
7/23/03 http://Amir.Herzberg.name 1

DIMACS Security & Cryptography
Crash Course – day 4

Internet Cryptography Tools,
Part I: TLS/SSL

Prof. Amir Herzberg
Computer Science Department, Bar Ilan University
http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without
modification. For other use please contact author.

7/23/03 http://Amir.Herzberg.name 2

Sources

! This lecture is mostly covered in
`SSL and TLS` by Eric Rescorla

! Partial but readable coverage also in
Stalling’s book, `Cryptography and
Network Security`

! TLS is defined in Internet Engineering
Task Force (IETF) RFC Document 2246,
see e.g. at www.ietf.org

7/23/03 http://Amir.Herzberg.name 3

Agenda – Transport Layer Security

! Example: SSL payments
! Evolution of SSL and TLS
! Layer and alternatives

" Few words about S/MIME
! SSL Protocol

" SSL phases and services
" Sessions and connections
" SSL Handshake
" SSL protocols and layers
" SSL Record protocol /

layer

! Secure use of SSL
" Designing SSL applications
" Client & server authentication
" Web spoofing attacks

! Cryptographic issues in SSL
and TLS

! Conclusions

7/23/03 http://Amir.Herzberg.name 4

SSL / TLS in a Nutshell

! SSL provides a `secure TCP tunnel from client to server`:
" Confidentiality
" Authentication of server, optionally also of client
" Message and connection integrity

! SSL: Secure Socket Layer
" Since SSL (& TLS) operate on top of `standard` Sockets API

! TLS: Transport Layer Security
" Since TLS (& SSL) secure TCP (the transport layer)
" IETF standard version of SSL
" When we describe common aspects we usually say just SSL

! Many implementations, libraries, e.g. Open-SSL
! Original goal and still main use: secure transfer of credit card

number… hear more on this in later lecture.

7/23/03 http://Amir.Herzberg.name 5

SSL/TLS Evolution

SSLv1
(1994)

SSLv3
(1995)

No client auth;
broken – weak
`randomness`,

other weaknesses

Not released

PCT
(1995)

SSLv2
(1994)

Microsoft’s improved
SSLv2: security (e.g.

strong exportable
auth.), performance

(flows)

STLP
(1996)

Microsoft’s improved
SSLv3: support for
UDP, and shared-

secret authentication

TLS (1997-1999),
RFC 2246

Substantial redesign; add
client authentication,
support for DSS, DH,

prevent truncation attack

SSLv3 but incompatible:
improved key expansion and

MAC, support DES3 and
DH+DSS for key exchange

WTLS
(1990-)

7/23/03 http://Amir.Herzberg.name 6

Agenda – Transport Layer Security

! Example: SSL payments
! Evolution of SSL and TLS
! Layer and alternatives

" Few words about S/MIME

! SSL Protocol
" SSL phases and services
" Sessions and connections
" SSL Handshake
" SSL protocols and layers
" SSL Record protocol /

layer

! Secure use of SSL
" Designing SSL applications
" Client & server authentication
" Web spoofing attacks

! Cryptographic issues in SSL
and TLS

! Conclusions

7/23/03 http://Amir.Herzberg.name 7

TLS / SSL

Link Layer

Internet Layer

Transport Layer

Application Layer

Adding Security in Transport Layer
(SSL / TLS)
! SSL: Secure Socket Layer (Sockets is TCP/IP API)
! TLS: Transaction Layer Security (IETF standard SSL)

" When we say `SSL`, we refer also to TLS
! Pros:

" Easy to implement and use
" Deployed in most browsers,

servers, …
! Cons:

" Protects only if used by appl.
" Vulnerable to Clogging (DOS)

! Over TCP
" Only end to end
" Headers exposed

7/23/03 http://Amir.Herzberg.name 8

Link Layer

Internet (network) Layer

Transport Layer

Application Layer

Adding Security
Alternative 1: Add to Each Application

! Pros: easy, independent;
awareness of semantics

! Cons:
" Change each app, computer…

hard, wasteful, error-prone,
must trust all computers

" No protection for headers
! Examples:

" S/Key (login)
" Payment protocols, e.g. SET (credit card payments)
" Tools: XML security, Kerberos, …
" Secure E-mail (S/MIME,PGP,…)

S/MIME S/KEY SET

7/23/03 http://Amir.Herzberg.name 9

Few words about…
S/MIME – Secure E-Mail
! MIME – Multi-purpose Internet Mail Extensions (message

+ attached files)
! S/MIME services:

" Non-repudiation of origin
" Authentication and integrity (signatures)
" Confidentiality (encryption)

! Message parts: signature, encrypted shared key,
encrypted data (using shared key)

! X.509 certificates (also CRLs) sent with message
" Problem: PKI not in place for public applications

! APIs for communicating via S/MIME
! Widely deployed standard; available e.g. in Open-SSL

7/23/03 http://Amir.Herzberg.name 10

Link Layer

Internet (network) Layer

Transport Layer

Application Layer

Adding Security
Alternative 2: IP Security
Pros:

