DIMACS Security & Cryptography Crash
Course — Day 3

Resiliency to

Corruptions and Key Exposures
Prof. Amir Herzberg

Computer Science Department, Bar llan University
http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without
modification. For other use please contact author.

7/23/03 http://Amir.Herzberg.name

Outline

Motivation
Using Insecure Servers
Private key exposure

Certificates and
revocation

Shared key refresh
~orward security
Resiliency via
Redundancy

7/23/03 http.//Amir.Herzberg.name

Secret Sharing

Distributed PKC
Distributed EI-Gamal
Proactive security
Proactive secret sharing
Proactive PKC, signatures
Applying proactive
security

Conclusions

Why Resiliency?

Existing operating systems have weak security
o By design

o By typical implementations

o More on this in follow-up courses

Many (or most) computer crimes are by insiders
o With access/control over computer/OS/Application

Corruptions to data, key exposures possible

Questions:
o How to avoid / minimize damages?
2 How to recover?

7/23/03 http.//Amir.Herzberg.name

Secure Service from Insecure Servers

Can we provide secure services using insecure
servers?

dea: insecure Zcorrupted!
nsecure servers: servers that may be corrupted

Provide secure services...

o If server is not corrupted at time of service

o By multiple servers — assuming not all are corrupted

o Assume enough are not corrupted (One? Majority? 2/37?)
o By multiple servers — assuming enough are Ok at time of
service

Example: Unix and S/Key Password Schemes...

7/23/03 http.//Amir.Herzberg.name

‘ Recall: Login to Insecure Server

= Unix Password Scheme

Unix passwords file is public (or 'less secret)

Keep only hash of passwords

Password file contains <salt, h_(password)>
Random 'salt added to prevent dictionary attacks

o Hide passwords (or salt) for further protection (how?)

= S/Key Login: Hash Chain (One-time Passwords)
o Protects against exposing server password file
o And: eavesdropping on login communication

oL U O O

Compute

»
»

Reveal

7/23/03 http.//Amir.Herzberg.name

Protecting User Data on Insecure Server

Encrypt using user’s password; Decrypt during session

Password (key) not kept in server (as before)
o User provides pw; use as key in server pw' =h(pw)
o Why not use directly?
Decrypt master key k using pw' as key, I.e. k=D, (E,,;(K))
o To allow changing of pw (only re-encrypt E,,(Kk))
o To allow changing of k

Encrypt each file by its own key, encrypted by master key
o Why not use same key for all files?

o Method 1: attach encrypted key to file

o Method 2: Derive key from file-name: kg, .=PRP,(filename)

o Advantages ?

Let’s summarize this process...

7/23/03 http.//Amir.Herzberg.name

Protecting User Data on Insecure Server

Encrypt using user’s password; Decrypt during session
User’s password (pw) not kept in server (as before)
Derive pw-key from password: pw' =h(pw)

Decrypt master key k using pw' as key, I.e. k=D, (E,,;(K))
Encrypt/Decrypt filename using: k;, .=PRP,(filename)
Problem? (Hint: user-chosen passwords...)

Ep\%,(k) filename Encrypted file

k l

PW

Login |—— pw

Decrypt 1 PRP |[—{ Decrypt

!

Plaintext file

7/23/03 http.//Amir.Herzberg.name

Dictionary Attacks on User Data

Problem: user passwords pw are often from dictionary

Attacker can test against all pw/LDictionary

o For every guess u, compute pw' =h(pw)

o Decrypt master key k, I.e. k=D, (E, (K))

o Decrypt filename using: k.= PRP,(filename)

o Validate guess of user password upw by viewing plaintext

Countermeasures:

o System-only access to encrypted passwords and files
|dentify guessing attacks

o Standard salt technique: pw’ =h(pw,salt)
o Use very slow h and/or decryption of master key k=D, (E,,,(K))

7/23/03 http.//Amir.Herzberg.name

Exposure of Secret Keys

Exposure of shared secret key: replace key

How to agree on new key without exposing it?

Can we protect past traffic?

