
7/23/03 http://Amir.Herzberg.name 1

DIMACS Security & Cryptography Crash
Course – Day 3
Resiliency to

Corruptions and Key Exposures
Prof. Amir Herzberg
Computer Science Department, Bar Ilan University
http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without
modification. For other use please contact author.

7/23/03 http://Amir.Herzberg.name 2

Outline
! Motivation
! Using Insecure Servers
! Private key exposure
! Certificates and

revocation
! Shared key refresh
! Forward security
! Resiliency via

Redundancy

! Secret Sharing
! Distributed PKC
! Distributed El-Gamal
! Proactive security
! Proactive secret sharing
! Proactive PKC, signatures
! Applying proactive

security
! Conclusions

7/23/03 http://Amir.Herzberg.name 3

Why Resiliency?
! Existing operating systems have weak security

" By design
" By typical implementations
" More on this in follow-up courses

! Many (or most) computer crimes are by insiders
" With access/control over computer/OS/Application

! Corruptions to data, key exposures possible
! Questions:

" How to avoid / minimize damages?
" How to recover?

7/23/03 http://Amir.Herzberg.name 4

Secure Service from Insecure Servers
! Can we provide secure services using insecure

servers?
! Idea: insecure ≠≠≠≠corrupted!
! Insecure servers: servers that may be corrupted
! Provide secure services…

" If server is not corrupted at time of service
" By multiple servers – assuming not all are corrupted
" Assume enough are not corrupted (One? Majority? 2/3?)
" By multiple servers – assuming enough are Ok at time of

service
! Example: Unix and S/Key Password Schemes…

7/23/03 http://Amir.Herzberg.name 5

Recall: Login to Insecure Server
! Unix Password Scheme

" Unix passwords file is public (or `less secret`)
" Keep only hash of passwords
" Password file contains <salt, hsalt(password)>
" Random `salt` added to prevent dictionary attacks
" Hide passwords (or salt) for further protection (how?)

! S/Key Login: Hash Chain (One-time Passwords)
" Protects against exposing server password file
" And: eavesdropping on login communication

x h(x) h2(x) hn(x)

Compute

Reveal

7/23/03 http://Amir.Herzberg.name 6

Protecting User Data on Insecure Server

! Encrypt using user’s password; Decrypt during session
! Password (key) not kept in server (as before)

" User provides pw; use as key in server pw’=h(pw)
" Why not use directly?

! Decrypt master key k using pw’ as key, i.e. k=Dpw’(Epw’(k))
" To allow changing of pw (only re-encrypt Epw(k))
" To allow changing of k

! Encrypt each file by its own key, encrypted by master key
" Why not use same key for all files?
" Method 1: attach encrypted key to file
" Method 2: Derive key from file-name: kfile=PRPk(filename)
" Advantages ?

! Let’s summarize this process…

7/23/03 http://Amir.Herzberg.name 7

Protecting User Data on Insecure Server

! Encrypt using user’s password; Decrypt during session
! User’s password (pw) not kept in server (as before)
! Derive pw-key from password: pw’=h(pw)
! Decrypt master key k using pw’ as key, i.e. k=Dpw’(Epw’(k))
! Encrypt/Decrypt filename using: kfile=PRPk(filename)
! Problem? (Hint: user-chosen passwords…)

Login h() Decrypt PRP
pw pw’

Epw’(k)
k

Decrypt

filename Encrypted file

Plaintext file

7/23/03 http://Amir.Herzberg.name 8

Dictionary Attacks on User Data
! Problem: user passwords pw are often from dictionary
! Attacker can test against all pw∈∈∈∈ Dictionary

" For every guess u, compute pw’=h(pw)
" Decrypt master key k, i.e. k=Dpw’(Epw’(k))
" Decrypt filename using: kfile=PRPk(filename)
" Validate guess of user password upw by viewing plaintext

! Countermeasures:
" System-only access to encrypted passwords and files

! Identify guessing attacks
" Standard salt technique: pw’=h(pw,salt)
" Use very slow h and/or decryption of master key k=Dpw(Epw(k))

7/23/03 http://Amir.Herzberg.name 9

Exposure of Secret Keys
! Exposure of shared secret key: replace key

" How to agree on new key without exposing it?
" Can we protect past traffic?
" Should we wait until detecting exposure to replace key?
" Bad idea! Better refresh keys periodically (proactively)

! Exposure of private key using PK cryptosystem
" How to revoke exposed public key, distribute new public key?
" Can we protect past traffic?