" Protect all applications, data (IP header, addresses)
" No change to applications
" Gateway can protect many hosts
" Anti-clogging mechanisms
" Implemented by operating

systems, Routers, …
" Standard

! Cons:
" Implementation,

interoperability, availability
" Application awareness/control is difficult

7/23/03 http://Amir.Herzberg.name 11

Agenda – Transport Layer Security

! Example: SSL payments
! Evolution of SSL and TLS
! Layer and alternatives

" Few words about S/MIME

! SSL Protocol
" SSL phases and services
" Sessions and connections
" SSL Handshake
" SSL protocols and layers
" SSL Record protocol / layer

! Secure use of SSL
" Designing SSL applications
" Client & server authentication
" Web spoofing attacks

! Cryptographic issues in SSL
and TLS
" Key derivation (PRF)
" Order of Encryption/Auth
" Chosen ciphertext attack

! DOS attacks on Servers
! SSL payments: problems
! Conclusions

7/23/03 http://Amir.Herzberg.name 12

SSL Operation Phases (high level)
! TCP Connection
! Handshake

" Negotiate (agree on) algorithms, methods
" Authenticate server and optionally client
" Establish keys

! Data transfer
! SSL Secure Teardown (why is this necessary?)

Client

Server

Syn
+Ack

SSL
Handsake

Data
Transfer Teardown

7/23/03 http://Amir.Herzberg.name 13

SSL Services
! Server Authentication (mandatory)
! Client Authentication (optional - if required

by server)
! Secure connection:

" Confidentiality (Encryption) – optional, possibly
weak (export)

" Message Authentication
" Reliability: prevent re-ordering, truncating etc.

! Efficiency: allow resumption of SSL session
in new connection (no need to re-do
handshake)

7/23/03 http://Amir.Herzberg.name 14

SSL Operation Phases
! Client uses SSL API to open connection
! SSL Handshake protocol:

" For efficiency – resume `session` if possible
" If not (session not kept, new connection, override)

! Establish session - algorithms and master keys
" Establish connection (keys, etc.)

! Data transfer (SSL Record protocol)
! Teardown – use Alert protocol:

" By application closing connection
" Or due to error (by handshake or record protocols)

Client

Server

Syn
+Ack

SSL
Handsake

Finished

Data
Transfer

(SSL Record protocol)
Alert

(teardown)

7/23/03 http://Amir.Herzberg.name 15

SSL Sessions and Connections
! Connection:

" TCP/IP connection – send/receive secure messages
" Reliable: ensures Delivery, Matching, FIFO
" Independent, different keys for each connection

! SSL Session:
" May span multiple connections for efficiency
" Agree on algorithms and options

! Client specifies possibilities, server chooses or rejects
" Use public keys to Establish shared MasterSecret key
" Server sets `session_id` so connection can resume (use

existing session, for efficiency)
! Client, server may discard session
! Recommended (in RFC): keep session at most 24 hours

7/23/03 http://Amir.Herzberg.name 16

SSL Session State Variables
! Session ID: 32 bytes selected by server
! Peer certificate (X.509 v3)
! Compression method
! Cipher spec (encryption, MAC, etc.)
! Is Resumable: flag: allow new connections
! master_secret: 48 bytes, known to both

" Derived from 48 bytes pre_master_secret (from
DH key exchange / sent encrypted by RSA)

" Using random numbers chosen by server and
client at 1st connection of session

" Using Pseudo-Random Function (PRF)
" How?

7/23/03 http://Amir.Herzberg.name 17

Deriving master_secret Key
master_secret = PRFpre_master_secret(

“master secret" ||Client_random ||
Server_random)

PRF
(Pseudo Random Function)

pre_master_secret Client_randomServer_random

master_secret

PRF is based on MD5 and SHA-1;
design differs btw SSL & TLS, see later

7/23/03 http://Amir.Herzberg.name 18

SSL Connection State Variables
! Session ID: 32 bytes selected by server
! Server and client sequence numbers
! Server_random, client_random: 32 bytes

" Unique to each connection!
! Cryptographic keys and Initialization Vectors (IV)

" Unique to each connection (why?)
" Distinct encryption and authentication (MAC) keys (why?)
" Distinct keys for client to server and server to client

packets (why?)
" How?