Should we walit until detecting exposure to replace key?
Bad idea! Better refresh keys periodically (proactively)

Exposure of private key using PK cryptosystem
o How to revoke exposed public key, distribute new public key?
o Can we protect past traffic?

Exposure of private key using PK signatures
o How to revoke exposed public key, distribute new public key?
o Can old signatures remain effective?

a
a
a
a

7/23/03 http.//Amir.Herzberg.name 9

Dealing with Private Key Exposure

Private key of PK cryptosystem or signature scheme

Can we wait until detecting exposure to replace / revoke
(public) key?
o Bad idea for exposure of shared secret key
o But... changing public key, informing everybody, is a mess
o Better: revoke and replace key only when exposed
How to revoke exposed public key?
How to distribute new public key?

More advanced issues — later...

o Change only private key, not modifying public key (periodically
and proactively — without detecting exposure)

o Can we protect past traffic?
o Can old signatures remain effective?

7/23/03 http.//Amir.Herzberg.name 10

\Self Certification and Revocation

= How to revoke exposed public key?
= How to distribute new public key?
= Distribute signed messages...

o Self revocation message for exposed key [“ revoke” , date,

koI d,pub]

o Self certificate of new key: [cert”, dates, Ky pupl

o Both signed using kRC,pub — signing key for Revoke/Certify

Problem: what if Kgc o, itself is exposed?

Sgn< kRC,pub> (“ revoke” J date’ kold,pub)

»
»

Sgn< kRC,pub> (“ cert” J dates, knew,pub)

7/23/03 http.//Amir.Herzberg.name

11

Fertification & Revocation Authority

= Certification Authority (CA, Issuer) issues certificate to
subject’s public key

Relying party validates certificate using CA public key
Revocations also signed — by CA, subject, or other
Also: limit certificate to validity period (an attribute)
How to protect the key of the CA itself?

Cert=Sgn:-,(PUB,ID ATTR)

Cert, PUB, Sgn,;,(m)

/25105 L/ 7 ATTHE.FRTZDETY.HATTIE

Preventing Invalidation of Signatures

Problem: public key revoked... are signhatures invalid??

o If not... revoking does not prevent signing with stolen key

o Ifyes... signer can revoke key (claim exposed) to deny signing

o Fair solutions: signatures validated before revocation remain valid

Solution 1: time-stamping of signature and revocation
o Third-party evidence: date when document was signed
o Third-party evidence: date when key was revoked

Solution 2: limited validity/revocation periods for keys
o Divide time into periods, e.g. day / month

o Different keys for each period t: Priv[t], Pub[t]
o Exposure of Priv[t] does not enable signing with Priv[t’], t' <t
o =» Even if key revoked at period t, previous signatures are Ok

7/23/03 http.//Amir.Herzberg.name 13

Time-Stamping of Signatures, Revocations
and other documents

Goal: non-repudiated proof of document creation date
o Proof document/signature/revocation existed at/before date

o If signature on contract existed (was validated) before public key
was revoked, then contract remains valid!

Timestamp signed by Time-stamping Authority
Hash document to protect confidentiality

h

Author (doc) (Paper, invention)
h(doc,sign), certiﬁcate(PK> Tlme—Stampmg

Relying Party Authority

Key Owner

7/23/03 http.//Amir.Herzberg.name 14

Limited validity periods for keys

Goal: signatures validated before revocation are valid
Prevent invalidation by changing keys periodically

o Divide time into periods, e.g. day / month

o Different keys for each period t: Priv[t], Publ[t]

o Exposure of Priv[t] does not enable signing with Priv[t’], t' <t
o =» Even if key revoked at period t, previous signatures are Ok
How? Cert[t]=Sgn.,(Pub[t],ID,ATTR] period=t])

Period 1 Period 2 Period 3

A A A
/- v V" > V

thme

7/23/03 http.//Amir.Herzberg.name 15

Forward Secure Signatures

Problem: many public keys... inconvenient

Forward Secure Signatures:

Different private key for each period t: Priv[t]

Exposure of Priv[t] does not enable signing with Priv[t'], t'<t
=>» Even if key revoked at period i, previous signatures are Ok
But: use fixed public key Pub (and certificate?)