! Exposure of private key using PK signatures
" How to revoke exposed public key, distribute new public key?
" Can old signatures remain effective?

7/23/03 http://Amir.Herzberg.name 10

Dealing with Private Key Exposure
! Private key of PK cryptosystem or signature scheme
! Can we wait until detecting exposure to replace / revoke

(public) key?
" Bad idea for exposure of shared secret key
" But… changing public key, informing everybody, is a mess
" Better: revoke and replace key only when exposed

! How to revoke exposed public key?
! How to distribute new public key?
! More advanced issues – later…

" Change only private key, not modifying public key (periodically
and proactively – without detecting exposure)

" Can we protect past traffic?
" Can old signatures remain effective?

7/23/03 http://Amir.Herzberg.name 11

Self Certification and Revocation
! How to revoke exposed public key?
! How to distribute new public key?
! Distribute signed messages…

" Self revocation message for exposed key [“revoke”, date,
kold,pub]

" Self certificate of new key: [“cert”, dates, knew,pub]
" Both signed using kRC,pub – signing key for Revoke/Certify

! Problem: what if kRC,pub itself is exposed?

Relying
Party

Key owner

Sign<kRC,pub>(“cert”, dates, knew,pub)

Sign<kRC,pub>(“revoke”, date, kold,pub)

7/23/03 http://Amir.Herzberg.name 12

Certification & Revocation Authority
! Certification Authority (CA, Issuer) issues certificate to

subject’s public key
! Relying party validates certificate using CA public key
! Revocations also signed – by CA, subject, or other
! Also: limit certificate to validity period (an attribute)
! How to protect the key of the CA itself?

Relying
Party

Subject
(key owner)

Issuer / CA
(Certificate Authority)

Cert=SignCA(PUB,ID,ATTR)

Cert, PUB, Signpriv(m)

7/23/03 http://Amir.Herzberg.name 13

Preventing Invalidation of Signatures
! Problem: public key revoked… are signatures invalid??

" If not… revoking does not prevent signing with stolen key
" If yes… signer can revoke key (claim exposed) to deny signing
" Fair solutions: signatures validated before revocation remain valid

! Solution 1: time-stamping of signature and revocation
" Third-party evidence: date when document was signed
" Third-party evidence: date when key was revoked

! Solution 2: limited validity/revocation periods for keys
" Divide time into periods, e.g. day / month
" Different keys for each period t: Priv[t], Pub[t]
" Exposure of Priv[t] does not enable signing with Priv[t’], t’<t
" # Even if key revoked at period t, previous signatures are Ok

7/23/03 http://Amir.Herzberg.name 14

Time-Stamping of Signatures, Revocations
and other documents
! Goal: non-repudiated proof of document creation date

" Proof document/signature/revocation existed at/before date
" If signature on contract existed (was validated) before public key

was revoked, then contract remains valid!
! Timestamp signed by Time-stamping Authority
! Hash document to protect confidentiality

Time-Stamping
Authority

(TSA)

Author

Relying Party

Key Owner

h(doc) (paper, invention)

h(doc,sign), certificate(PK)

Revocation(PK)

7/23/03 http://Amir.Herzberg.name 15

Limited validity periods for keys
! Goal: signatures validated before revocation are valid
! Prevent invalidation by changing keys periodically

" Divide time into periods, e.g. day / month
" Different keys for each period t: Priv[t], Pub[t]
" Exposure of Priv[t] does not enable signing with Priv[t’], t’<t
" # Even if key revoked at period t, previous signatures are Ok

! How? Cert[t]=SignCA(Pub[t],ID,ATTR[period=t])

time

Period 1 Period 2 Period 3

7/23/03 http://Amir.Herzberg.name 16

Forward Secure Signatures
! Problem: many public keys… inconvenient
! Forward Secure Signatures:

" Different private key for each period t: Priv[t]
" Exposure of Priv[t] does not enable signing with Priv[t’], t’<t
" # Even if key revoked at period t, previous signatures are Ok
" But: use fixed public key Pub (and certificate?)
" Validation function depends on period
" Naïve version: deteriorating private key Priv[t]={Priv’(i)}i=t,..T
" Public key Pub={Pub’(i)}i=1,…T

! Evolving area of research: using short Pub, Priv[t]
! Existing proposals incompatible with RSA / DSA etc.

