On the Marginal Instability of Linear Switched Systems

Yacine Chitour
(Université Paris-Sud 11/ Lab. Signaux et Systèmes)
(Joint work with Paolo Mason and Mario Sigalotti)

Rutgers University, May 25th, 2011

Linear Switched Systems

Linear Switched System (continuous time) :

$$
(S) \dot{x}(t)=A(t) x(t) \quad x \in \mathbb{R}^{n}, A(t) \in \mathcal{A} \subset \mathbb{R}^{n \times n}
$$

- $A(\cdot)=$ any meas. function $[0,+\infty) \rightarrow \mathcal{A}$; referred as a switching law.
- \mathcal{A} compact.

Linear Switched Systems

Linear Switched System (continuous time) :

$$
\text { (S) } \dot{x}(t)=A(t) x(t) \quad x \in \mathbb{R}^{n}, A(t) \in \mathcal{A} \subset \mathbb{R}^{n \times n} .
$$

- $A(\cdot)=$ any meas. function $[0,+\infty) \rightarrow \mathcal{A}$; referred as a switching law.
- \mathcal{A} compact.

Example : $\mathcal{A}=\left\{A^{0}, A^{1}\right\}$ or $\mathcal{A}=\left\{\lambda A^{0}+(1-\lambda) A^{1}: \lambda \in[0,1]\right\}$

Remark: wlog \mathcal{A} can be taken convex

Stability and Lyapunov exponent

Maximal Lyapunov Exponent of \mathcal{A} defined as

$$
\rho(\mathcal{A})=\sup _{A(\cdot), x(0)=1}\left(\limsup _{t \rightarrow \infty} \frac{1}{t} \log \|x(t)\|\right) .
$$

If $\mathcal{A}=\{A\}, \rho(\mathcal{A})=\max _{\lambda \in \sigma(A)} \Re(\lambda)$.

Stability and Lyapunov exponent

Maximal Lyapunov Exponent of \mathcal{A} defined as

$$
\rho(\mathcal{A})=\sup _{A(\cdot), x(0)=1}\left(\limsup _{t \rightarrow \infty} \frac{1}{t} \log \|x(t)\|\right) .
$$

If $\mathcal{A}=\{A\}, \rho(\mathcal{A})=\max _{\lambda \in \sigma(A)} \Re(\lambda)$.
$\rho(\mathcal{A})<0$
(S) Uniformly Globally Asymptotic Stable (UGAS)
\rightarrow Uniformly Exponentially Stable (UES), i.e. $\exists M, \lambda>0$ s.t. $\forall x(0) \in \mathbb{R}^{n}$,
$t \geq 0, A(\cdot)\|x(t)\| \leq M e^{-\lambda t}\|x(0)\|$.
$\rho(\mathcal{A})=0$

- (S) marginally stable: all traj. bounded and \exists traj. not CV to 0 ,
- (S) marginally unstable: \exists unbounded traj.
$\rho(\mathcal{A})>0$
(S) unstable: \exists traj. going to ∞ exponentially.

Case $\rho(\mathcal{A})=0$ and Irreducibility

Recall that marginal instability $\Rightarrow \rho(\mathcal{A})=0$.
up to a translation, $\mathcal{A} \leadsto \mathcal{A}-\rho(\mathcal{A}) / d_{n}$, reduce to "Case $\rho(\mathcal{A})=0$ ".
\Rightarrow Study of the case $\rho(\mathcal{A})=0$ crucial to understand stability properties.
But computation of $\rho(\mathcal{A})$ is VERY HARD in general even numerically. (Maybe not?? new results from Jungers, Parillo, ...!)

Definition

\mathcal{A} irreducible if $\nexists 0 \subsetneq V \subsetneq \mathbb{R}^{n}$ invariant for every $A \in \mathcal{A}$.
\mathcal{A} reducible otherwise.
N.B.
\mathcal{A} reducible $\Longleftrightarrow A=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right) \forall A \in \mathcal{A}$

Barabanov Norm

$\rho(\mathcal{A})=0$ and \mathcal{A} irreducible; $\|\cdot\|$ fixed norm.

$$
\forall x_{0} \in \mathbb{R}^{n}, \quad v\left(x_{0}\right):=\underset{\mathcal{A}(\cdot)}{ } \operatorname{sumsup}_{t \rightarrow \infty}\left\|x\left(t, x_{0} ; \mathcal{A}(\cdot)\right)\right\| .
$$