7/23/03 http://Amir.Herzberg.name 19

Deriving Connection Keys, IVs
Key_Block = PRF master_secret (“key expansion”||

Server_random ||Client_random)
Split Key_Block to ClientMACKey, serverMACKey,

ClientEncryptKey,…(using fixed order)

PRF

master_secret Client_randomServer_random

IVsMAC keys Encrypt keys

Key_Block

7/23/03 http://Amir.Herzberg.name 20

SSL Handshake Protocol
! Agree on cipher suite: algorithms and options:

" Symmetric and Asymmetric Encryption
" Signature and MAC
" Compression
" Options: client authentication, export (weak) versions,…

! Exchange random values
! Check for session resumption.
! Send certificate(s)
! Establish shared keys.
! Authenticate server
! Optionally authenticate client
! Confirm synchronization with peer

7/23/03 http://Amir.Herzberg.name 21

SSL Handshake – Overview

Client Server
Possible Cipher-suites, Client_random

Chosen cipher-suite, Server_random,Certificate

Encrypted Pre_Master_Secret

Confirmation (MAC of handshake messages)

Client, Server change to new,computed keys (`Cipher Spec`)

Confirmation (MAC of handshake messages)

Confirms algorithms, no replay, client
really sent Pre_Master_Secret

In order of
preference

7/23/03 http://Amir.Herzberg.name 22

SSL Typical Handshake Messages

Client Server
ClientHello (possible cipher-suites, Client_random)

Certificate

ClientKeyExchange (Encrypted Pre_Master_Secret)

Finished (Confirmation -MAC of handshake messages)

Finished (Confirmation -MAC of handshake messages)

ServerHello (Chosen cipher-suite, Server_random)

ServerHelloDone

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

Client
begins
using

new key

Server
begins
using

new key

7/23/03 http://Amir.Herzberg.name 23

Advanced Handshake Features
! Session resumption
! Client authentication
! Ephemeral public keys

" For forward security – (usually?) using Diffie-Hellman
" Support for DH, with DSS signatures, is mandatory in TLS
" Or, for using weak encryption public keys for export

reasons (signed by strong public key) – Often with RSA
" RSA key generation is expensive – often same ephemeral

(and short, 512 bits) key used for multiple clients/sessions

7/23/03 http://Amir.Herzberg.name 24

Handshake with Ephemeral public keys

Client Server
ClientHello

Certificate

ClientKeyExchange

Finished

ServerHello

ServerHelloDone

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

ServerKeyExchange

Finished

RSA/DSA
Signature

over
ephemeral
RSA key or

DH
exponent

If RSA used:
regular

(encrypted
pre-master);
If DH used:

client’s
exponent

7/23/03 http://Amir.Herzberg.name 25

SSL Client Authentication
! Usually, only the server has a certificate

" Client can authenticate the server
" Client sends some identification info (e.g. username, password)

to server using the SSL tunnel – after it is established
! SSL also supports authentication with client certificates

" Server requires certificate from client
" Server signals acceptable Certificate Authorities (CAs) and

certificate formats, options etc.
" Client returns appropriate certificate (chain)
" Client authenticates by signing using certified public key

! Client authentication using certificates is used mostly within
organizations, communities – more on this later

7/23/03 http://Amir.Herzberg.name 26

Client Authentication Handshake
Client Server

ClientHello (ciphersuites, Client_random)

Certificate

ClientKeyExchange (Encrypted Pre_Master_Secret)

Finished

Finished

ServerHello (ciphersuite, Server_random)

ServerHelloDone

CCS

CCS

CertificateRequest

Certificate

CertificateVerify
Signature over

hash of
handshake
messages

Or certificate
chain (same for
server cert.)

Acceptable CA
and cert formats

7/23/03 http://Amir.Herzberg.name 27

SSL Session Resumption
! SSL session setup has substantial overhead

" Randomness generation (both)
" Transmission of certificates (both)
" RSA encryption of Pre-Master-sercret (client)
" RSA decryption of Pre-Master-secret (server)
" Derivation of master secret and key block (both)

! Problems:
" Significant performance penalty (mainly on server)
" Server vulnerable to clogging (DOS) attacks

! Session resumption:
" If client makes many connections to same server…
" Server, client can re-use Pre-Master-secret from last connection
" How? By identifying a session using session ID

7/23/03 http://Amir.Herzberg.name 28

Session Resumption Handshake

Client Server
ClientHello (cipher-suites, resume(session_id), Client_random)

Finished (Confirmation -MAC of handshake messages)

Finished (Confirmation -MAC of handshake messages)

ServerHello (Chosen cipher-suite, session_id, Server_random)

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

In first session of connection (not resumed),
client does not send session_id, and only server
sends it with ServerHello to allow resumption

7/23/03 http://Amir.Herzberg.name 29

Session Resumption Issues
! Caching requires considerable server resources

" Result: cache usually kept for only few minutest, not 24 hrs
! Resumption conflicts with replicated (cluster) servers

" TCP connections routed to arbitrary server in cluster
" Solution 1: server in cluster determined by client IP address # but

requests from many clients may use same NAT IP addr
" Solution 2: shared storage of session information # not easy!
" Solution 3: SSL-session aware connection routing
" Solution 4: Client side session caching – encrypted, authenticated

cache; a non-standard SSL/TLS extension
! Session resumption helps only for repeating connections

" SSL payments involve one (or few) connections # not much help
! Other possible optimizations (not standardized)

" Client caching of certificates and other server info (`fast track`)
" Encrypt using ephemeral, short server keys
" Server encrypts Pre-Master-Secret using Client’s public key