" Not in this course (or at least not in this lecture)

7/23/03 http://Amir.Herzberg.name 17

Remaining problems
! Recovery from private key exposure

" Detected exposure: revoke and certify new key
" Undetected : limited validity period, proactively change

keys
! High dependency on Certificate Authority:

" CA’s private key is critical… We later show how to protect
it.

" Secure communication with the CA is critical…
" How to secure it?

! In general: how to maintain secret shared key?

7/23/03 http://Amir.Herzberg.name 18

Exposure of Shared Secret Keys
! Exposure of shared secret key: replace key

" How to agree on new key without exposing it?
" Can we protect past traffic?
" Refresh periodically (proactively, before detecting exposure)

! Divide time into periods
! Each period begins with refresh/recovery phase

" Forward security: protect past/present from future exposure
" Proactive security: periodically recover security

time

Period 1 Period 2 Period 3

Refresh
phase

Refresh
phase

Refresh
phase

7/23/03 http://Amir.Herzberg.name 19

Alice Bob

A, Na

Nb,MACk(Na,Nb,A||B)

MACk(Na,Nb)

2PP handshake protocol
! Use master key k to securely distribute session key

k[i] for period i
! k[i]= PRPk(“session”, i, Na, Nb)
! Independent session keys – Adversary cannot learn

anything about m, given Ek[j](m) and k[i] for j≠≠≠≠i
! But what if master key k is exposed?

7/23/03 http://Amir.Herzberg.name 20

Weak Forward Security
! Protect past traffic from future exposure of all keys
! Divide time into periods; k[i] is session key in period

i
! Each period begins with refresh/recovery phase
! Weak Forward security: Any adversary, given…

" All keys in server during period i, after refresh phase

" Encryption Ek[j](m) for j<i
Cannot learn anything about m.

time

Period 1 Period 2 Period 3

Refresh
phase

Refresh
phase

Refresh
phase

7/23/03 http://Amir.Herzberg.name 21

Ensuring Weak Forward Security
! Evolving master key: MK[i]=PRPMK[i-1](“next”)
! Derive session key: k[i]= PRPMK[i](“s”, Na, Nb)
! Adversary cannot learn anything on m, given Ek[j](m) and…

" All keys in server after refresh phase of period j+1,
" And session keys k[i] for all periods i≠≠≠≠j

! However… if all keys of period i are exposed (incl. Master key
K[i]) adversary can decrypt all traffic after period i

! Can we limit the value of K[i] to period i??
! Suppose keys of period i are exposed only after period i…

7/23/03 http://Amir.Herzberg.name 22

Strong (Perfect) Forward Security
! Protect traffic of period i from exposure of all keys of

all periods j≠≠≠≠i, as long as exposure happens after
refresh phase of period i+1

! Motivation: some keys may persist from past
periods; plus, attacker may expose old key by time-
consuming methods, e.g. cryptanalysis, reading
from `erased` data

time

Period 1 Period 2 Period 3

Refresh
phase

Refresh
phase

Refresh
phase

All keys exposed

Attack

7/23/03 http://Amir.Herzberg.name 23

Alice Bob

Na

Nb, gb mod p,
MACMK(Nb,Na,B,A,gb mod p)

MACMK(Na,Nb,ga mod p), ga mod p

k = h((ga)b) mod p

Strong Forward Secrecy with DH
! Strong (Perfect) Forward secrecy: exposure after

period i of all keys in all periods j≠≠≠≠i exposes nothing
about messages sent during i.

! How? Periodical Authenticated Key Agreement [DH]
" a,b selected randomly each time by Alice, Bob respectively

7/23/03 http://Amir.Herzberg.name 24

Alice Bob

Na

Nb, MACMK(Nb,Na,B,A,PUBb[t])

MACMK(Na,Nb,EPU Bb[t](k))

Forward Secrecy with Pub Key
! Each period t, Bob generates new, ephemeral public key

PUBb[t] and sends to Alice
! Alice may also generate public key and send to Bob
! Public key generation $substantial overhead (esp. RSA)
! k exposed $ adversary can impersonate (fake PUBb[t])

How to use long-lasting, authenticated public keys?

