case Study

ρ(A) = 0, A =

(

A11 A12

0 A22

)

∀A ∈ A; ‖ · ‖ fixed norm.

i = 1, 2, Ai irreduc., ρ(Ai ) = 0; vi , Si Barabanov norms and unit
spheres.
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ρ(A) = 0, A =

(

A11 A12

0 A22

)

∀A ∈ A; ‖ · ‖ fixed norm.

i = 1, 2, Ai irreduc., ρ(Ai ) = 0; vi , Si Barabanov norms and unit
spheres.

For any switching law A(·), let R
A(·)
i

(·, ·) corresp. resolvant.
t(≥ t1) 7→ vi (Ri (t, t1)) bdd by 1 and non-increasing.
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Towards ”polynomial” blow-up - Case Study

ρ(A) = 0, A =

(

A11 A12

0 A22

)

∀A ∈ A; ‖ · ‖ fixed norm.

i = 1, 2, Ai irreduc., ρ(Ai ) = 0; vi , Si Barabanov norms and unit
spheres.

For any switching law A(·), let R
A(·)
i

(·, ·) corresp. resolvant.
t(≥ t1) 7→ vi (Ri (t, t1)) bdd by 1 and non-increasing.

x1(t) = R
A(·)
1

(t, 0)x1(0) +

∫

t

0

R
A(·)
1

(t, s)A12(s)R
A(·)
2

(s, 0)x2(0)ds

‖x1(t)‖ ≤ K‖x1(0)‖ + M‖x2(0)‖

∫

t

0

v1(R
A(·)
1

(t, s))v2(R
A(·)
2

(s, 0))ds.
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Towards ”polynomial” blow-up - Case Study

ρ(A) = 0, A =

(

A11 A12

0 A22

)

∀A ∈ A; ‖ · ‖ fixed norm.

i = 1, 2, Ai irreduc., ρ(Ai ) = 0; vi , Si Barabanov norms and unit
spheres.

For any switching law A(·), let R
A(·)
i

(·, ·) corresp. resolvant.
t(≥ t1) 7→ vi (Ri (t, t1)) bdd by 1 and non-increasing.

x1(t) = R
A(·)
1

(t, 0)x1(0) +

∫

t

0

R
A(·)
1

(t, s)A12(s)R
A(·)
2

(s, 0)x2(0)ds

‖x1(t)‖ ≤ K‖x1(0)‖ + M‖x2(0)‖

∫

t

0

v1(R
A(·)
1

(t, s))v2(R
A(·)
2

(s, 0))ds.

∫

t

0
· · · bounded by t. To make it unbounded, (better have)

BOTH vi (R
A(·)
i

(t, s)) must not CV to zero,

Y. Chitour (UPS 11 / L2S) Marginal instability of switched systems May 25th, 2011 9 / 18



Towards ”polynomial” blow-up - Case Study

ρ(A) = 0, A =

(

A11 A12

0 A22

)

∀A ∈ A; ‖ · ‖ fixed norm.

i = 1, 2, Ai irreduc., ρ(Ai ) = 0; vi , Si Barabanov norms and unit
spheres.

For any switching law A(·), let R
A(·)
i

(·, ·) corresp. resolvant.
t(≥ t1) 7→ vi (Ri (t, t1)) bdd by 1 and non-increasing.

x1(t) = R
A(·)
1

(t, 0)x1(0) +

∫

t

0

R
A(·)
1

(t, s)A12(s)R
A(·)
2

(s, 0)x2(0)ds

‖x1(t)‖ ≤ K‖x1(0)‖ + M‖x2(0)‖

∫

t

0

v1(R
A(·)
1

(t, s))v2(R
A(·)
2

(s, 0))ds.