Barabanov Norm

$\rho(\mathcal{A})=0$ and \mathcal{A} irreducible; $\|\cdot\|$ fixed norm.

$$
\forall x_{0} \in \mathbb{R}^{n}, \quad v\left(x_{0}\right):=\underset{\mathcal{A} \cdot(\cdot)}{\sup } \limsup _{t \rightarrow \infty}\left\|x\left(t, x_{0} ; \mathcal{A}(\cdot)\right)\right\| .
$$

Theorem (N. Barabanov)
$\rho(\mathcal{A})=0$ and \mathcal{A} irreducible. Then $v: \mathbb{R}^{n} \rightarrow[0,+\infty)$ is a norm s. t.:

- $v(x(t)) \leq v(x(0))$ for every switching law $A(\cdot)$ and initial cond. $x(0)$;
- $\forall x(0), \exists$ traj. $x(\cdot)$ s. t. $v(x(\cdot)) \equiv v(x(0))$.
(Unit) Barabanov sphere $S_{v}=\left\{x \in \mathbb{R}^{n}, v(x)=1\right\}$.
If $\rho(\mathcal{A})=0$ and \mathcal{A} irreducible, system is marginally stable.

2D systems

$$
\dot{x}=\sigma(t) A^{0} x+(1-\sigma(t)) A^{1} x \quad x \in \mathbb{R}^{2}, \sigma(t) \in\{0,1\} .
$$

Solved (e.g. cf. U. Boscain): complete description of stability cases.
\rightarrow Method based on notion of worst trajectory WT
"worst trajectory": forms the smallest angle with the exiting radial direction
exponential stability

instability

If $\rho(\mathcal{A})=0$, (often) WT corr. periodic pw. cst switching law s.t.
-1 eigenvalue of $e^{t_{0} A^{0}} e^{t_{1} A^{1}}$.

Reducibility and Invariant flags

Maximal invariant flag for \mathcal{A} :

where

$$
\{0\}=E_{0} \subsetneq E_{1} \subsetneq \cdots \subsetneq E_{k-1} \subsetneq E_{k}=\mathbb{R}^{n}
$$

- E_{i} invariant w.r.t. each $A \in \mathcal{A}$,
- $\nexists V$ invariant w.r.t. \mathcal{A} such that $E_{i-1} \subsetneq V \subsetneq E_{i}$.
$\begin{gathered}\text { Coordinate system } \\ \text { adapted to the flag }\end{gathered} \rightarrow A=\left(\begin{array}{ccccc}A_{11} & A_{12} & \cdots & & \\ 0 & A_{22} & A_{23} & \cdots & \\ 0 & 0 & A_{33} & A_{34} & \cdots \\ \vdots & \ddots & \ddots & \ddots & \\ 0 & \cdots & \cdots & 0 & A_{k k}\end{array}\right), \forall A \in \mathcal{A}$
Define $\mathcal{A}_{i}=\left\{A_{i i}: A \in \mathcal{A}\right\}$. Then $\mathcal{A}_{\boldsymbol{i}}$ irreducible and $\rho(\mathcal{A})=\max _{i} \rho\left(\mathcal{A}_{i}\right)$.
Remark: maximal invariant flag for \mathcal{A} not unique.
However, from Jordan-Hölder Theorem, subsystems \mathcal{A}_{i} independent on the flag up to permutations.

Worst "polynomial" behavior - First Estimate

From now on assume $\rho(\mathcal{A})=0$
Let $\{0\}=E_{0} \subsetneq E_{1} \subsetneq \cdots \subsetneq E_{k-1} \subsetneq E_{k}=\mathbb{R}^{n}$ a maximal invariant flag. Then

$$
\rho\left(\mathcal{A}_{i}\right) \leq 0 \quad i=1, \ldots, k \text { and } L:=\#\left\{\mathcal{A}_{i}, \quad \rho\left(\mathcal{A}_{i}\right)=0\right\} \geq 1 .
$$