7/23/03 http://Amir.Herzberg.name 25

Session Keys from Public Keys

! Public keys PUBa, PUB from certificates
(Ca,Cb)

• Simple extension to protect k even if attacker learns PRIVa.
• What if attacker learns both PRIVa and PRIVb?
$ Can extend with forward secrecy to protect past traffic…
$ Can we do better - change private keys?

Alice Bob

Na ,Ca

Nb, Cb, EPUBa(k),
SignPRIVb(Nb,Na,B,A, EPUBa(k))

MACk(Na,Nb)

7/23/03 http://Amir.Herzberg.name 26

Proactive Secure Communication
! Each period t, Bob and Alice generate new public keys

PUBb[t], PUBa[t] and certificates Ca[t]=SignCA{PUBa[t],t},
Cb[t]=SignCA{PUBb[t],t}

! Exchange keys, certificates, encrypted session key…
! Critical: Proactively secure Certification Authority
! Idea: use redundant, multiple servers for secure CA!

Alice Bob

Na,Ca[t]

Nb, Cb[t], EK=EncPUBa[t](k),
SignPRIVb(Nb,Na,B,A,{Ca[t],EK})

MACk(Na,Nb,A,B,Cb[t]))

7/23/03 http://Amir.Herzberg.name 27

Security By Redundancy
! Problem: server corrupted at time of service

" Certificate Authority: capture CA’s private key, issue certificates
" Secure login: access to account, change password
" Secure user data: capture password and/or key
" Database with private index: capture index at query

! Solution: use multiple, redundant servers
" Assume not all servers are corrupted

! Example: share secret key k among two servers:

k⊕⊕⊕⊕ r

r

7/23/03 http://Amir.Herzberg.name 28

Secret Sharing
! Idea: share secret among multiple, redundant servers

" Do not put all your eggs in one basket!
! Below: share secret s among two servers
! Questions:

" Share among n>2 servers [easy…]
" How to use / retrieve / store key securely? [Later]
" Require only threshold t<n servers for recovery [Next]

s⊕⊕⊕⊕ r

r

7/23/03 http://Amir.Herzberg.name 29

Question
! In many cases the secret shared is a key
! When sharing a key, why not simply give

each server half of the bits of the key?

k[0..79]

k[80..159]

7/23/03 http://Amir.Herzberg.name 30

Secret Sharing with Threshold
! N users and a threshold t
! Any group of t users can jointly obtain the secret
! Any group of less than t users cannot jointly obtain

any information about the secret
! Assume we have a dealer who has the secret
! (N,1)-scheme: give secret to all users…
! (N,N)-scheme: as before (XOR), or…

" Let s be the secret, let p be a large number (s<p)
" Let a1,…, aN be random numbers s.t. a1+ a2+…+ aN = s mod

p
" Assign ai to the i th user

7/23/03 http://Amir.Herzberg.name 31

Threshold Secret Sharing protects:
- Secrecy: no t-1 shareholders can
learn the secret

- Integrity: Every t shareholders can
reconstruct the secret (no N-t shareholders
can destroy the secret)

?

s

7/23/03 http://Amir.Herzberg.name 32

Secret Sharing with Threshold 2
! (N,2)-scheme: N users and a threshold t=2
! Need (exactly) two users to recover secret s
! Idea [Shamir]: share points on a line

" Let s be the secret, let p be a large prime (s, N<p)
" Let a∈∈∈∈ RZp (i.e. {0,…(p-1)})
" Hide the secret as points on the line f(x)=ax+s mod p
" User i∈∈∈∈ {1,..N} receives si=f(i)=ai+s mod p
" Every two users have two points # can find s=f(0)

f(x)=ax+s mod p

x

s

i j

f(i)
f(j)

7/23/03 http://Amir.Herzberg.name 33

Polynomial Secret Sharing [S79]
! Generalize from (N,2) to (N,t)
! Instead of a line, use a polynomial of degree (t-1)
! Pick random polynomial

f (x) = at-1xt-1 + at-2xt-2 +…+ s mod p
! As before:

" s = f (0)
" User i receive si = f (i) mod p
" t points allow interpolation # computing f(x) #s=f(0)

f(x)

x

s

i j

f(i)
f(j)

