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The Task
How can we extract

• this hierarchical (multi-scale) structure
from complex networks?
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One Approach

Model-based inference

1. describe how to generate hierarchies (a model)

2. “fit” model to empirical data

3. test “fitted” model

4. extract predictions + insight

5. profit!



A Model of Hierarchy
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Model Features

• explicit model = explicit assumptions

• very flexible (many parameters)

• captures structure at all scales

• arbitrary mixtures of assortativity, disassortativity

• learnable directly from data



Learning From Data

a direct approach
• likelihood function

(     scores quality of model)

• sample the good models

via Markov chain Monte Carlo

• technical details in arXiv : physics/0610051

L = Pr( data | model )



From Graph to Ensemble

 



From Graph to Ensemble

• Given graph
• run MCMC to equilibrium
• then, for each sampled     , draw a resampled        

graph        from ensemble

A test: do resampled graphs look like original?
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Clustering  Coefficient

resampled→

original→
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Missing Links

A test: can model predict missing links?



Predicting is Hard

• remove      edges from
• how easy to guess a missing link?

n = 75

m = 113

pguess ≈
k

n2
− m + k

= O(n−2)

k

pguess = k/(2662 + k)

G



• Given incomplete graph
• run MCMC to equilibrium
• then, over sampled      , compute average              

for links                    
• predict links with high          values are missing

Test idea via leave-k-out cross-validation
perfect accuracy: AUC = 1
no better than chance: AUC = 1/2

(i, j) !∈ G

Predicting Missing Links
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Missing Structure
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Grassland species network

 

 

Pure chance
Common neighbors
Jaccard coeff.
Degree product
Shortest paths
Hierarchical structure
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Other Networks
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Summary

• Many real networks are hierarchically modular
• Hierarchies can 

• model multi-scale structure
• generalize a single network
• predict missing links

• Model-based inference is very powerful
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