∫

t

0
· · · bounded by t. To make it unbounded, (better have)

BOTH vi (R
A(·)
i

(t, s)) must not CV to zero,
(Even better) With SAME switching law A(·), two trajs. on S1 and S2.
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Resonance

Definition (Resonance Chain)

A switched system s.t. ρ(A) = 0. Let (Ai ) diag. subsystems of max. inv. flag.
Resonance Chain of length l ≥ 2: (Ai1 , · · · ,Ail

)

i1 < · · · < il , ρ(Aij
) = 0, 1 ≤ j ≤ l ;

∃ common switching law A(·) s.t. Aij
(·) gives rise to traj. on Sij

, 1 ≤ j ≤ l .

A =



























A11 A12

0 A22 A23 · · · · · ·
0 0 A33 A34

... A44 A45

...
. . . A55 A56

... A66 A67

0 · · · · · · · · · · · · 0 A77



























(A4,A5,A7) resonance
chain of length 3

(i) ρ(Ai ) = 0, i = 4, 5, 7

(ii) ∃ common switching
law giving rise to trajs. on
Barabanov spheres of Ai ’s
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First result

Theorem (YC, P. Mason, M. Sigalotti)

Let A linear switched system, marginally unstable. Then,

A is reducible

∃ resonance chain of length l ≥ 2.

Simplest nontrivial case of reducible systems:

A = conv{A0,A1} , A0 =

(

A0
11

A0
12

0 A0
22

)

, A1 =

(

A1
11

A1
12

0 A1
22

)

.

Assume A0,A1 Hurwitz and ρ(A) = 0. Then,

Y. Chitour (UPS 11 / L2S) Marginal instability of switched systems May 25th, 2011 11 / 18



First result

Theorem (YC, P. Mason, M. Sigalotti)

Let A linear switched system, marginally unstable. Then,

A is reducible

∃ resonance chain of length l ≥ 2.

Simplest nontrivial case of reducible systems:

A = conv{A0,A1} , A0 =

(

A0
11

A0
12

0 A0
22

)

, A1 =

(

A1
11

A1
12

0 A1
22

)

.

Assume A0,A1 Hurwitz and ρ(A) = 0. Then,

Theorem (Pulvirenti’s Conjecture)

If n = 2, 3 no marginal instability.

For n = 4 marginal instability is possible
with trajectories going to infinity polynomially as t
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Numerical example

A0 =

(

A0
∗ Id

0 A0
∗

)

, A1 =

(

A1
∗ Id

0 A1
∗

)

Choose A0

∗ =

(

−1 −α
α −1

)

, A1

∗ =

(

−1 −α
1/α −1

)

.

For α ∼ 4.5047 one has ρ(A∗) = 0. Worst traj. (WT): ”defined” by (t0, t1).

x = (x1, x2, x3, x4)

-4 -2 2 4 6

-4

-2

2

4

-2 -1.5 -1 -0.5 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0.5

1

1.5

2

,
,(        )

4x1x x2
3x(        )
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n = 4: a converse result

A0 =

(

A0
11

A0
12

0 A0
22

)

, A1 =

(

A1
11

A1
12

0 A1
22

)

A1 = conv{A0
11

,A1
11
}

A2 = conv{A0
22

,A1
22
}

Resonance: ρ(A1) = ρ(A2) = 0 and SAME (t0, t1).

Theorem (YC, P.Mason, M. Sigalotti)

If n = 4 and A1,A2 are in resonance then, generically w.r.t. (A0
12

,A1
12

),
the system is polynomially unstable as t.

Y. Chitour (UPS 11 / L2S) Marginal instability of switched systems May 25th, 2011 13 / 18



Resonance Degree

Definition (Resonance Degree of a switched system A with ρ(A) = 0)

Two resonance chains are connected if smallest index of one ≥ largest index of the other.
Chord of resonance chains = collection of consecutive connected resonance chains.
Chord degree = Σ resonance chains lengths - Nb. resonance chains (for each chord).
Resonance Degree associated to A = Max. chord degrees.