7/23/03 http://Amir.Herzberg.name 34

Lagrange Interpolation

! If
f (x) = at-1xt-1 + at-2xt-2 +…+ s

! Then given {f(xi),xi} for i=1,..t,

! In particular,

! Works the same mod p

i j

f(x)

x

s
f(i)
f(j)

∏∑
≠
== −

−
=

t

ij
1j ij

j
t

1i
i)xx(

)xx(
)x(f)x(f

∏∑
≠
== −

==
t

ij
1j ij

j
t

1i
i)xx(

x
)x(f)0(fs

7/23/03 http://Amir.Herzberg.name 35

Using Lagrange Interpolation
! With polynomial secret sharing, xi=i and

compute mod p
! Given {f(i)} for i∈∈∈∈ T s.t. |T|=t and T⊆⊆⊆⊆ {1,…N}

f(x)

x

s

i j

f(i)
f(j)

∏∑
≠
∈∈ −

==
ij
TjTi

pmod
)ij(

j)i(f)0(fs

7/23/03 http://Amir.Herzberg.name 36

Secure communication by sharing
! We can use secret sharing also to secure

communication using several partially-trusted
channels/messengers…

f(4)

f(1)

f(2)

f(3)
)42(

2)4(f

)24(
4)2(fs

−
+

+
−

=

7/23/03 http://Amir.Herzberg.name 37

Polynomial Secret Sharing - Exercise
! Let’s use p=37
! Select secret s <37
! Select ai∈∈∈∈ R {2…37} ; f (i) = at-1it-1 + at-2it-2 +…+ s mod

37
! Give f (i) to party i
! Receive f (i) from i

f(x)

x

s

i j

f(i)
f(j)

∏∑
≠
∈∈ −

==
ij
TjTi

pmod
)ij(

j)i(f)0(fs

What if some shares
are modified??

7/23/03 http://Amir.Herzberg.name 38

Share Modification Threats
! Malicious user sends bogus share

" Undetectable reconstruction of wrong secret
" Malicious user can recover real secret

! User receives corrupted share
" In some applications: intentionally corrupted by

sender!
" Undetectable until reconstruction (or at all)

! Solution: VSS - Verifiable Secret Sharing
[Feldman]

7/23/03 http://Amir.Herzberg.name 39

Verifiable Secret Sharing [Feldman]
! Distribute also public verifiers
! Verify share f (i)= s+a1i+a2i2+ … + at-1it-1 mod p
! By raising g by both sides:

! This preserves secrecy but allows detection of
bogus shares
" When received by i (in sharing phase)
" When sent by i (in reconstruction phase)

pmodg,...g,g 1t21 aaa −

pmod)g...()g()g)(g(
?

g
1t

1t
2

21 iaiaias)i(f −
−=

7/23/03 http://Amir.Herzberg.name 40

Polynomial Secret Sharing - Properties
! Perfect (unconditional) security: given less than t

shares, all values of the shared secret are equally
probable
" No unproven (computational) assumptions

! The size of each share is the same as of the secret
! Shares for new users can be computed without

changing existing shares
! Verify shares (VSS) variant to detect bogus shares

" Computationally-secure
! Symmetric: all users equally trusted / powerful

" Or: give multiple shares to `highly trusted` users
! Can we trust some users more than others?

7/23/03 http://Amir.Herzberg.name 41

Asymmetric Secret Sharing

! Not all users equally trusted
! Access function: f(x1,…,xN)

" XI: True if user i contributes her share
" f(x1,…,xN) is True if {x1,…,xN} together can recover s

! Monotone Access Function
" Adding more shares can only help
" Boolean circuit with only “and” and “or”

() 432431214,32,1 , xxxxxxxxxxxxf ∨∨=

7/23/03 http://Amir.Herzberg.name 42

View as Monotone Boolean Circuit

! Boolean circuit with only “and” and “or”

() 432431214,32,1 , xxxxxxxxxxxxf ∨∨=

x1 x2 x4x3

or

and andand

7/23/03 http://Amir.Herzberg.name 43

! “or” gate is an (N,1) scheme

! “and” gate is an (N,N) scheme

! Recursively use the simple schemes for (N,1)
and (N,N)

Benaloh and Leichter.

