
Container Inspection

Optimization Models for Container
Inspection

Endre Boros

RUTCOR, Rutgers University

Joint work with L. Fedzhora and P.B. Kantor (Rutgers),

and K. Saeger and P. Stroud (LANL)



Container Inspection

Container Inspection

Problem
Finding ways to intercept illicit nuclear materials and
weapons destined for the U.S. via the maritime
transportation system is an exceedingly difficult task.
Today, only a small percentage of containers arriving to
U.S. ports are inspected.
Inspection involves checking paperwork, using various
imaging sensors, and manual inspection.
Objectives involve maximizing detection rate, minimizing
unit cost of inspection, rate of false positives, time
delays, etc.
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Container Inspection

Mathematical Model

Maximize detection rate ∆(D, t)

over all decision trees D and threshold selections t

subject to budget, capacity, and delay constraints

A possible solution (Stroud and Saeger, 2003)

Enumerate all possible (binary) decision trees and
compute best possible threshold selections for each.

Number of decision trees is doubly exponential!
Enumeration is possible only for s ≤ 4!
Too expensive to analyze tradeoffs!
Why only 1-1 thresholds?
Why a single decision tree?
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Container Inspection

Large Scale LP Formulation

Developed a polyhedral description of all possible decision trees.

Formulated a large scale LP model for optimal inspection policy;
maximization of detection rate, while limiting unit cost of
inspection, rate of false positives, and time delays, etc.

Off the shelf LP packages can find optimal inspection strategies up to
6-8 sensors.

Detection rate – unit inspection cost ROC curve can be tabulated.

Effects of capacity and time delay limitations can be analyzed.

Benefits of new sensor technologies can be evaluated.
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Experiments with 4 sensors (Stroud and Saeger, 2003)

# of thresholds

inspection cost

12.0

13.0

14.0

15.0

16.0

17.0

1 2 3 4 5 6 7

Detection rate ≥ 81.5%

Threshold-optimized pure strategy found by Stroud and Saeger (2003)

Non-optimized threshold grid; savings of ≈ 10%
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Experiments with 4 sensors (Stroud and Saeger, 2003)

cost

detection rate
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