7/23/03 http://Amir.Herzberg.name 30

Handshake Protocol Messages

Encrypted pre_master_keyClntMClientKeyExchang

Ephemeral server pub key (this session only)SrvrOServerKeyExchng

MAC on entire handshakeBothMFinished
Sign previous messagesClntOCert. verify

Cert. type (RSA/DSS,Sign/DH), CAsSrvrOCert. Request

X.509 certificateBothOCertificate

Version, server_random, session_ID,
algorithms

SrvrMServerHello

Version, client_random, session_ID,
algorithms

ClntMClientHello
Inform client to beginSrvrOHelloReq.
Meaning/ContainsFromM?Message

7/23/03 http://Amir.Herzberg.name 31

SSL Protocols, Layers and Records

SSL Record Protocol/Layer
(MAC, encrypt, compress, counters)

SSL
Handshake Protocol

Application
(e.g. browser)

Reliable Transport Layer (TCP)
(original) Sockets API

SSL API
SSL

Alert

Appl. Data
record

Alert
record

CCS
record

Handshake
record CCS=

Change
Cipher
Spec

7/23/03 http://Amir.Herzberg.name 32

SSL Record Layer
! Assumes underlying reliable communication (TCP)
! Fragmentation, compression, authentication,

encryption Message sent by the application, e.g. HTTP request

Message sent by th he application, e.g. HTTP request

<16KB <16KB <16KB

Fragment

Compress
MAC
Pad (if using block cipher)

Encrypt

Send each fragment via TCP

7/23/03 http://Amir.Herzberg.name 33

SSL Record Protocol
1. Fragments data – 16KB in a fragment
2. Compress each fragment; Compression must be lossless

and never increase length (up to 1KB Ok)
3. Authenticate by appending MAC

• Key: MAC_write_secret (from master_secret)
• MAC computed over counter || length || content
• Use counter (64 bits) to prevent replay in SSL session
• The counter value is only input to MAC, not sent

! Since we assume SSL is over TCP which ensures FIFO
! So why SSL adds counter to MAC at all?

4. Padding to complete block (if using block cipher)
5. Encrypt fragment (including MAC)

7/23/03 http://Amir.Herzberg.name 34

Alert Protocol and Record
! Signal state changes and indicate errors
! Invoked by:

" Application - to close connection (close_notify)
! Connection should close with close_notify
! This allows detection of truncation attack (dropping

of last messages)
! Notice: close_notify is normal, not failure alert!

" Handshake protocol – in case of problem
" Record protocol – e.g. if MAC is not valid

! Notice: easy to tear-down (denial of service)

! Alert record carries alerts

7/23/03 http://Amir.Herzberg.name 35

Agenda – Transport Layer Security

! Example: SSL payments
! Evolution of SSL and TLS
! Layer and alternatives

" Few words about S/MIME

! SSL Protocol
" SSL phases and services
" Sessions and connections
" SSL Handshake
" SSL protocols and layers
" SSL Record protocol / layer

! Secure use of SSL
" Designing SSL applications
" Client & server authentication
" Web spoofing attacks

! Cryptographic issues in SSL
and TLS

! Conclusions

7/23/03 http://Amir.Herzberg.name 36

Secure Usage of SSL

! Designing Secure Applications using SSL API
! Validating Certificate (or certificates chain)
! Server Access Control (client authentication)

" Using client certificates
" Using username and password, etc.

! Client Access Control (server authentication)
! Site spoofing attacks on browsers

7/23/03 http://Amir.Herzberg.name 37

Designing Applications using SSL API
! Several SSL toolkits (e.g. OpenSSL); slightly different APIs
! Initialization tasks:

" Load CA’s certificates (at clients; servers: only if using client auth)
" Load keys and certificates
" Seed random number generator (use collected noise)
" Load allowed cipher suites

! Most toolkits allow adding new (more secure?) cipher suites
" In server: generate/load ephemeral DH and/or RSA keys (if used)

! Connection API calls
" Very similar to standard TCP (Sockets) API
" But returns server (and optionally client) certificate
" Need to validate certificate
" Close (tear-down) connection - to identify truncation attacks

7/23/03 http://Amir.Herzberg.name 38

Validating Certificates
! Validation done by application, not SSL!!
! Verify root CA is trusted

" Predefined list of `trusted CAs` in application
! E.g. look in your browser…

" Do we really trust all of them?
! Validate certificate (chain)

" Validate signature(s)
" Check validity/expiration dates
" Check identities, constraints, key usage…
" Check for revocations – SSL does not carry CRLs;

application must collect by itself if CRL’s are used.
! Reminder…

7/23/03 http://Amir.Herzberg.name 39

Recall: X.509 Certificate Validation

Signature on the above fields

Subject unique identifier
Issuer unique identifier
Subject public key
Subject (user) Distinguished Name (DN)
Validity period
Issuer Distinguished Name (DN)

Key Usage extension(s)

Basic constraint: Cert_len [for CA>0]

Name Constraints extension

Policy (ID) Constraints Mappings Ex
te

ns
io

ns

SubjectAltName ext.
E-mail DNS URI

Cf. to CA name

Cf. to CA ID

Acceptable?
Kept?