Worst "polynomial" behavior - First Estimate

From now on assume $\rho(\mathcal{A})=0$
Let $\{0\}=E_{0} \subsetneq E_{1} \subsetneq \cdots \subsetneq E_{k-1} \subsetneq E_{k}=\mathbb{R}^{n}$ a maximal invariant flag. Then

$$
\rho\left(\mathcal{A}_{i}\right) \leq 0 \quad i=1, \ldots, k \text { and } L:=\#\left\{\mathcal{A}_{i}, \quad \rho\left(\mathcal{A}_{i}\right)=0\right\} \geq 1 .
$$

Theorem (V. Protasov)
Block form + variation of constant $\rightarrow \exists C>0, \forall x(0) \in \mathbb{R}^{n}$

$$
\|x(t)\| \leq C\left(1+t^{L-1}\right)\|x(0)\|, \quad \forall t \geq 0
$$

In principle the system could be unstable with polynomial growth.
?? Relationships between subsystems to get unbounded growth ??

Towards "polynomial" blow-up - Case Study

- $\rho(\mathcal{A})=0, A=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right) \forall A \in \mathcal{A} ;\|\cdot\|$ fixed norm.
- $i=1,2, \mathcal{A}_{i}$ irreduc., $\rho\left(\mathcal{A}_{i}\right)=0 ; v_{i}, S_{i}$ Barabanov norms and unit spheres.

Towards "polynomial" blow-up - Case Study

- $\rho(\mathcal{A})=0, A=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right) \forall A \in \mathcal{A} ;\|\cdot\|$ fixed norm.
- $i=1,2, \mathcal{A}_{i}$ irreduc., $\rho\left(\mathcal{A}_{i}\right)=0 ; v_{i}, S_{i}$ Barabanov norms and unit spheres.
For any switching law $A(\cdot)$, let $R_{i}^{A(\cdot)}(\cdot, \cdot)$ corresp. resolvant. $t\left(\geq t_{1}\right) \mapsto v_{i}\left(R_{i}\left(t, t_{1}\right)\right)$ bdd by 1 and non-increasing.

Towards "polynomial" blow-up - Case Study

- $\rho(\mathcal{A})=0, A=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right) \forall A \in \mathcal{A} ;\|\cdot\|$ fixed norm.
- $i=1,2, \mathcal{A}_{i}$ irreduc., $\rho\left(\mathcal{A}_{i}\right)=0 ; v_{i}, S_{i}$ Barabanov norms and unit spheres.
For any switching law $A(\cdot)$, let $R_{i}^{A(\cdot)}(\cdot, \cdot)$ corresp. resolvant. $t\left(\geq t_{1}\right) \mapsto v_{i}\left(R_{i}\left(t, t_{1}\right)\right)$ bdd by 1 and non-increasing.

$$
\begin{gathered}
x_{1}(t)=R_{1}^{A(\cdot)}(t, 0) x_{1}(0)+\int_{0}^{t} R_{1}^{A(\cdot)}(t, s) A_{12}(s) R_{2}^{A(\cdot)}(s, 0) x_{2}(0) d s \\
\left\|x_{1}(t)\right\| \leq K\left\|x_{1}(0)\right\|+M\left\|x_{2}(0)\right\| \int_{0}^{t} v_{1}\left(R_{1}^{A(\cdot)}(t, s)\right) v_{2}\left(R_{2}^{A(\cdot)}(s, 0)\right) d s
\end{gathered}
$$

Towards "polynomial" blow-up - Case Study

- $\rho(\mathcal{A})=0, A=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right) \forall A \in \mathcal{A} ;\|\cdot\|$ fixed norm.
- $i=1,2, \mathcal{A}_{i}$ irreduc., $\rho\left(\mathcal{A}_{i}\right)=0 ; v_{i}, S_{i}$ Barabanov norms and unit spheres.
For any switching law $A(\cdot)$, let $R_{i}^{A(\cdot)}(\cdot, \cdot)$ corresp. resolvant. $t\left(\geq t_{1}\right) \mapsto v_{i}\left(R_{i}\left(t, t_{1}\right)\right)$ bdd by 1 and non-increasing.

$$
\begin{aligned}
x_{1}(t) & =R_{1}^{A(\cdot)}(t, 0) x_{1}(0)+\int_{0}^{t} R_{1}^{A(\cdot)}(t, s) A_{12}(s) R_{2}^{A(\cdot)}(s, 0) x_{2}(0) d s \\
\left\|x_{1}(t)\right\| & \leq K\left\|x_{1}(0)\right\|+M\left\|x_{2}(0)\right\| \int_{0}^{t} v_{1}\left(R_{1}^{A(\cdot)}(t, s)\right) v_{2}\left(R_{2}^{A(\cdot)}(s, 0)\right) d s
\end{aligned}
$$