7/23/03 http://Amir.Herzberg.name 44

Circuit Evaluation

! Boolean circuit with only “and” and “or”
() 432431214,32,1 , xxxxxxxxxxxxf ∨∨=

x1 x2 x4x3

or

and andand
s

s1,1 s1,2

s

ss

s2,1 s2,2
s2,3

s3,1 s3,2 s3,3

7/23/03 http://Amir.Herzberg.name 45

Circuit Evaluation

! Boolean circuit with only “and” and “or”
()))()((, 432431214,32,1 xxxxxxxxxxxxf ∨∨∨∨∨=

x1 x2 x4x3

and

or oror
s3

s1 s1

s

s2
s1

s2 s2
s2

s3 s3 s3

7/23/03 http://Amir.Herzberg.name 46

How to use a shared secret?
! Naïve: provide all shares to the user

" How to authenticate the user?
" A: user provides secret key / password
" Why not use this key to encrypt the secret?

! Group operations:
" Distributed decryption: t servers decrypt Epriv(m)
" Distributed signing: t servers sign `together` Signpriv(m)
" Signing allows a distributed secure Certificate Authority

(CA)
! How?

" RSA signatures / encryption
" DSA signatures
" El-Gamal signatures / encryption

7/23/03 http://Amir.Herzberg.name 47

Recall: El-Gamal PK Encryption
! Let’s use secret key s for Alice…
! Bob chooses r and v= gr mod p
! Bob encrypts message m using (gs)r:

c=m*g sr mod p
! Bob sends c, v
! Alice uses vs=g sr mod p to decrypt: m=c / gsr mod p

Alice Bob
[PA=gs mod p]

c=m*(gs)r , v=gr mod p

7/23/03 http://Amir.Herzberg.name 48

Recall: Polynomial Secret Sharing
! Pick random polynomial

f (x) = at-1xt-1 + at-2xt-2 +…+ s mod M
" s = f (0)
" User i receives si = f (i) mod p

! By Lagrange interpolation:

f(x)

x

s

i j

f(i)
f(j)

∏∑
≠
== −

==
t

ij
1j ij

j
t

1i
i)xx(

x
)x(f)0(fs

7/23/03 http://Amir.Herzberg.name 49

Recall: Polynomial Secret Sharing
! Pick random polynomial

f (x) = at-1xt-1 + at-2xt-2 +…+ s mod M
! In our case xi=i so:

! Denote:

x
i j

f(x)
s

si=f(i)
sj=f(j)

∏∑
≠
== −

==
t

ij
j

t

i ij
jiffs

11

)()0(

∏
≠
= −

=
t

ij
1j

i ij
jζ

∑∑
==

===
t

i
iii

t

i
siffs

11
)()0(ζζ

7/23/03 http://Amir.Herzberg.name 50

Distributed El-Gamal PKC

! Secret key s split between servers A1,…AN
" si=f(i); s=f(0)

! Bob operates as usual (unaware key is shared):
" Chooses r and v= gr mod p
" Encrypts: c=m*gsr mod p

! Each server Ai computes

! Compute

! Decrypt: m=c / k mod p

iiii srs
i gvv ζζ ⋅==

pmodgggvk sr
t

1i

sr
rs

t

1i
i

t

1i
ii

ii ⋅

=

⋅

=

=
∑

=== ∏∏ =

ζ
ζ

7/23/03 http://Amir.Herzberg.name 51

If all servers may be corrupted…
! Can we provide secure services using insecure servers?
! Insecure servers: servers that may be corrupted
! We showed how to provide secure services…

" If server is not corrupted at time of service
" By multiple servers – assuming not all are corrupted
" Assume enough are not corrupted (One? Majority? 2/3?)

! What if eventually, all servers may be corrupted?
! Assume: enough servers are Ok at each period
! Proactive security: periodic process maintains security

7/23/03 http://Amir.Herzberg.name 52

Proactive Security: Recovery from corruptions

! Attacker try to avoid detection of attack
" Once detected, the advantage is with the system

administrator
! Multiple defense lines:

" Prevention of corruption
" Detection of attack
" Recovery from detected attack
" Periodical, proactive recovery from undetected attack

! Proactive recovery must be inexpensive
" Automated only – no operator involvement

7/23/03 http://Amir.Herzberg.name 53

Blocking / Filtering

Intrusion Detection

Emergency
Response

and Recovery
Proactive (undetected)