Validation function depends on period

Naive version: deteriorating private key Priv{t]={Priv’ (i)}, 1
Public key Pub={Pub’(i)};-;

Evolving area of research: using short Pub, Priv|[t]

Existing proposals incompatible with RSA / DSA etc.
o Not in this course (or at least not in this lecture)

L O 0 0 0 O O

7/23/03 http.//Amir.Herzberg.name 16

Remaining problems

Recovery from private key exposure

o Detected exposure: revoke and certify new key

o Undetected : limited validity period, proactively change
keys

High dependency on Certificate Authority:

o CA’s private key is critical... We later show how to protect
it.

o Secure communication with the CA is critical...
o How to secure it?

In general: how to maintain secret shared key?

7/23/03 http.//Amir.Herzberg.name 17

Exposure of Shared Secret Keys

Exposure of shared secret key: replace key

o How to agree on new key without exposing it?

o Can we protect past traffic?

o Refresh periodically (proactively, before detecting exposure)
Divide time into periods

Each period begins with refresh/recovery phase

o Forward security: protect past/present from future exposure
o Proactive security: periodically recover security

Period 1 Period 2 Period 3
AL AL AL
—— Vv ~N~ SV
Refresh Refresh Refresh time

phase phase phase

7/23/03 http.//Amir.Herzberg.name 18

2PP handshake protocol

Use master key kto securely distribute session key
K[1] for period |

K[1]= PRP,(“ session”, i, N_, N,)

Independent session keys — Adversary cannot learn
anything about m, given E,,(m) and k[1] for |

But what if master key k is exposed?

A N,

_/

Alice / B MAGTNAR) /\Bob

MAC,(Na,No)

7/23/03 http.//Amir.Herzberg.name

19

Weak Forward Security
Protect past traffic from future exposure of all keys
Divide time into periods; k[i] is session key in period
|
Each period begins with refresh/recovery phase
Weak Forward security: Any adversary, given...
a All keys in server during period I, after refresh phase
o Encryption Ey;,(m) for J<I
Cannot learn anything about m.

Period 1 Period 2 Period 3
AL AL AL
—— v N~ SV
Refresh Refresh Refresh time

phase phase phase

7/23/03 http.//Amir.Herzberg.name 20

Ensuring Weak Forward Security

Evolving master key: MK[1]=PRPy;i.;y (“ next”)

Derive session key: k[i]= PRPy; 7 ("™, Ny, Ny)

Adversary cannot learn anything on m, given E,;,(m) and...

o All keys in server after refresh phase of period j+1,

2 And session keys K[i] for all periods i#

However... if all keys of period | are exposed (incl. Master key
K[1]) adversary can decrypt all traffic after period i

Can we limit the value of K]i] to period i??

Suppose keys of period | are exposed only after period i...

7/23/03 http.//Amir.Herzberg.name 21

Strong (Perfect) Forward Security

Protect traffic of period | from exposure of all keys of
all periods |#, as long as exposure happens after
refresh phase of period i+1

Motivation: some keys may persist from past
periods; plus, attacker may expose old key by time-
consuming methods, e.g. cryptanalysis, reading

from erased data
All keys exposed

Period 1 Period 2 Period 3
A A A
— = Y SV
Refresh Refresh Refresh T time

phase phase phase | Attack

7/23/03 http.//Amir.Herzberg.name 22

Strong Forward Secrecy with DH

Strong (perfect) Forward secrecy: exposure after
period i of all keys in all periods |# exposes nothing
about messages sent during |.