$\int_{0}^{t} \cdots$ bounded by t. To make it unbounded, (better have)
BOTH $v_{i}\left(R_{i}^{A(\cdot)}(t, s)\right)$ must not CV to zero,

Towards "polynomial" blow-up - Case Study

- $\rho(\mathcal{A})=0, A=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right) \forall A \in \mathcal{A} ;\|\cdot\|$ fixed norm.
- $i=1,2, \mathcal{A}_{i}$ irreduc., $\rho\left(\mathcal{A}_{i}\right)=0 ; v_{i}, S_{i}$ Barabanov norms and unit spheres.
For any switching law $A(\cdot)$, let $R_{i}^{A(\cdot)}(\cdot, \cdot)$ corresp. resolvant. $t\left(\geq t_{1}\right) \mapsto v_{i}\left(R_{i}\left(t, t_{1}\right)\right)$ bdd by 1 and non-increasing.

$$
\begin{aligned}
x_{1}(t) & =R_{1}^{A(\cdot)}(t, 0) x_{1}(0)+\int_{0}^{t} R_{1}^{A(\cdot)}(t, s) A_{12}(s) R_{2}^{A(\cdot)}(s, 0) x_{2}(0) d s \\
\left\|x_{1}(t)\right\| & \leq K\left\|x_{1}(0)\right\|+M\left\|x_{2}(0)\right\| \int_{0}^{t} v_{1}\left(R_{1}^{A(\cdot)}(t, s)\right) v_{2}\left(R_{2}^{A(\cdot)}(s, 0)\right) d s
\end{aligned}
$$

$\int_{0}^{t} \cdots$ bounded by t. To make it unbounded, (better have)
BOTH $v_{i}\left(R_{i}^{A(\cdot)}(t, s)\right)$ must not CV to zero,
(Even better) With SAME switching law $A(\cdot)$, two trajs. on S_{1} and S_{2}.

Resonance

Definition (Resonance Chain)

\mathcal{A} switched system s.t. $\rho(\mathcal{A})=0$. Let $\left(\mathcal{A}_{i}\right)$ diag. subsystems of max. inv. flag. Resonance Chain of length $I \geq 2:\left(\mathcal{A}_{i_{1}}, \cdots, \mathcal{A}_{i_{I}}\right)$

- $i_{1}<\cdots<i_{l}, \rho\left(\mathcal{A}_{i_{j}}\right)=0,1 \leq j \leq 1$;
- \exists common switching law $A(\cdot)$ s.t. $A_{i j}(\cdot)$ gives rise to traj. on $S_{i j}, 1 \leq j \leq I$.

$\left(\mathcal{A}_{4}, \mathcal{A}_{5}, \mathcal{A}_{7}\right)$ resonance
chain of length 3
(i) $\rho\left(\mathcal{A}_{i}\right)=0, i=4,5,7$
(ii) \exists common switching law giving rise to trajs. on Barabanov spheres of \mathcal{A}_{i} 's

First result

Theorem (YC, P. Mason, M. Sigalotti)
Let \mathcal{A} linear switched system, marginally unstable. Then,

- \mathcal{A} is reducible
- \exists resonance chain of length $I \geq 2$.

Simplest nontrivial case of reducible systems:

$$
\mathcal{A}=\operatorname{conv}\left\{A^{0}, A^{1}\right\}, \quad A^{0}=\left(\begin{array}{cc}
A_{11}^{0} & A_{12}^{0} \\
0 & A_{22}^{0}
\end{array}\right), \quad A^{1}=\left(\begin{array}{cc}
A_{11}^{1} & A_{12}^{1} \\
0 & A_{22}^{1}
\end{array}\right) .
$$

Assume A^{0}, A^{1} Hurwitz and $\rho(\mathcal{A})=0$. Then,

First result

Theorem (YC, P. Mason, M. Sigalotti)
Let \mathcal{A} linear switched system, marginally unstable. Then,

- \mathcal{A} is reducible
- \exists resonance chain of length $I \geq 2$.