Recovery

Resiliency

Damage Detection

Alert

Update
Alert

Update

Alert

Alert

Defenses against intrusions

7/23/03 http://Amir.Herzberg.name 54

Proactive Password Security
! Simple example of proactive security
! Accepted practice: periodical change of passwords
! Minimal involvement of user, none of operator
! Attacker loses control (if user changes)
! Attacker risks detection (if attacker changes)
! Extreme: one-time passwords (e.g. S/Key)
! This example was centralized – since it involved the

user
! Most proactive security mechanisms are

distributed…

7/23/03 http://Amir.Herzberg.name 55

Proactive = Distribution + Refresh
! Proactive security combines:

" Redundancy – avoid single point of failure
" Refresh recovery – periodically return servers to secure state

(when not controlled by adversary during refresh)
! Secrets exposed by adversary become stale, useless
! Lifetime is divided into periods
! Each period begins with refresh/recovery phase

time

Period 1 Period 2 Period 3

Refresh
phase

Refresh
phase

Refresh
phase

7/23/03 http://Amir.Herzberg.name 56

Proactive Security Model
! Each period begins with refresh/recovery phase
! Assume: enough servers are Ok at each period

" E.g. At least 3 out of 5 (i.e. at most 2 are corrupted per period)
! Proactive security: periodic process maintains security

5
4
3
2
1

Servers

Periods

7/23/03 http://Amir.Herzberg.name 57

Proactive Secure Log Files
! Another simple proactive-secure mechanism
! Log files are important for intrusion detection
! Hackers try to `erase tracks` by erasing/modifying

log
! How to protect log files?? --`Write-once Memory`

" Simple: use hardware write-once memory (paper, CD-R,…)
! Proactive secure write-once memory:

" Send every log record to all (or most) servers
" Servers periodically compare log files (and merge?)

! What about secure storage of secrets and keys?

7/23/03 http://Amir.Herzberg.name 58

Proactive Secret Sharing (t=2)
! Idea: refresh secret shares
! How? Consider sharing by polynomial of degree t-1, e.g.

f(x)=ax+s
! Refresh shares by adding random g(x)=bx; notice g(0)=0
! f’(x)=f(x)+g(x)=(a+b)x+s; secret is unchanged, f’(0)=s

f(x)=ax+s mod M

x

s

i j

f(i)
f(j)

g(x)=bx mod M

xi j
g(i)
g(j)

+
f’(x)=(a+b)x+s mod M

x

s

i j

7/23/03 http://Amir.Herzberg.name 59

Proactive Secret Sharing (any t>1)
! Given shares as values of polynomial f() of degree

t-1
" f (x) = at-1xt-1 + at-2xt-2 +…+ s mod M; s = f (0)
" Server i receives si = f (i) mod p

! Add refresh polynomial of degree t-1: g() s.t. g(0)=0
! f’(x)=f(x)+g(x); secret is unchanged, f’(0)=s
! Each server i simply add its own share f’(i)=f(i)+g(i)
! Now erase old share f(i)
! How to select, distribute refresh polynomial g()?

" Given g(), adversary can compute new shares from old
shares and old shares from new shares

" If not properly shared or g(0)≠≠≠≠0: reconstruction fails!

7/23/03 http://Amir.Herzberg.name 60

Selecting and distributing refresh polynomial g()

! Goal: select, distribute refresh polynomial g() s.t.
g(0)=0
" Ensure secrecy and integrity of (shares of) g()

! Every server i selects, shares polynomial gi() s.t.
gi(0)=0

! Add all of them: g(x)=g1(x)+…+gn(x)
! # g(0)=g1(0)+…+gn(0)=0
! Use Verifiable Secret Sharing to verify shares and

gi(0)=0
! Actually we verify that we share zero, not a secret…

7/23/03 (c) Amir Herzberg 61

Verifiable Zero Sharing
! Distribute also public coefficients
! Verify share f (i)= 0+a1i+a2i2+ … + at-1it-1 mod p
! By raising g by both sides:

! Allows detection of bogus shares
! Also verifies these are shares of zero!!

pmodg,...g,g 1t21 aaa −

pmod)g...()g()g)(g(
?