A =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

A11 A12

0 A22 A23 · · · · · ·

0 0 A33 A34

... A44 A45

...
. . . A55 A56

... A66 A67

0 · · · · · · · · · · · · 0 A77

1

C

C

C

C

C

C

C

C

C

C

C

C

A

B

A

B

A C

C

C

A

letters A, B, C = resonance chains. Connected chains = (A, C ), (B, C ). Not (A, B).

resonance degree of A equal to 4 = 3 + 3 − 2.
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Asymptotic behavior of trajectories

Theorem (YC, P. Mason, M. Sigalotti)

L = resonance degree of A. Then ∃C > 0 s.t. ∀x(0) ∈ Rn, ∀t ≥ 0,

(EST ) ‖x(t)‖ ≤ C (1 + tL)‖x(0)‖.

Conversely, in special cases, ∃Ĉ > 0 s.t. for any t > 0, ∃ switching law and
x(0) 6= 0 s.t.

‖x(t)‖ ≥ Ĉ tL‖x(0)‖,

i.e., (in special cases) optimality of (EST).
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Asymptotic behavior of trajectories

Theorem (YC, P. Mason, M. Sigalotti)

L = resonance degree of A. Then ∃C > 0 s.t. ∀x(0) ∈ Rn, ∀t ≥ 0,

(EST ) ‖x(t)‖ ≤ C (1 + tL)‖x(0)‖.

Conversely, in special cases, ∃Ĉ > 0 s.t. for any t > 0, ∃ switching law and
x(0) 6= 0 s.t.

‖x(t)‖ ≥ Ĉ tL‖x(0)‖,

i.e., (in special cases) optimality of (EST).

BUT, (in special cases) for every single traj. x(·),

lim
t→∞

‖x(t)‖

tL
= 0.

(e.g. resonance degree only reached for a chord with at least TWO
connected resonance chains).
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Discrete time systems

Discrete time switched systems:

z(k + 1) = M(k) z(k) , where M(k) ∈ M ,

Stability characterized by JSR = Joint Spectral Radius:

ρ := lim sup
k→∞

(

max
M(1),...,M(k)∈M

‖M(k) · · ·M(1)‖1/k
)

All the results presented above easily adapted to discrete time switched
systems.
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Nonnegative integer matrices cf. Blondel-Jungers-Protasov

Discrete time case with M made by nonnegative integer matrices already
been studied in the literature (see [Jungers-book 2009]).

∃ complete characterization of maximal polynomial growth of trajectories,
cf. Jungers-Protasov-Blondel (2008).

BUT their methods cannot be adapted to general case considered here.
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Conclusion and open problems

Main results:

marginal instability ⇒ existence of resonance chains.

estimate of the maximal polynomial growth for marginal instability.
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marginal instability ⇒ existence of resonance chains.
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Some open questions:

Resonance degree L “generically” best estimate for polynomial growth?
Crucial to study dynamical system generated on Barabanov sphere:

if A irreducible, ∃ periodic trajectory lying on Barabanov sphere?
examples of “chaotic” behavior on Barabanov sphere?
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Conclusion and open problems

Main results:

marginal instability ⇒ existence of resonance chains.

estimate of the maximal polynomial growth for marginal instability.

Some open questions:

Resonance degree L “generically” best estimate for polynomial growth?
Crucial to study dynamical system generated on Barabanov sphere:

if A irreducible, ∃ periodic trajectory lying on Barabanov sphere?
examples of “chaotic” behavior on Barabanov sphere?

Partial result for 3 × 3 Hurwitz stable irred. switched systems (H3 SI-SS.).
A = {A0,A1}, ρ(A) = 0, [A0,A1] Hurwitz, rk(A0 − A1) = 1.

Theorem (Barabanov)

∃! periodic traj. (4 bang arcs) attracting every traj. on Barabanov sphere
(∃! worst trajectory and it is bang-bang).

Open problem: Complete Poincaré-Bendixon theory for H3 SI-SS
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