How? Periodical Authenticated Key Agreement [DH]
o a,b selected randomly each time by Alice, Bob respectively

N,

N,, g° mod p,
MAC)\« (N,,N,,B,A,g° mod p)

Alice Bob
/ MAC)i (No,Np,g? mod p), g2 mod p \
k=h((g?)") mod p

7/23/03 http://Amir.Herzberg.name 23

Forward Secrecy with Pub Key

Each period t, Bob generates new, ephemeral public key
PUB,[t] and sends to Alice

Alice may also generate public key and send to Bob
Public key generation ->substantial overhead (esp. RSA)
k exposed - adversary can impersonate (fake PUB,|[t])

How to use long-lasting, authenticated publC keys?

Na

Alice /

Bob
MACyk (Ng:Np, Epy gpy (K) \

»
>

7/23/03 http.//Amir.Herzberg.name

24

Session Keys from Public Keys

Public keys PUB., PUB from certificates

N, ,C,

I I\Ib’ Cb’ EPUBa(k)1
A"Ce) S (NN BA, Epyealk) (BO'O

/ MAC(N,,Ny) \

 Simple extension to protect k even if attacker learns PRIV,
» What if attacker learns both PRIV, and PRIV, ?

- Can extend with forward secrecy to protect past traffic...
- Can we do better - change private keys?

7/23/03 http.//Amir.Herzberg.name 25

Proactive Secure Communication

Each period t, Bob and Alice generate new public keys
PUB,[t], PUB[t] and certificates C,[t]=3gn.,{PUB[1] .t},
Cpl] =Signea{PUB[1] 1}

Exchange keys, certificates, encrypted session key...
Critical: Proactively secure Certification Authority

ldea: use redundant, multiple servers for secure CA!

Na,Caltl

' Nip Cplt], EK=ENCpyg,4(K),
Alice S QMo (Np, N BA{C.[], EK}) Bob

/ MAC,(N,,N,,A,B,Cyl1])) \

7/23/03 http.//Amir.Herzberg.name 26

Security By Redundancy

Problem: server corrupted at time of service
o Certificate Authority: capture CA’s private key, issue certificates

o Secure login: access to account, change password
o Secure user data: capture password and/or key

o Database with private index: capture index at query
Solution: use multiple, redundant servers

o Assume not all servers are corrupted

Example: share secret key k among two servers:

]
27

7/23/03 http.//Amir.Herzberg.name

Secret Sharing

|Idea: share secret among multiple, redundant servers
o Do not put all your eggs in one basket!

Below: share secret samong two servers
Questions:

o Share among n>2 servers [easy...]
o How to use / retrieve / store key securely? [Later]

o Require only threshold t<n servers for recovery [Next]

= @Q
o ~&

CEEEE

7/23/03 http.//Amir.Herzberg.name 28

Question

In many cases the secret shared is a key

When sharing a key, why not simply give
each server half of the bits of the key?

[y,
G

7/23/03 http.//Amir.Herzberg.name 29

—le—_K[0..79]

k[80..159

i

Secret Sharing with Threshold

N users and a threshold t
Any group of t users can jointly obtain the secret

Any group of less than t users cannot jointly obtain
any information about the secret

Assume we have a dealer who has the secret
(N,1)-scheme: give secret to all users...

(N,N)-scheme: as before (XOR), or...
o Let sbe the secret, let p be a large number (s<p)

o Letay,..., ayberandom numbers s.t. a,+ a,+...+ a,= smod

P
o Assign a to the i " user

7/23/03 http.//Amir.Herzberg.name 30

Threshold Secret Sharing protects:

- Secrecy: no t-1 shareholders can
learn the secret & \ ;

- Integrity: Every t shareholders can
reconstruct the secret (no N-t shareholders

7/23/03 http.//Amir.Herzberg.name 31

Secret Sharing with Threshold 2

(N,2)-scheme: N users and a threshold t=2
Need (exactly) two users to recover secret s

ldea [Shamir]: share points on a line

o Let sbe the secret, let p be a large prime (s, N<p)
Let alixZ, (i.e. {O,...(p-1)})

Hide the secret as points on the line f(x)=ax+smod p
User iL{1,..N} receives s=f(i)=ai+smod p