Cf. to subject ID

Cf. to Alice

Cf. date/time

Valid?

7/23/03 http://Amir.Herzberg.name 40

After Validating Certificates:
Access Control
! Application (e.g. browser or server):

" Verify root CA is trusted
" Validate certificate (chain):

! Validity, expiration, revocation
! Identities, constraints, key-usage, …

" Extract name/ID from Distinguished Name, subjectAltName…
! Client access control (after server authentication):

" Is this the server the client wanted to connect to ?
" Is this the kind of server the client had in mind? (e.g. Visa-

authorized merchant)
" Done by client application (e.g. browser) and client (manually)

! Server access control (after client authentication)
" Is this an authorized client/customer?
" What are his permissions?

7/23/03 http://Amir.Herzberg.name 41

Client Authentication with Cert’s
(Server Access Control)

! Typically X.509 certificates are identity certificates
! Client certificates: identity should be known to server…
! Problem: no global, unique namespace (“John

Smith12”…)
! Personal certificates from General-purpose CA’s (e.g.

Verisign) are not very useful, and very uncommon
! Result: each server/community use their own certificates,

naming
! Client has to chose certificate for each server #

inconvenient
! Server must be able to identify names of authorized clients

7/23/03 http://Amir.Herzberg.name 42

Server Access Control
(Client Authentication) Methods
! Using client certificates…

" High level of security
" Requires issuing (buying?) certificates to each client
" Browsers prompt user to select certificate (hassle)
" If based on identity, requires database of clients in server

! Using Username-Password authentication
" Browser sends password as argument of a form

! Possibly filled by browser (`wallet` function: passport, ECML)
" Relies on SSL security (encryption+server authentication)
" Better but non-standard: use password as key of MAC

(never send password – don’t expose to spoofed server)
" Inconvenience: typing/approving password per request

7/23/03 http://Amir.Herzberg.name 43

Secure Session
! Goal: authenticate once per application session
! How? Few options…

" Application session = SSL session
! Requires session identification – usually available in API
! But session retention is limited (browsers, servers)

" Or: identify application session… how?
! Cookie contains application session id (and/or password)
! Send cookie with each request/response:

" Automated cookie mechanisms in browsers
" Or: encode cookie as part of URLs

! Risks: exposure, forgery, privacy
" Exercise: design of secure cookie mechanism

7/23/03 http://Amir.Herzberg.name 44

Server Authentication
! Critical – e.g. when user enters secrets (password, cc#,…)
! Based on Server’s X.509 identity certificates
! Certificate (chain) must pass validation

" Responsibility of application
" Browsers pre-configured with many CA’s and don’t test chain well
" Usually CA validates ownership of site… using insecure DNS
" You can remove untrusted CA’s from browser (but few do this)

! Server identity:
" Typically (e.g. in browsers): DNS name, e.g. www.citibank.com
" Not IP address since it is not meaningful and may change

! No standard mapping of DNS to Distinguished Name
" Usually use dNSName field in subjectAltName extension

! User must specify or at least know and understand:
" If connection is secure, server authenticated
" What is the (DNS?) name of the server

7/23/03 http://Amir.Herzberg.name 45

Indicating Secure Connection and Server Identity

! Ensure user is aware of server’s identity
! Ensure user is aware of (in)secure connection
! The user should identify the server

" Give same DNS Name as in certificate
" Notice: the same server may host multiple sites (e.g. ISP)
" Solution: must have certificate for each hosted site

! Spoofing attacks on browsers: directing user to spoofed
site
" Changing link (URL) in referring site…

! Visible, but unnoticed by (most) users, or
! Advanced spoofing: (almost?) non-visible – screen

emulation
" Security degrading attacks

7/23/03 http://Amir.Herzberg.name 46

Site-Spoofing Attacks on Browsers
! User visits spoofing site, site becomes

proxy
! User browsing is thru proxy
! User is not aware

" Most users don’t look at URLs
" Or: spoof sends phony certificate
" Or: spoof emulates normal browsing

! JavaScript: same window, fake URL, SSL
indicator

! Java: emulated window (supports
interaction)

" Or: spoof selects weakest security
offered by client, E.g. SSL ver. 2, PCT,
DES,…

Client

Bank
site

Spoofing
site

7/23/03 http://Amir.Herzberg.name 47

Agenda – Transport Layer Security

! Example: SSL payments
! Evolution of SSL and TLS
! Layer and alternatives

" Few words about S/MIME

! SSL Protocol
" SSL phases and services
" Sessions and connections
" SSL Handshake
" SSL protocols and layers
" SSL Record protocol / layer

! Secure use of SSL
" Designing SSL applications
" Client & server authentication
" Web spoofing attacks

! Cryptographic issues in SSL
and TLS

! Conclusions

7/23/03 http://Amir.Herzberg.name 48

Cryptographic Issues in SSL & TLS
! Much research and security improvements in

evolution of SSL & TLS
! We do not cover the (critical!) fixes to SSLv1,

v2
" See e.g. in Rescola’s book (`SSL and TLS`).
" SSLv2 is enabled by default in many browsers

! TLS improves security cf. to SSLv3:
" Cryptanalysis-tolerance
" In particular: passes US FIPS-140 criteria
" Internal design of MAC, hash functions, etc.