Simplest nontrivial case of reducible systems:

$$
\mathcal{A}=\operatorname{conv}\left\{A^{0}, A^{1}\right\}, \quad A^{0}=\left(\begin{array}{cc}
A_{11}^{0} & A_{12}^{0} \\
0 & A_{22}^{0}
\end{array}\right), \quad A^{1}=\left(\begin{array}{cc}
A_{11}^{1} & A_{12}^{1} \\
0 & A_{22}^{1}
\end{array}\right) .
$$

Assume A^{0}, A^{1} Hurwitz and $\rho(\mathcal{A})=0$. Then,
Theorem (Pulvirenti's Conjecture)
If $n=2,3$ no marginal instability.

For $n=4$ marginal instability is possible with trajectories going to infinity polynomially as t

Numerical example

$$
A^{0}=\left(\begin{array}{cc}
A_{*}^{0} & I d \\
0 & A_{*}^{0}
\end{array}\right), \quad A^{1}=\left(\begin{array}{cc}
A_{*}^{1} & l d \\
0 & A_{*}^{1}
\end{array}\right)
$$

Choose $A_{*}^{0}=\left(\begin{array}{cc}-1 & -\alpha \\ \alpha & -1\end{array}\right), \quad A_{*}^{1}=\left(\begin{array}{cc}-1 & -\alpha \\ 1 / \alpha & -1\end{array}\right)$.
For $\alpha \sim 4.5047$ one has $\rho\left(\mathcal{A}_{*}\right)=0$. Worst traj. (WT): "defined" by $\left(t_{0}, t_{1}\right)$. $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

$n=4:$ a converse result

$$
\begin{aligned}
& A^{0}=\left(\begin{array}{cc}
A_{11}^{0} & A_{12}^{0} \\
0 & A_{22}^{0}
\end{array}\right), \quad A^{1}=\left(\begin{array}{cc}
A_{11}^{1} & A_{12}^{1} \\
0 & A_{22}^{1}
\end{array}\right) \\
& \mathcal{A}_{1}=\operatorname{conv}\left\{A_{11}^{0}, A_{11}^{1}\right\} \\
& \mathcal{A}_{2}=\operatorname{conv}\left\{A_{22}^{0}, A_{22}^{1}\right\}
\end{aligned}
$$

Resonance: $\rho\left(\mathcal{A}_{1}\right)=\rho\left(\mathcal{A}_{2}\right)=0$ and $\operatorname{SAME}\left(t_{0}, t_{1}\right)$.

Theorem (YC, P.Mason, M. Sigalotti)
If $n=4$ and $\mathcal{A}_{1}, \mathcal{A}_{2}$ are in resonance then, generically w.r.t. $\left(A_{12}^{0}, A_{12}^{1}\right)$, the system is polynomially unstable as t.

Resonance Degree

Definition (Resonance Degree of a switched system \mathcal{A} with $\rho(\mathcal{A})=0$)
Two resonance chains are connected if smallest index of one \geq largest index of the other. Chord of resonance chains $=$ collection of consecutive connected resonance chains. Chord degree $=\Sigma$ resonance chains lengths - Nb. resonance chains (for each chord). Resonance Degree associated to $\mathcal{A}=$ Max. chord degrees.

$$
A=\left(\begin{array}{ccccccc}
A_{11} & A_{12} & & & \ldots & \\
0 & A_{22} & A_{23} & & \ldots & \cdots & \\
0 & 0 & A_{33} & A_{34} & & & \\
\vdots & & & A_{44} & A_{45} & & \\
\vdots & & \ddots & & A_{55} & A_{56} & \\
\vdots & & & & & A_{66} & A_{67} \\
0 & \cdots & \cdots & \ldots & \ldots & 0 & A_{77}
\end{array}\right) \longrightarrow \begin{gathered}
\text { (A) } \\
\mathrm{B} \\
(\mathrm{~A}) \\
\mathrm{B} \\
(\mathrm{~A})(C) \\
\text { (C) } \\
\end{gathered}
$$

letters $\mathrm{A}, \mathrm{B}, \mathrm{C}=$ resonance chains. Connected chains $=(A, C),(B, C)$. Not (A, B). resonance degree of \mathcal{A} equal to $4=3+3-2$.