Every two users have two points =» can find s=f(0)

f(X)=ax+smod p

\

*

g

N ¢))
/>

> X

7/23/03 http.//Amir.Herzberg.name 32

Polynomial Secret Sharing [S79]

Generalize from (N,2) to (N,t)
Instead of a line, use a polynomial of degree (t-1)

Pick random polynomial
f(x)=a_ X1+ a . x2+..+smodp
As before:
o s=f1(0)
o Useri receive s =f (i) modp

0 1 points allow interpolation = computing f(X) =»s=f(0)
A

() (%
()
| > X

' J

7/23/03 http.//Amir.Herzberg.name

33

‘Lagrange Interpolation

10 f(
w |f f()
f(x) =a. X1+ g X2+, .+ s— j > X
= Then given {f(x,) }forl 1) 1,
f(x)= zf(x)n(x)

= |In particular, .
= 1(0)- Zf(‘)ﬂ(x—x)

= Works the same mod p

7/23/03 http.//Amir.Herzberg.name 34

Using Lagrange Interpolation

With polynomial secret sharing, x=1 and
compute mod p

Given {f(1)} for IL/T st. |T|=t and TLA1,...N}
- J
s=f(0)=" f(I mod
O=2 O] J=yme

[Ed

A

S
f() f()
fG) /\—N
s X

| J

7/23/03 http.//Amir.Herzberg.name 35

‘Secure communication by sharing

= We can use secret sharing also to secure
communication using several partially-trusted
channels/messengers...

7/23/03 http.//Amir.Herzberg.name 36

\Polynomial Secret Sharing - Exercise

u Let's use p=37
= Select secret s<37

= Select a/[{2...37};f (i) =a.i"t+ a_i"?+...+ smod
37

= Give f (i) to party i
= Receive f (i) from |

) s:f(O):;f(i)Q(jj_i)modp

S
f(i) f(x) | #i
i
0) What If some shares
> X are modified??

| |

7/23/03 http.//Amir.Herzberg.name 37

Share Modification Threats

Malicious user sends bogus share
o Undetectable reconstruction of wrong secret
o Malicious user can recover real secret

User receives corrupted share

o In some applications: intentionally corrupted by
sender!

o Undetectable until reconstruction (or at all)

Solution: VSS - Verifiable Secret Sharing
[Feldman]

7/23/03 http.//Amir.Herzberg.name

38

Verifiable Secret Sharing [Feldman]

Distribute also public verifiers . . .
_ _ _ _ g™,0%,..0"* modp
Verify share f (i)=stai+a,j’+ ...+ a " mod p

By raising g by both sides:

?
g""=(g)(g*)(g™) ..(g**)" modp

This preserves secrecy but allows detection of
bogus shares

o When received by 1 (in sharing phase)

2 When sent by i (in reconstruction phase)

7/23/03 http.//Amir.Herzberg.name

Polynomial Secret Sharing - Properties

Perfect (unconditional) security: given less than t
shares, all values of the shared secret are equally

probable

o No unproven (computational) assumptions
The size of each share is the same as of the secret
Shares for new users can be computed without
changing existing shares
Verify shares (VSS) variant to detect bogus shares
o Computationally-secure

Symmetric: all users equally trusted / powerful
o Or: give multiple shares to "highly trusted” users

Can we trust some users more than others?

7/23/03 http.//Amir.Herzberg.name 40

Asymmetric Secret Sharing

Not all users equally trusted
Access function: f(Xy,...,.Xy)

o X: True if user i contributes her share
o f(Xq,...Xy) Is True if {x;,...,X\} together can recover s

Monotone Access Function

o Adding more shares can only help
o Boolean circuit with only “and” and “or”

f (%% %X,)= %%,

7/23/03 http.//Amir.Herzberg.name

X X5 %,

X, XX,

View as Monotone Boolean Circuit

f (%%, % X,)= %X,

X X5 X,

X, XX,

Boolean circuit with only “and” and “or”

or
and and qnd
i X
X, X X5 X4

7/23/03 http.//Amir.Herzberg.name

Benaloh and Leichter.