! Details: in `extras`…

7/23/03 http://Amir.Herzberg.name 49

Conclusion
! SSL / TLS is the most widely deployed security

protocol, standard
" Easy to implement, deploy and use; widely available
" Flexible, supports many scenarios and policies
" Mature cryptographic design

! But SSL is not always the best tool…
" Use IP-Sec e.g. for anti-clogging, broader protection
" Use application security, e.g. s/mime, for non-repudiation,

store-and-forward communication (not online)
! Beware of host-spoofing and web-spoofing

" Many browsers allow hard-to-detect spoofing
" Many users will not detect simple spoofing (similar URL)

7/23/03 http://Amir.Herzberg.name 50

Extras…

7/23/03 http://Amir.Herzberg.name 51

Crypto in SSL & TLS: Key Derivation
! Key derivation in SSL, TLS:

" Key block (block of connection keys) from master_secret
" master_secret from pre_master_secret

! Critical for security
! Design based on hash functions

" Why not on block ciphers e.g. AES? Not available when
SSL designed; DES was already too weak, no other
standard and free cipher

! Which hash function to use?
" Two main candidates: MD5 and SHA1
" SSLv2: use MD5; SSLv3 and TLS: use both!

! How to use the hash functions?
" Different design for TLS and SSL
" SSL design: intuitive
" TLS design: Cryptanalysis-tolerant PRF

7/23/03 http://Amir.Herzberg.name 52

Key Derivation in SSLv3
! Based on HMAC: HMAC_hk(m)=h(k⊕⊕⊕⊕ opad || h(k⊕⊕⊕⊕ ipad || m))
! Intuition: output of HMAC should be unpredictable
! Idea: modify HMAC to use both MD5 and SHA-1
! SSL modifications:

" Use SHA for the `internal` hash, MD5 for the `external`
" Prepend different strings to generate enough output
" Slightly different for master secret and key block (not sure why)

! pms=PreMasterSecret, cr=Client_random, sr=Server_random
! ms=Master_secret= MD5(pms||SHA(“A”||pms||cr||sr))||

MD5(pms||SHA(“BB”||pms||cr||sr))||
MD5(pms||SHA(“CCC”||pms||cr||sr))

! Key_block= MD5(ms||SHA(“A”||ms||sr||cr))||
MD5(ms||SHA(“BB”||ms||sr||cr))||
MD5(ms||SHA(“CCC”||ms||sr||cr))||…

7/23/03 http://Amir.Herzberg.name 53

Key Derivation in SSLv3 - Criticism
! Recall Key_block (same argument for MasterSecret):

" Let ms=MasterSecret, cr=Client_random, sr=Server_random
" Key_block= MD5(ms||SHA(“A”||ms||sr||cr))||

MD5(ms||SHA(“BB”||ms||sr||cr))||…
! Completely intuitive, no justification / analysis
! HMAC analysis/proof depend on both internal and external

hash having security properties:
" Internal hash: Collision-resistant-only VIL MAC
" External hash: Fixed-Input Length secure MAC

! If either MD5 or SHA is weak, derivation may be weak
! No cryptanalysis-tolerance!
! Fails FIPS-140: security should depend only on FIPS-

approved cryptographic mechanisms

7/23/03 http://Amir.Herzberg.name 54

Key Derivation in TLS: use PRF
! Idea: the `standard` secure mechanism for key

derivation is a Pseudo-Random Function (PRF)
! For example, using master key k and PRF fk:

" To derive an encryption key: EncKey=fk(“encrypt”)
" To derive authentication key from client to server, use:

C2SAuthKey=fk(“auth, client to server”)
" To use different encryption keys in each connection,

(using same master key): EncKey=fk(“encrypt”, random)
" Or, in TLS: derive one long Key_block, then split it and

use different (fixed) parts of it for keys for encryption,
authentication, and IV, in each direction

! How? Recall Pseudo-Random Function (PRF)…

7/23/03 http://Amir.Herzberg.name 55

Pseudo-Random Functions (PRF)
! An m to n FIL-PRF is a collection of efficient

functions {fk:{0,1}m#{0,1}n}, such that no adversary
can efficiently distinguish between fk, for random
key k, and a random function r from {0,1}m to {0,1}n

ADV
b, x

ga= fk

gã =r

a∈∈∈∈ R{0,1}, k ∈∈∈∈ R{0,1}n , r ∈∈∈∈ R{ fun: {0,1}m # {0,1}n }

gb(x)
Guess of a

7/23/03 http://Amir.Herzberg.name 56

Key Derivation: Two Steps…
! Step 1: FIL#VIL (Fixed#Variable Input Length)