g
1t

1t
2

21 iaiaia0)i(f −
−=

7/23/03 http://Amir.Herzberg.name 62

Proactive Signatures and PKC
! Private (signature, decryption) key is shared
! Public (validation, encryption) key is known to all

" Appears as a `regular` public key
! Shares of secret key refreshed periodically
! Signature/decryption requires t out of N shares
! Private key is never explicitly reconstructed !
! Known for…

" RSA (key generation tricky but possible)
" DSA
" El-Gamal

7/23/03 http://Amir.Herzberg.name 63

Recall: Distributed El-Gamal PKC
! Bob’s Secret key b split between servers Bob1,…BobN

" bi=f(i) s.t.
! Alice (sender) operates as usual (unaware key is

shared):
" Chooses r and v= gr mod p
" Encrypts: c=m*B r mod p where B=gb mod p is Bob’s public

key
! Each server Bobi computes

! Compute

! Decrypt: m=c / k mod p

iiii srs
i gvv ζζ ⋅==

pmodgggvk sr
t

1i

sr
rs

t

1i
i

t

1i
ii

ii ⋅

=

⋅

=

=
∑

=== ∏∏ =

ζ
ζ

−
=∏

≠
=

t

ij
1j

i ij
jζ

Recall:

7/23/03 http://Amir.Herzberg.name 64

Proactive PKC, Signature Schemes
! Exactly the same…
! Except secret key shares are updated

periodically
! El-Gamal, DSA signature only slightly more

complex – jointly pick shared random secret r
" Required for El-Gamal, DSA signatures
" No server can control shared secret
" Servers must provide good shares (VSS)

! Proactive RSA a bit more complex (but
doable)

7/23/03 http://Amir.Herzberg.name 65

Proactive Security: Applications
! Proactive Secure Certificate Authority

" Secure public key certificates and revocations
" In particular: automated periodic refresh of private, public keys
" For recovery from penetration of (certified) key

! To allow use of fixed public key for long time…
" Use periodic private key, fixed public key
" Generate periodic private key by multiple servers
" Each server keeps share of `core` private key
" Shared of `core` private key refreshed periodically

! Decentralized `Trusted Computing`
" Secure `vault` for user’s data/agents
" Secure operating system, anti-virus and security programs

7/23/03 http://Amir.Herzberg.name 66

Applying Proactive Security
! Existing computers, operating systems are insecure

" Most have weak security mechanisms, many `holes`
" Most computers are not managed securely
" Even patches for known security `holes` not installed
" Once hacked, attackers plant `trapdoors` inside system code
" No separation of system code, no `read only` support

! Idea: improve by proactive security
" Periodically validate operating system, virus DB, etc.
" Periodically, automatically install security patches, virus DB,…

! Problem: hacker may disable periodical checks…
! How to secure the boot process? – see `extras`

7/23/03 http://Amir.Herzberg.name 67

Conclusion
! Key exposure is a major threat

" Existing operating systems are insecure
" Insider attacks very common – as well as hacking…

! Solve by:
" Limiting damage due to penetration
" Redundancy – attacker must break over threshold
" Temporal security models:

! Proactive security – recovery from penetrations
! Reasonably efficient signing and decryption
! Standard RSA/DSA Public key operations (validate,

encrypt)
! Forward security – past protected from future exposure

7/23/03 http://Amir.Herzberg.name 68

Extras

7/23/03 http://Amir.Herzberg.name 69

Proactive Secure Boot & Refresh
! Assume hardware provides:

" Invokes validation process before boot
" Periodical boot or validation
" Read-only memory for unique validation key of processor

Vp

" Matching signature key provided initially Sp

! Each network/organization maintains:
" Public network/organization certification key Vcert

" Shares of corresponding secret key in several servers
! Each computer should have:

" Copy of Vcert

" Method for validating Vcert at boot / periodical refresh

7/23/03 http://Amir.Herzberg.name 70

Validating Vcert using local keys
! Mi=Sign<Sp>(Vcert)
! Store Mi in nearby servers for automatic recovery

" Proactively maintain it valid
! Now erase Sp

" So attacker cannot install fake Vcert

" Possible hardware mechanism to generate new keys
! Upon periodical refresh or boot…

" Validate Mi and thereby Vcert

" If invalid, get valid Mi from peers
" Validate information signed by Vcert, e.g. public keys, Mj (of

j)
" Send Mj to peer j