“or” gate Is an (N,1) scheme

“and” gate is an (N,N) scheme

Recursively use the simple schemes for (N,1)
and (N,N)

7/23/03 http.//Amir.Herzberg.name 43

Circuit Evaluation

f (Xl,XZ’ X3,X4) = XX

X X5 X,

X, X, X,

Boolean circuit with only “and” and “or

and

or| >
s Ms

Jx M\

=Y Sp 235

S31 Sy

Sz

7/23/03 http.//Amir.Herzberg.name

Circuit Evaluation

f (%% % X,)= (6 0%)(% D%, 0,)(%, 0%, OX,)
Boolean circuit with only “and” and “or”
and >
s \§—_s:
o or or

Pt L\

X1 X, X3 X4
S S5 &
=N s, 9%

=Y

7/23/03 http.//Amir.Herzberg.name 45

How to use a shared secret?

Naive: provide all shares to the user

o How to authenticate the user?

o A: user provides secret key / password

o Why not use this key to encrypt the secret?

Group operations:
o Distributed decryption: t servers decrypt E,; (m)
o Distributed signing: t servers sign ‘together Sgn;,(m)
o Signing allows a distributed secure Certificate Authority
(CA)
How?
o RSA signatures / encryption
o DSA signatures
o El-Gamal signatures / encryption

7/23/03 http.//Amir.Herzberg.name 46

" Recall: EI-Gamal PK Encryption

= Let’s use secret key sfor Alice...
= Bob chooses r and v= g mod p
= Bob encrypts message m using (g°)":
c=m*g S mod p
= Bobsendsc,vVv
= Alice uses vv=¢g ¥ mod p to decrypt: m=c/ g¥ mod p

[PA=g° mod p] ;
_ C=m*(g9)", v=g" mod p

7/23/03 http.//Amir.Herzberg.name

47

Recall: Polynomial Secret Sharing

Pick random polynomial
f(X) =a_ X1+ a x?+...+ smod M
0 s=f(0)
o Useri receives s =1 (1) mod p
By Lagrange interpolation:
3 B t t Xj
s=1(0) Z F(X)D(Xj %)

0 9 .
0

7/23/03 http.//Amir.Herzberg.name 48

Recall: Polynomial Secret Sharing

Pick random polynomial
f(X) =a_ X1+ a x?+...+ smod M

In our case x=1 SO:

s= f(0) = Zf(| ﬁ%

Denote:¢ ﬂﬁ)
=1l @ $=1O=3 104 =Y s

>
X

7/23/03 http.//Amir.Herzberg.name 49

Distributed ElI-Gamal PKC

Secret key s split between servers A,,...A,

0 §5=1(1); s=1(0)

Bob operates as usual (unaware key Is shared):
o Chooses r and v= g mod p

o Encrypts: c=m*g¥ mod p

Each server A computes Y, =it =g

t
S¢

t t r
Compute k: ”VI — I_ll gl’SiZi p— g =1 — grB mOd p

Decrypt: m=c/ kmod p

7/23/03 http.//Amir.Herzberg.name 50

If all servers may be corrupted...

= Can we provide secure services using insecure servers?
= Insecure servers: servers that may be corrupted

= We showed how to provide secure services...
o If server is not corrupted at time of service
o By multiple servers — assuming not all are corrupted
o Assume enough are not corrupted (One? Majority? 2/37?)

= What if eventually, all servers may be corrupted?
= Assume: enough servers are Ok at each period
= Proactive security: periodic process maintains security

7/23/03 http.//Amir.Herzberg.name

51

Proactive Security: Recovery from corruptions

Attacker try to avoid detection of attack

o Once detected, the advantage is with the system
administrator

Multiple defense lines:

o Prevention of corruption

o Detection of attack

o Recovery from detected attack

o Periodical, proactive recovery from undetected attack
Proactive recovery must be inexpensive

o Automated only — no operator involvement

7/23/03 http.//Amir.Herzberg.name 52

‘Defenses against intrusions

7/23/03 http://Amir.Herzberg.name

53

Proactive Password Security

Simple example of proactive security

Accepted practice: periodical change of passwords
Minimal involvement of user, none of operator
Attacker loses control (if user changes)

Attacker risks detection (if attacker changes)
Extreme: one-time passwords (e.g. S/Key)

This example was centralized — since it involved the
user

Most proactive security mechanisms are
distributed...