Asymptotic behavior of trajectories

Theorem (YC, P. Mason, M. Sigalotti)
$L=$ resonance degree of \mathcal{A}. Then $\exists C>0$ s.t. $\forall x(0) \in \mathbb{R}^{n}, \forall t \geq 0$,

$$
\text { (EST) } \quad\|x(t)\| \leq C\left(1+t^{L}\right)\|x(0)\| .
$$

Conversely, in special cases, $\exists \hat{C}>0$ s.t. for any $t>0, \exists$ switching law and $x(0) \neq 0$ s.t.

$$
\|x(t)\| \geq \hat{C} t^{L}\|x(0)\|
$$

i.e., (in special cases) optimality of (EST).

Asymptotic behavior of trajectories

Theorem (YC, P. Mason, M. Sigalotti)
$L=$ resonance degree of \mathcal{A}. Then $\exists C>0$ s.t. $\forall x(0) \in \mathbb{R}^{n}, \forall t \geq 0$,

$$
(E S T) \quad\|x(t)\| \leq C\left(1+t^{L}\right)\|x(0)\| .
$$

Conversely, in special cases, $\exists \hat{C}>0$ s.t. for any $t>0, \exists$ switching law and $x(0) \neq 0$ s.t.

$$
\|x(t)\| \geq \hat{C} t^{L}\|x(0)\|
$$

i.e., (in special cases) optimality of (EST).

BUT, (in special cases) for every single traj. $x(\cdot)$,

$$
\lim _{t \rightarrow \infty} \frac{\|x(t)\|}{t^{L}}=0
$$

(e.g. resonance degree only reached for a chord with at least TWO connected resonance chains).

Discrete time systems

Discrete time switched systems:

$$
z(k+1)=M(k) z(k), \quad \text { where } \quad M(k) \in \mathcal{M}
$$

Stability characterized by JSR $=$ Joint Spectral Radius:

$$
\rho:=\limsup _{k \rightarrow \infty}\left(\max _{M(1), \ldots, M(k) \in \mathcal{M}}\|M(k) \cdots M(1)\|^{1 / k}\right)
$$

All the results presented above easily adapted to discrete time switched systems.

Nonnegative integer matrices cf. Blondel-Jungers-Protasov

Discrete time case with \mathcal{M} made by nonnegative integer matrices already been studied in the literature (see [Jungers-book 2009]).
\exists complete characterization of maximal polynomial growth of trajectories, cf. Jungers-Protasov-Blondel (2008).

BUT their methods cannot be adapted to general case considered here.

Conclusion and open problems

Main results:

- marginal instability \Rightarrow existence of resonance chains.
- estimate of the maximal polynomial growth for marginal instability.

Conclusion and open problems

Main results:

- marginal instability \Rightarrow existence of resonance chains.
- estimate of the maximal polynomial growth for marginal instability. Some open questions:
- Resonance degree L "generically" best estimate for polynomial growth?
- Crucial to study dynamical system generated on Barabanov sphere:
- if \mathcal{A} irreducible, \exists periodic trajectory lying on Barabanov sphere?
- examples of "chaotic" behavior on Barabanov sphere?

Conclusion and open problems

Main results:

- marginal instability \Rightarrow existence of resonance chains.
- estimate of the maximal polynomial growth for marginal instability.

Some open questions:

- Resonance degree L"generically" best estimate for polynomial growth?
- Crucial to study dynamical system generated on Barabanov sphere:
- if \mathcal{A} irreducible, \exists periodic trajectory lying on Barabanov sphere?
- examples of "chaotic" behavior on Barabanov sphere?

Partial result for 3×3 Hurwitz stable irred. switched systems ($\mathrm{H}_{3} \mathrm{SI}-\mathrm{SS}$.). $\mathcal{A}=\left\{A^{0}, A^{1}\right\}, \rho(\mathcal{A})=0,\left[A^{0}, A^{1}\right]$ Hurwitz, $r k\left(A^{0}-A 1\right)=1$.

Theorem (Barabanov)

\exists ! periodic traj. (4 bang arcs) attracting every traj. on Barabanov sphere (\exists ! worst trajectory and it is bang-bang).

Open problem: Complete Poincaré-Bendixon theory for $\mathrm{H}_{3} \mathrm{SI}-\mathrm{SS}$