" SHA’s output is 160bits, MD5 output is
128bit… and more bits are needed anyway

" Transform FIL PRF HMAC_hk to VIL PRF_hk

" h is either SHA or MD5
! Step 2: cryptanalysis-tolerant VIL PRF

composition: given VIL PRF_MD5k and
PRF_SHAk , design VIL PRFk to be secure
as long as either PRF_MD5k or PRF_SHAk
is secure

7/23/03 http://Amir.Herzberg.name 57

Step 1: FIL PRF # VIL PRF
! Assume: HMAC_hk is a FIL PRF
! Design of VIL PRF_h: concatenate outputs, using

different `labels`A(i):
PRF_hk(r)=HMAC_hk(A_h(1)||r)

|| HMAC_hk(A_h(2)||r) || …
! Labels A_h(i) derived by HMAC:

A_h(i)=HMAC_hsecret(A_h(i-1)); A_h(0)=cr||sr
" Simpler design A_h(i)=i is also secure

(assuming HMAC_hk is a FIL PRF)
" But more complex design above is (almost) as

efficient, and seems more robust to `typical`
attacks against HMAC_hk (e.g. attack that finds
HMAC_hk (2) given HMAC_hk (1))

7/23/03 http://Amir.Herzberg.name 58

Step 2: Cryptanalysis Tolerance

! Given two candidate VIL PRFs:
PRF_MD5, PRF_SHA

! Intuition: cryptanalysis-tolerant
composition:
PRFk(r)=PRF_MD5k(r)⊕⊕⊕⊕ PRF_SHAk(r)

! Question/exercise: is this composition
cryptanalysis-tolerant?

7/23/03 http://Amir.Herzberg.name 59

Cryptanalysis-Tolerant PRF: 1st try…
! Consider any two PRF-candidates f, g
! Define Pk(m)= fk(m)⊕⊕⊕⊕ gk(m)
! Question: assume either f or g is a PRF. Is then P a

PRF?
! Answer: NO.
! Trivial examples: fk(m)= gk(m), fk(m)= ~gk(m)
! Intuition may hold for `independent` f, g… (e.g. MD5

and SHA?)
! Making input different, e.g. fk(1||m)⊕⊕⊕⊕ gk(0||m), does

not help (why?)
! Idea: use different keys !

7/23/03 http://Amir.Herzberg.name 60

TLS: Cryptanalysis-Tolerant PRF
! Define Pk1,k2(m)= fk1(m)⊕⊕⊕⊕ gk2(m)
! Claim: if either f or g is a PRF, then P a PRF.
! Proof sketch: assume g is a PRF but P is not a

PRF. Namely there is an algorithm A, that can
distinguish between a box computing Pk1,k2() and a
box computing a random function.

! Assume now we are given a box computing either
gk2(m) or a random function. We use it to compute
Pk1,k2(m)= fk1(m)⊕⊕⊕⊕ gk2(m) (selecting k1 ourselves).
Now we use A to distinguish between this and
random.

! This is what is done in TLS!

7/23/03 http://Amir.Herzberg.name 61

PRF in TLS – Details
! PRF keys (PreMasterSecret, MasterSecret) are 48B
! Use only half of it (24 bytes) for each PRF-

candidate (PRF_MD5 and PRF_SHA)
! TLS_PRFk(r)=PRF_MD5k[48…25](r)⊕⊕⊕⊕ PRF_SHAk[1…24](r)
! Deriving as many bytes as necessary

" E.g. 48 bytes for Master Secret
! To derive Master Secret:

" Let mMS= “master secret”||client_random||server_random
" MasterSecret=TLS_PRFPreMasterSecret (mMS)

! To derive Key Block:
" Let mKB= “key expansion”||client_random||server_random
" KeyBlock=TLS_PRFMasterSecret (mKB)

7/23/03 http://Amir.Herzberg.name 62

Cryptographic Issues in SSL & TLS:
Finished Message Computation
! Finished message is sent at end of handshake:

" From client to server and vice verse
! Goal: to authenticate entire handshake using master_secret
! Authentication uses both MD5 and SHA (for cryptanalysis-tolerance)
! Computation differs between SSL and TLS
! SSL: for both h=MD5 and h=SHA, send

h(master_secret || opad || h(messages || Sender ||master_secret||ipad))
! This differs from HMAC: h(k⊕⊕⊕⊕ opad || h(k ⊕⊕⊕⊕ ipad ||m))
! Motivation for difference: key (master_secret) defined just at Finish…
! But consider hash design (Merkle-Damgard), this may be insecure!
! TLS is simpler and more secure: send 12 bytes from output of

PRFmaster_secret(label||MD5(messages)||SHA(messages))
" Label is either “server” or “client”