7/23/03 http.//Amir.Herzberg.name 54

Proactive = Distribution + Refresh

Proactive security combines:
o Redundancy — avoid single point of failure

o Refresh recovery — periodically return servers to secure state
(when not controlled by adversary during refresh)

Secrets exposed by adversary become stale, useless
Lifetime is divided into periods
Each period begins with refresh/recovery phase

Period 1 Period 2 Period 3
AL AL AL
fH_A \fH—A \Q_A >
Refresh Refresh Refresh time

phase phase phase

7/23/03 http.//Amir.Herzberg.name

55

Proactive Security Model

= Each period begins with refresh/recovery phase

= Assume: enough servers are Ok at each period
o E.g. Atleast 3 out of 5 (i.e. at most 2 are corrupted per period)

= Proactive security: periodic process maintains security

’

Servers <

gl IWIN|F

——
Periods

7/23/03 http.//Amir.Herzberg.name 56

Proactive Secure Log Files

Another simple proactive-secure mechanism

_og files are important for intrusion detection
Hackers try to erase tracks by erasing/modifying
0g

How to protect log files?? -- ' Write-once Memory:

o Simple: use hardware write-once memory (paper, CD-R,...)

Proactive secure write-once memory:
o Send every log record to all (or most) servers
o Servers periodically compare log files (and merge?)

What about secure storage of secrets and keys?

7/23/03 http.//Amir.Herzberg.name 57

Proactive Secret Sharing (t=2)

|ldea: refresh secret shares

How? Consider sharing by polynomial of degree t-1, e.qg.
f(x)=ax+s

Refresh shares by adding random g(x)=bx; notice g(0)=0
f (X)=f(x)+g(X)=(a+b)x+s, i:ecret IS unchanged, f'(0)=s

f St~ f(xX)=ax+smod M
fgg \1\ SA f (X)=(a+b)x+smod M
i J x|t
1 ‘ g(X)=bx mod M | S
g() J «
oi) | _—

|] N

7/23/03 http.//Amir.Herzberg.name 58

Proactive Secret Sharing (any t>1)

Given shares as values of polynomial f() of degree
t-1

o f(X) =a. X1+ a x?2+..+ smodM; s=f(0)
o Serveri receives s =f (1) mod p

Add refresh polynomial of degree t-1: g() s.t. g(0)=0
f (X)=f(x)+g(X); secret is unchanged, f' (0)=s

Each server | simply add its own share ' (1)=f(i)+g(i)
Now erase old share f(i)

How to select, distribute refresh polynomial g()?

o Given ¢(), adversary can compute new shares from old
shares and old shares from new shares

o If not properly shared or g(0)#0: reconstruction fails!

7/23/03 http.//Amir.Herzberg.name 59

Selecting and distributing refresh polynomial g()

Goal: select, distribute refresh polynomial g() s.t.
9(0)=0

o Ensure secrecy and integrity of (shares of) g()

Every server i selects, shares polynomial g() s.t.
g,(0)=0

Add all of them: g(x)=g,(X)+...+g,(X)

> 9(0)=g,(0)+...+g,(0)=0

Use Verifiable Secret Sharing to verify shares and
g,(0)=0

Actually we verify that we share zero, not a secret...

7/23/03 http.//Amir.Herzberg.name 60

Verifiable Zero Sharing

Distribute also public coefficients 9™.9%...g** modp
Verify share f (i)= O+ai+a,i*+ ... + a_,i** mod p
By raising g by both sides:

g'"=(g")(9g™)(g*) ..(g**) modp
Allows detection of bogus shares
Also verifies these are shares of zero!!

7/23/03 (c) Amir Herzberg 61

Proactive Signatures and PKC

Private (signature, decryption) key is shared

Public (validation, encryption) key is known to all
o Appears as a regular public key

Shares of secret key refreshed periodically
Signature/decryption requires t out of N shares
Private key is never explicitly reconstructed !

Known for...

o RSA (key generation tricky but possible)
o DSA

o El-Gamal

7/23/03 http.//Amir.Herzberg.name

62

Recall: Distributed ElI-Gamal PKC

Bob's Secret key b split between servers Bob,,...Bob,
o b=f(i) s.t.

Alice (sender) operates as usual (unaware key Is
shared): Recall:

o Choosesr and v= ¢ mod p [_
o Encrypts: c=m*B" mod p where B=g° mod p is Bol 71
key Q }ii -
Each server Bob, computes y =56 = g'¢
t
Compute K = ngrsz ~ .1 D sd — g mod p

Decrypt. m=c/ k mod p

7/23/03 http.//Amir.Herzberg.name 63

Proactive PKC, Signature Schemes

Exactly the same...

Except secret key shares are updated
periodically

El-Gamal, DSA signature only slightly more
complex — jointly pick shared random secret r
0 Required for EI-Gamal, DSA signatures

o No server can control shared secret

0 Servers must provide good shares (VSS)

Proactive RSA a bit more complex (but
doable)

7/23/03 http.//Amir.Herzberg.name 64

Proactive Security: Applications

Proactive Secure Certificate Authority

o Secure public key certificates and revocations

o In particular: automated periodic refresh of private, public keys
o For recovery from penetration of (certified) key

To allow use of fixed public key for long time...

o Use periodic private key, fixed public key

o Generate periodic private key by multiple servers

o Each server keeps share of core” private key

o Shared of core private key refreshed periodically
Decentralized Trusted Computing

o Secure vault” for user’'s data/agents

0 Secure operating system, anti-virus and security programs

7/23/03 http.//Amir.Herzberg.name

65

Applying Proactive Security

Existing computers, operating systems are insecure

Most have weak security mechanisms, many holes

Most computers are not managed securely

Even patches for known security "holes™ not installed

Once hacked, attackers plant ‘trapdoors” inside system code
No separation of system code, no read only” support

|ldea: improve by proactive security

o Periodically validate operating system, virus DB, etc.

o Periodically, automatically install security patches, virus DB, ...
Problem: hacker may disable periodical checks...

How to secure the boot process? — see extras

o o O O O

7/23/03 http.//Amir.Herzberg.name 66

conclusion

Key exposure is a major threat
o Existing operating systems are insecure
o Insider attacks very common — as well as hacking...

Solve by:
o Limiting damage due to penetration
o Redundancy — attacker must break over threshold

o Temporal security models:
Proactive security — recovery from penetrations
Reasonably efficient signing and decryption

Standard RSA/DSA Public key operations (validate,
encrypt)
Forward security — past protected from future exposure

7/23/03 http.//Amir.Herzberg.name 67

‘ EXxtras

7/23/03

http://Amir.Herzberg.name

68

Proactive Secure Boot & Refresh

Assume hardware provides:

o Invokes validation process before boot

o Periodical boot or validation

o Read-only memory for unique validation key of processor

Vo

o Matching signature key provided initially S,

Each network/organization maintains:

o Public network/organization certification key V.,

o Shares of corresponding secret key in several servers
Each computer should have:

o Copy of V4

o Method for validating V., at boot / periodical refresh

7/23/03 http.//Amir.Herzberg.name 69

Validating V. using local keys

I\/Ii: S gn< Sp> (Vcert)

Store M. in nearby servers for automatic recovery
o Proactively maintain it valid

Now erase 3,

o So attacker cannot install fake V.,
o Possible hardware mechanism to generate new keys

Upon periodical refresh or boot...

o Validate M, and thereby V.,

o If invalid, get valid M, from peers

o Validate information signed by V., €.g. public keys, M; (of
J)

o Send M to peer |

7/23/03 http.//Amir.Herzberg.name 70