7/23/03 http://Amir.Herzberg.name 63

Cryptographic Issues in SSL &
TLS: Client Certificate Verification

! Recall client authentication
handshake

7/23/03 http://Amir.Herzberg.name 64

Client Authentication Handshake
Client Server

ClientHello (ciphersuites, Client_random)

Certificate

ClientKeyExchange (Encrypted Pre_Master_Secret)

Finished

Finished

ServerHello (ciphersuite, Server_random)

ServerHelloDone

CCS

CCS

CertificateRequest

Certificate

CertificateVerify
Signature

over hash of
handshake
messages

7/23/03 http://Amir.Herzberg.name 65

CertificateVerify Message
! Sent from client to server to authenticate client
! Contains signature over hash of handshake

messages
" Using RSA: both MD5 hash and SHA hash (for

cryptanalysis-tolerance)
" Using DSA: only SHA hash

! Hash computation differs between SSL and TLS:
" SSL: h(master_secret || h(messages || master_secret || pad))
" TLS: h(messages)

! Why?
" Unnecessary complication in SSL; messages are not

secret, hashing is (supposed to be) collision-resistant
" Possible, unnecessary exposure of master_secret
" This is the only place it is used directly as key (of MAC…)

7/23/03 http://Amir.Herzberg.name 66

Cryptographic Issues in SSL & TLS:
RSA Encryption Format (PKCS#1)
! SSL and TLS are using PKCS #1 Version 1.5
! Recall: Subject to Feedback-only Chosen-

Ciphertext Attack (CCA) [Bleichenbacher’98]
! Attack is practical against some SSL, TLS

implementations (see later…)

00 02 padding string 00 message

at least 8 bytes

k bytes

most significant byte least significant byte

Reminder: Feedback-only Chosen-
Ciphertext Attack[Bleichenbacher’98]

Alice Bob
PK:(n=pq,e) SK:(p,q,d: ed=1 mod ϕϕϕϕ((((n))

C

d
Eve C’=CS (mod n)

e

R= 0/1 (depending
on correctness of
padding of C’)

7/23/03 http://Amir.Herzberg.name 68

Preventing CCA Attack
! Some SSL, TLS implementations send specific alert

immediately on detecting bad PKCS#1 format
! Helps attacker; need only 1 million trials (chosen

ciphertexts) to decrypt message
! Prevention is easy…

" Send same alert if pre-master-secret is not formatted
correctly, attacker needs about 240 trials # not practical

" RFC224 recommendation: don’t send alerts, use random
pre-master-secret # will fail in Finish message validation

" USE PKCS#1 version 2 (OAEP) or another format secure
against CCA

7/23/03 http://Amir.Herzberg.name 69

Cryptographic Issues in SSL &
TLS: order of Auth / Encrypt
! SSL authenticates, then encrypts:

" A=MAC(m), C=Enc(m,A), send C
! IPSEC encrypts, then authenticates:

" C=Enc(m), A=MAC(C), send (C,A)
! Which is better? Does it matter?

7/23/03 http://Amir.Herzberg.name 70

Question: Order of Auth / Encrypt

! SSL authenticates, then encrypts (AtE):
" A=MAC(m), C=Enc(m,A), send C

! IPSEC encrypts, then authenticates (EtA):
" C=Enc(m), A=MAC(C), send (C,A)

! Which is better? Does it matter?
" Enc(m,A) may be harder to cryptanalyze cf. to

Enc(m), so AtE seems to strengthen encryption
" But we should use secure encryption, not

depend on A=MAC(m) to fix it!

7/23/03 http://Amir.Herzberg.name 71

Question: Order of Auth/Encrypt
! SSL authenticates, then encrypts (AtE):

" A=MAC(m), C=Enc(m,A), send C
! IPSEC encrypts, then authenticates (EtA):

" C=Enc(m), A=MAC(C), send (C,A)
! EtA seems better:

" EtA resistant to clogging (verify MAC before
decrypt)

" EtA allows to authenticate (also) public data
! E.g. extend to multiple recipients (multicast)

" AtE subject to attack if attacker knows if
authentication failed or not
! Although not with standard encryption – OTP, CBC
! Recall attack from day 6, `Authentication`…

7/23/03 http://Amir.Herzberg.name 72

Feedback-only Chosen-Ciphertext Attack on
Authenticate-then-Encrypt

! Assume: attacker can choose ciphertext, and detect
whether it passes or fails authentication validation

! Define the following cipher E based on One Time Pad
(OTP) (or a pseudo-random generator):
" Ek(x)=Transform(x) ⊕⊕⊕⊕ k [bit-wise XOR]
" Transform each bit of the plaintext to two bits:

! Zero bits (0) are transformed to two zeros (00)
! One bits (1) are transformed to (01) or (10) randomly

! E indistinguishable under chosen plaintext attack
! We show an attack on auth-then-encrypt when using E
! Attack: flip first two bits of ciphertext.

" If authentication is still valid, first plaintext bit is 1
" If authentication fails, first plaintext bit is zero.

Advanced!

